
OpenOffice.org 1.1

Developer's Guide

June 2003

This documentation is distributed under licenses restricting its use. You may
make copies of and redistribute it, but you may not modify or make derivative
works of this documentation without prior written authorization of Sun and its
licensors, if any.

Copyright 2003 Sun Microsystems, Inc.

Contents
 1 Reader's Guide 25

1.1 What This Manual Covers .. 25
1.2 How This Book is Organized ... 25
1.3 OpenOffice.org Version History .. 26
1.4 Related documentation ... 26
1.5 Conventions .. 27
1.6 Acknowledgments ... 27

 2 First Steps 29

2.1 Programming with UNO .. 29
2.2 Fields of Application for UNO ... 29
2.3 Getting Started .. 30

2.3.1 Required Files ... 30
2.3.2 Installation Sets ... 30
2.3.3 Configuration .. 31

Enable Java in OpenOffice.org ... 31
Use Java UNO class files ... 31
Make the office listen .. 31
Add the API Reference to your IDE .. 32

2.3.4 First Connection .. 33
Getting Connected ... 33
Service Managers ... 34
Failed Connections .. 36

2.4 How to get Objects in OpenOffice.org .. 37
2.5 Working with Objects .. 38

2.5.1 Services ... 38
Using Interfaces ... 41
Using Properties ... 42

2.5.2 Example: Working with a Spreadsheet Document ... 43
2.5.3 Common Types ... 44

Simple Types .. 44
Strings .. 45
Enum Types and Groups of Constants .. 45

2.5.4 Struct ... 46
2.5.5 Any ... 46
2.5.6 Sequence .. 48
2.5.7 Element Access ... 49

Name Access .. 51
Index Access ... 52
Enumeration Access .. 52

2.6 How do I know Which Type I Have? ... 53
2.7 Example: Hello Text, Hello Table, Hello Shape .. 54

2.7.1 Common Mechanisms for Text, Tables and Drawings ... 54
2.7.2 Creating Text, Tables and Drawing Shapes ... 59

Text, Tables and Drawings in Writer .. 59
Text, Tables and Drawings in Calc ... 60
Drawings and Text in Draw ... 61

 3 Professional UNO 63

3.1 Introduction .. 63
3.2 API Concepts .. 64

3.2.1 Data Types ... 64
Simple Types .. 64
The Any Type ... 65
Interfaces ... 65
Services .. 67
Structs .. 71
Predefined Values .. 71
Sequences .. 72
Modules ... 72
Exceptions ... 73
Singletons .. 73

3.2.2 Understanding the API Reference ... 74
Specification, Implementation and Instances .. 74
Object Composition ... 75

3.3 UNO Concepts .. 75
3.3.1 UNO Interprocess Connections .. 75

Starting OpenOffice.org in Listening Mode .. 75
Importing a UNO Object .. 76
Characteristics of the Interprocess Bridge ... 77
Opening a Connection .. 78
Creating the Bridge .. 80
Closing a Connection .. 81
Example: A Connection Aware Client .. 82

3.3.2 Service Manager and Component Context ... 84
Service Manager ... 84
Component Context .. 85

3.3.3 Using UNO Interfaces .. 89
3.3.4 Properties ... 91
3.3.5 Collections and Containers ... 95
3.3.6 Event Model .. 97
3.3.7 Exception Handling ... 98

User-Defined Exceptions .. 98

Runtime Exceptions ... 99
Good Exception Handling ... 99

3.3.8 Lifetime of UNO Objects ... 100
acquire() and release() ... 101
The XComponent Interface .. 101
Children of the XEventListener Interface ... 103
Weak Objects and References .. 104
Differences Between the Lifetime of C++ and Java Objects 104

3.3.9 Object Identity ... 106
3.4 UNO Language Bindings .. 106

3.4.1 Java Language Binding .. 107
Getting a Service Manager ... 107
Handling Interfaces ... 108
Type Mappings .. 109

3.4.2 UNO C++ Binding .. 117
Library Overview .. 118
System Abstraction Layer ... 119
File Access ... 119
Threadsafe Reference Counting .. 119
Threads and Thread Synchronization .. 120
Establishing Interprocess Connections ... 121
Type Mappings .. 122
Using Weak References .. 126
Exception Handling in C++ ... 127

3.4.3 OpenOffice.org Basic ... 128
Handling UNO Objects ... 129
Mapping of UNO and Basic Types ... 135
Case Sensitivity .. 141
Exception Handling ... 142
Listeners .. 143

3.4.4 Automation Bridge ... 145
Introduction .. 145
Requirements .. 146
A Quick Tour .. 146
The Service Manager Component ... 148
Using UNO from Automation ... 150
Type Mappings .. 156
Automation Objects with UNO Interfaces ... 167
DCOM ... 170
The Bridge Services ... 172
Unsupported COM Features .. 175

 4 Writing UNO Components 177

4.1 Required Files ... 178
4.2 Using UNOIDL to Specify New Components ... 179

4.2.1 Writing the Specification ... 179
Preprocessing ... 180
Grouping Definitions in Modules ... 181
Fundamental Types ... 181
Defining an Interface ... 182
Defining a Service .. 185
Defining a Sequence .. 187
Defining a Struct .. 187
Defining an Exception ... 188
Predefining Values .. 189
Using Comments ... 190
Singleton .. 191
Reserved Types .. 191

4.2.2 Generating Source Code from UNOIDL Definitions .. 192
4.3 Component Architecture .. 193
4.4 Core Interfaces to Implement ... 194

4.4.1 XInterface ... 196
Requirements for queryInterface() .. 197
Reference Counting ... 197

4.4.2 XTypeProvider .. 197
Provided Types .. 198
ImplementationID ... 198

4.4.3 XServiceInfo .. 198
Implementation Name .. 198
Supported Service Names .. 199

4.4.4 XWeak .. 199
4.4.5 XComponent ... 200

Disposing of an XComponent .. 200
4.4.6 XInitialization .. 200
4.4.7 XMain ... 201
4.4.8 XAggregation .. 201
4.4.9 XUnoTunnel .. 201

4.5 Simple Component in Java ... 202
4.5.1 Class Definition with Helper Classes .. 203

XInterface, XTypeProvider and XWeak ... 203
XServiceInfo .. 203

4.5.2 Implementing your own Interfaces ... 204
4.5.3 Providing a Single Factory Using Helper Method .. 205
4.5.4 Write Registration Info Using Helper Method .. 206
4.5.5 Implementing without Helpers .. 207

XInterface .. 207
XTypeProvider ... 208

XComponent ... 208
4.5.6 Storing the Service Manager for Further Use ... 209
4.5.7 Create Instance with Arguments ... 209
4.5.8 Possible Structures for Java Components ... 210

One Implementation per Component File ... 210
Multiple Implementations per Component File ... 212

4.5.9 Running and Debugging Java Components ... 214
Registration ... 214
Debugging .. 215
The Java Environment in OpenOffice.org .. 216
Troubleshooting ... 217

4.6 C++ Component ... 219
4.6.1 Class Definition with Helper Template Classes .. 220

XInterface, XTypeProvider and XWeak ... 220
XServiceInfo .. 221

4.6.2 Implementing your own Interfaces ... 221
4.6.3 Providing a Single Factory Using a Helper Method ... 222
4.6.4 Write Registration Info Using Helper Method .. 223
4.6.5 Provide Implementation Environment ... 224
4.6.6 Implementing without Helpers .. 224

XInterface Implementation ... 224
XTypeProvider Implementation .. 225
Providing a Single Factory ... 226
Write Registration Info ... 227

4.6.7 Storing the Service Manager for Further Use ... 227
4.6.8 Create Instance with Arguments ... 228
4.6.9 Multiple Components in One Dynamic Link Library .. 228
4.6.10 Building and Testing C++ Components ... 228

Build Process .. 228
Test Registration and Use ... 229

4.7 Integrating Components into OpenOffice.org ... 230
4.7.1 Protocol Handler .. 232

Overview ... 232
Implementation .. 233
Configuration ... 241
Installation .. 243

4.7.2 Jobs .. 243
Overview ... 243
Execution Environment .. 245
Implementation .. 246
Initialization .. 248
Returning Results .. 250
Configuration ... 251
Installation .. 253

Using the vnd.sun.star.jobs: URL Schema .. 253
List of supported Events ... 255

4.7.3 Add- Ons ... 256
Overview ... 257
Guidelines ... 258
Configuration ... 258
Installation .. 269

4.7.4 Disable Commands .. 270
Configuration ... 272
Disabling Commands at Runtime ... 273

4.8 File Naming Conventions ... 276
4.9 Deployment Options for Components .. 278

4.9.1 UNO Package Installation ... 278
Package Structure .. 279
Path Settings ... 280
Additional Options .. 281

4.9.2 Background: UNO Registries ... 281
UNO Type Library .. 282
Component Registration ... 282

4.9.3 Command Line Registry Tools ... 283
Component Registration Tool .. 283
UNO Type Library Tools .. 284

4.9.4 Manual Component Installation .. 285
Manually Merging a Registry and Adding it to uno.ini or soffice.ini 285
Alternatives .. 286

4.9.5 Bootstrapping a Service Manager .. 286
4.9.6 Special Service Manager Configurations .. 288

Dynamically Modifying the Service Manager .. 288
Creating a ServiceManager from a Given Registry File 290

4.10 The UNO Executable ... 290
Standalone Use Case ... 291
Server Use Case .. 293
Using the uno Executable ... 294

 5 Advanced UNO 295

5.1 Choosing an Implementation Language .. 295
5.1.1 Supported Programming Environments .. 295

Java ... 296
C++ ... 296
OpenOffice.org Basic ... 296
OLE Automation Bridge ... 297
Python ... 297

5.1.2 Use Cases ... 297

Java ... 297
C++ ... 297
OpenOffice.org Basic ... 298
OLE Automation .. 298
Python ... 298

5.1.3 Recommendation .. 298
5.2 Language Bindings .. 298

5.2.1 Implementing UNO Language Bindings .. 299
Overview of Language Bindings and Bridges .. 299
Implementation Options ... 300

5.2.2 UNO C++ bridges .. 301
Binary UNO Interfaces .. 302
C++ Proxy ... 303
Binary UNO Proxy .. 304
Additional Hints .. 305

5.2.3 UNO Reflection API ... 306
XTypeProvider Interface .. 306
Converter Service ... 306
CoreReflection Service .. 306

5.2.4 XInvocation Bridge ... 310
Scripting Existing UNO Objects .. 310
Implementing UNO objects ... 313
Example: Python Bridge PyUNO .. 314

5.2.5 Implementation Loader ... 316
Shared Library Loader .. 318
Bridges ... 318

5.2.6 Help with New Language Bindings .. 319
5.3 Differences Between UNO and Corba .. 319
5.4 UNO Design Patterns and Coding Styles ... 321

5.4.1 Double-Checked Locking .. 321

 6 Office Development 325

6.1 OpenOffice.org Application Environment ... 325
6.1.1 Overview ... 325

Desktop Environment ... 326
Framework API .. 327

6.1.2 Using the Desktop .. 333
6.1.3 Using the Component Framework .. 337

Getting Frames, Controllers and Models from Each Other 338
Frames ... 339
Controllers .. 344
Models ... 346
Window Interfaces ... 349

6.1.4 Creating Frames Manually .. 350
6.1.5 Handling Documents ... 352

Loading Documents .. 352
Closing Documents ... 360
Storing Documents .. 365
Printing Documents .. 367

6.1.6 Using the Dispatch Framework .. 367
Command URL .. 367
Processing Chain .. 368
Dispatch Process .. 369
Dispatch Results ... 373
Dispatch Interception .. 373

6.1.7 Java Window Integration .. 375
The Window Handle ... 375
Using the Window Handle .. 375
More Remote Problems ... 378

6.2 Common Application Features .. 378
6.2.1 Clipboard ... 378

Using the Clipboard .. 379
OpenOffice.org Clipboard Data Formats ... 382

6.2.2 Internationalization .. 383
Introduction .. 383
Overview and Using the API ... 384
Implementing a New Locale .. 386

6.2.3 Linguistics .. 393
Services Overview ... 393
Using Spellchecker .. 396
Using Hyphenator ... 397
Using Thesaurus .. 398
Events .. 399
Implementing a Spell Checker ... 400
Implementing a Hyphenator ... 402
Implementing a Thesaurus ... 403

6.2.4 Integrating Import and Export Filters ... 404
Approaches ... 404
Document API Filter Development .. 404
XML Based Filter Development .. 418

6.2.5 Number Formats ... 426
Managing Number Formats ... 426
Applying Number Formats .. 427

6.2.6 Document Events .. 429
6.2.7 Path Organization .. 434

Path Settings ... 434
Path Variables .. 441

6.2.8 OpenOffice.org Single Sign-On API ... 450
Overview ... 450
Implementing the OpenOffice.org SSO API .. 451

 7 Text Documents 455

7.1 Overview ... 455
7.1.1 Example: Fields in a Template .. 458
7.1.2 Example: Visible Cursor Position .. 459

7.2 Handling Text Document Files .. 461
7.2.1 Creating and Loading Text Documents .. 461
7.2.2 Saving Text Documents ... 462

Storing ... 462
Exporting ... 462

7.2.3 Printing Text Documents ... 463
Printer and Print Job Settings ... 463
Printing Multiple Pages on one Page ... 464

7.3 Working with Text Documents .. 465
7.3.1 Word Processing ... 465

Editing Text .. 465
Iterating over Text ... 469
Inserting a Paragraph where no Cursor can go .. 471
Sorting Text ... 471
Inserting Text Files .. 471
Auto Text ... 471

7.3.2 Formatting ... 472
7.3.3 Navigating ... 479

Cursors .. 479
Locating Text Contents ... 479
Search and Replace .. 480

7.3.4 Tables .. 483
Table Architecture ... 483
Named Table Cells in Rows, Columns and the Table Cursor 486
Indexed Cells and Cell Ranges .. 488
Table Naming, Sorting, Charting and Autoformatting 489
Text Table Properties ... 489
Inserting Tables .. 490
Accessing Existing Tables ... 495

7.3.5 Text Fields .. 495
7.3.6 Bookmarks ... 501
7.3.7 Indexes and Index Marks .. 502

Indexes ... 502
Index marks .. 505

7.3.8 Reference Marks ... 506

7.3.9 Footnotes and Endnotes .. 507
7.3.10 Shape Objects in Text ... 509

Base Frames vs. Drawing Shapes .. 509
Text Frames ... 512
Embedded Objects ... 514
Graphic Objects .. 514
Drawing Shapes ... 515

7.3.11 Redline ... 517
7.3.12 Ruby .. 518

7.4 Overall Document Features .. 518
7.4.1 Styles ... 518

Character Styles ... 520
Paragraph Styles .. 521
Frame Styles .. 521
Page Styles .. 521
Numbering Styles .. 521

7.4.2 Settings ... 523
General Document Information .. 523
Document Properties ... 523
Creating Default Settings .. 524
Creating Document Settings .. 524

7.4.3 Line Numbering and Outline Numbering ... 524
Paragraph and Outline Numbering .. 524
Line Numbering ... 527
Number Formats .. 527

7.4.4 Text Sections .. 527
7.4.5 Page Layout ... 528
7.4.6 Columns ... 529
7.4.7 Link targets .. 531

7.5 Text Document Controller .. 531
7.5.1 TextView .. 532
7.5.2 TextViewCursor .. 533

 8 Spreadsheet Documents 535

8.1 Overview ... 535
8.1.1 Example: Adding a New Spreadsheet .. 537
8.1.2 Example: Editing Spreadsheet Cells .. 538

8.2 Handling Spreadsheet Document Files .. 538
8.2.1 Creating and Loading Spreadsheet Documents .. 538
8.2.2 Saving Spreadsheet Documents ... 539

Storing ... 539
Exporting ... 540
Filter Options .. 540

8.2.3 Printing Spreadsheet Documents ... 543
Printer and Print Job Settings ... 543
Page Breaks and Scaling for Printout ... 544
Print Areas .. 544

8.3 Working with Spreadsheet Documents .. 545
8.3.1 Document Structure ... 545

Spreadsheet Document ... 545
Spreadsheet Services - Overview .. 549
Spreadsheet ... 560
Cell Ranges ... 562
Cells ... 569
Cell Ranges and Cells Container ... 573
Columns and Rows ... 576

8.3.2 Formatting ... 578
Cell Formatting .. 578
Character and Paragraph Format .. 578
Indentation .. 579
Equally Formatted Cell Ranges ... 579
Table Auto Formats ... 583
Conditional Formats .. 587

8.3.3 Navigating ... 588
Cell Cursor .. 590
Referencing Ranges by Name .. 593
Named Ranges ... 594
Label Ranges ... 596
Querying for Cells with Specific Properties .. 597
Search and Replace .. 600

8.3.4 Sorting .. 600
Table Sort Descriptor ... 600

8.3.5 Database Operations .. 602
Filtering ... 603
Subtotals .. 605
Database Import ... 606
Database Ranges .. 608

8.3.6 Linking External Data .. 608
Sheet Links .. 609
Cell Area Links ... 609
DDE Links ... 611

8.3.7 DataPilot .. 611
DataPilot Tables ... 611
DataPilot Sources ... 615

8.3.8 Protecting Spreadsheets .. 624
8.3.9 Sheet Outline ... 625
8.3.10 Detective .. 625

8.3.11 Other Table Operations ... 625
Data Validation .. 625
Data Consolidation .. 627
Charts ... 628
Scenarios ... 629

8.4 Overall Document Features .. 632
8.4.1 Styles ... 632

Cell Styles .. 633
Page Styles .. 634

8.4.2 Function Handling ... 635
Calculating Function Results ... 635
Information about Functions ... 637
Recently Used Functions .. 639

8.4.3 Settings ... 639
8.5 Spreadsheet Document Controller .. 640

8.5.1 Spreadsheet View ... 640
8.5.2 View Panes .. 642
8.5.3 View Settings ... 643
8.5.4 Range Selection ... 643

8.6 Spreadsheet Add- Ins ... 646
8.6.1 Function Descriptions .. 646
8.6.2 Service Names ... 647
8.6.3 Compatibility Names ... 647
8.6.4 Custom Functions ... 647
8.6.5 Variable Results .. 648

 9 Drawing Documents and Presentation Documents 651

9.1 Overview ... 651
9.1.1 Example: Creating a Simple Organizational Chart ... 653

9.2 Handling Drawing Document Files .. 655
9.2.1 Creating and Loading Drawing Documents .. 655
9.2.2 Saving Drawing Documents ... 656

Storing ... 656
Exporting ... 657
Filter Options .. 658

9.2.3 Printing Drawing Documents .. 659
Printer and Print Job Settings ... 659
Special Print Settings ... 661

9.3 Working with Drawing Documents .. 661
9.3.1 Drawing Document .. 661

Document Structure .. 661
Page Handling .. 662
Page Partitioning ... 663

9.3.2 Shapes ... 663
Bezier Shapes .. 669
Shape Operations ... 672

9.3.3 Inserting Files .. 684
9.3.4 Navigating ... 684

9.4 Handling Presentation Document Files .. 684
9.4.1 Creating and Loading Presentation Documents .. 684
9.4.2 Printing Presentation Documents .. 685

9.5 Working with Presentation Documents ... 685
9.5.1 Presentation Document ... 685
9.5.2 Presentation Settings .. 687

Custom Slide Show ... 688
Presentation Effects ... 690
Slide Transition .. 690
Animations and Interactions .. 691

9.6 Overall Document Features .. 695
9.6.1 Styles ... 695

Graphics Styles ... 695
Presentation Styles ... 697

9.6.2 Settings ... 698
9.6.3 Page Formatting .. 699

9.7 Drawing and Presentation Document Controller ... 700
9.7.1 Setting the Current Page, Using the Selection .. 700
9.7.2 Zooming ... 701
9.7.3 Other Drawing- Specific View Settings .. 701

 10 Charts 703

10.1 Overview ... 703
10.2 Handling Chart Documents ... 703

10.2.1 Creating Charts ... 703
Creating and Adding a Chart to a Spreadsheet .. 703
Creating a Chart OLE Object in Draw and Impress ... 704
Setting the Chart Type .. 706

10.2.2 Accessing Existing Chart Documents .. 706
10.3 Working with Charts ... 707

10.3.1 Document Structure ... 707
10.3.2 Data Access .. 708
10.3.3 Chart Document Parts ... 711

Common Parts of all Chart Types ... 711
Features of Special Chart Types .. 715

10.4 Chart Document Controller .. 718
10.5 Chart Add- Ins ... 718

10.5.1 Prerequisites .. 718

10.5.2 How Add- Ins work .. 718
10.5.3 How to Apply an Add- In to a Chart Document .. 720

 11 OpenOffice.org Basic and Dialogs 723

11.1 First Steps with OpenOffice.org Basic .. 724
Step By Step Tutorial ... 724
A Simple Dialog ... 728

11.2 OpenOffice.org Basic IDE ... 733
11.2.1 Managing Basic and Dialog Libraries ... 734

Macro Dialog .. 734
Macro Organizer Dialog ... 736

11.2.2 Basic IDE Window .. 741
Basic Source Editor and Debugger .. 743
Dialog Editor .. 746

11.2.3 Assigning Macros to GUI Events ... 752
11.3 Features of OpenOffice.org Basic .. 755

11.3.1 Functional Range Overview ... 755
Screen I/O Functions .. 755
File I/O .. 755
Date and Time Functions .. 756
Numeric Functions .. 757
String Functions ... 757
Specific UNO Functions .. 758

11.3.2 Accessing the UNO API .. 758
StarDesktop .. 758
ThisComponent .. 758

11.3.3 Special Behavior of OpenOffice.org Basic .. 760
Threads .. 760
Rescheduling .. 760

11.4 Advanced Library Organization .. 762
11.4.1 General Structure .. 762
11.4.2 Accessing Libraries from Basic ... 763

Library Container Properties in Basic ... 763
Loading Libraries ... 764
Library Container API .. 765

11.4.3 Variable Scopes ... 767
11.5 Programming Dialogs and Dialog Controls .. 768

11.5.1 Dialog Handling ... 768
Showing a Dialog ... 768
Getting the Dialog Model ... 769
Dialog as Control Container .. 769
Dialog Properties ... 770
Common Properties .. 770

Multi-Page Dialogs .. 770
11.5.2 Dialog Controls ... 771

Command Button .. 771
Image Control ... 771
Check Box ... 772
Option Button ... 772
Label Field ... 772
Text Field ... 773
List Box .. 774
Combo Box .. 774
Horizontal /Vertical Scroll Bar ... 775
Group Box ... 776
Progress Bar .. 776
Horizontal /Vertical Line .. 777
Date Field .. 777
Time Field ... 777
Numeric Field ... 778
Currency Field .. 778
Formatted Field .. 778
Pattern Field ... 778
File Control ... 779

11.6 Creating Dialogs at Runtime .. 779
11.7 Library File Structure .. 782

11.7.1 Application Library Container ... 783
11.7.2 Document Library Container .. 785

11.8 Library Deployment .. 787
Package Structure .. 787
Path Settings ... 788
Additional Options .. 789

 12 Database Access 791

12.1 Overview ... 791
12.1.1 Capabilities .. 791

Platform Independence ... 791
Functioning of the OpenOffice.org API Database Integration 791
Integration with OpenOffice.org API ... 792

12.1.2 Architecture ... 792
12.1.3 Example: Querying the Bibliography Database .. 792

12.2 Data Sources in OpenOffice.org API ... 794
12.2.1 DatabaseContext ... 794
12.2.2 DataSources ... 796

The DataSource Service .. 796
Queries .. 798

Forms and Other Links ... 804
Tables and Columns .. 805

12.2.3 Connections ... 809
Understanding Connections .. 809
Connecting Using the DriverManager and a Database URL 812
Connecting Through a Specific Driver ... 814
Driver Specifics .. 814
Connection Pooling ... 818
Piggyback Connections ... 820

12.3 Manipulating Data ... 820
12.3.1 The RowSet Service .. 820

Usage ... 820
Events and Other Notifications ... 824
Clones of the RowSet Service ... 826

12.3.2 Statements .. 827
Creating Statements .. 827
Inserting and Updating Data ... 828
Getting Data from a Table .. 829

12.3.3 Result Sets .. 830
Retrieving Values from Result Sets ... 833
Moving the Result Set Cursor .. 833
Using the getXXX Methods .. 834
Scrollable Result Sets ... 836
Modifiable Result Sets ... 838
Update ... 838
Insert .. 840
Delete ... 841
Seeing Changes in Result Sets ... 842

12.3.4 ResultSetMetaData ... 843
12.3.5 Using Prepared Statements ... 843

When to Use a PreparedStatement Object ... 843
Creating a PreparedStatement Object ... 844
Supplying Values for PreparedStatement Parameters 844

12.3.6 PreparedStatement From DataSource Queries .. 845
12.4 Database Design ... 846

12.4.1 Retrieving Information about a Database ... 846
Retrieving General Information .. 846
Determining Feature Support .. 847
Database Limits .. 847
SQL Objects and their Attributes .. 847

12.4.2 Using DDL to Change the Database Design .. 848
12.4.3 Using SDBCX to Access the Database Design .. 851

The Extension Layer SDBCX .. 851
Catalog Service ... 852

Table Service ... 853
Column Service .. 856
Index Service .. 857
Key Service ... 859
View Service ... 861
Group Service ... 861
User Service .. 863
The Descriptor Pattern .. 863
Adding an Index .. 865
Creating a User ... 865
Adding a Group ... 866

12.5 Using DBMS Features .. 866
12.5.1 Transaction Handling .. 866
12.5.2 Stored Procedures ... 867

12.6 Writing Database Drivers ... 868
12.6.1 SDBC Driver .. 868
12.6.2 Driver Service .. 869
12.6.3 Connection Service ... 870
12.6.4 XDatabaseMetaData Interface .. 871
12.6.5 Statements .. 872

PreparedStatement .. 873
Result Set ... 873

12.6.6 Support Scalar Functions ... 873
Open Group CLI Numeric Functions ... 873
Open Group CLI String Functions .. 874
Open Group CLI Time and Date Functions ... 875
Open Group CLI System Functions ... 875
Open Group CLI Conversion Functions .. 876
Handling Unsupported Functionality .. 876

 13 Forms 877

13.1 Introduction .. 877
13.2 Models and Views .. 877

13.2.1 The Model-View Paradigm ... 877
13.2.2 Models and Views for Form Controls ... 878
13.2.3 Model-View Interaction ... 879
13.2.4 Form Layer Views .. 879

View Modes .. 879
Locating Controls ... 880
Focussing Controls .. 880

13.3 Form Elements in the Document Model ... 880
13.3.1 A Hierarchy of Models .. 881

FormComponent Service .. 881

FormComponents Service .. 881
Logical Forms ... 882
Forms Container .. 882
Form Control Models .. 883

13.3.2 Control Models and Shapes .. 883
Programmatic Creation of Controls .. 884

13.4 Form Components ... 886
13.4.1 Basics .. 886

Control Models .. 886
Forms ... 888

13.4.2 HTML Forms ... 888
13.5 Data Awareness .. 888

13.5.1 Forms .. 889
Forms as Row Sets ... 889
Loadable Forms .. 889
Sub Forms ... 889
Filtering and Sorting ... 891
Parameters .. 891

13.5.2 Data Aware Controls ... 892
Control Models as Bound Components ... 893
Committing Controls .. 894

13.6 Common Tasks ... 895
13.6.1 Initializing Bound Controls .. 895
13.6.2 Automatic Key Generation ... 896
13.6.3 Data Validation ... 897

 14 Universal Content Broker 899

14.1 Overview ... 899
14.1.1 Capabilities .. 899
14.1.2 Architecture ... 899

14.2 Services and Interfaces .. 900
14.3 Content Providers .. 902
14.4 Using the UCB API .. 902

14.4.1 Instantiating the UCB ... 903
14.4.2 Accessing a UCB Content .. 903
14.4.3 Executing Content Commands ... 904
14.4.4 Obtaining Content Properties ... 905
14.4.5 Setting Content Properties .. 906
14.4.6 Folders .. 907

Accessing the Children of a Folder ... 907
14.4.7 Documents ... 909

Reading a Document Content .. 909
Storing a Document Content .. 911

14.4.8 Managing Contents .. 911
Creating ... 911
Deleting ... 913
Copying, Moving and Linking .. 914

14.4.9 UCP Registration Information .. 915
14.4.10 Unconfigured UCBs ... 915
14.4.11 Preconfigured UCBs ... 917
14.4.12 Content Provider Proxies .. 918

 15 Configuration Management 921

15.1 Overview ... 921
15.1.1 Capabilities .. 921
15.1.2 Architecture ... 921

15.2 Object Model ... 924
15.3 Configuration Data Sources ... 926

15.3.1 Connecting to a Data Source ... 926
15.3.2 Using a Data Source ... 928

15.4 Accessing Configuration Data ... 930
15.4.1 Reading Configuration Data ... 930
15.4.2 Updating Configuration Data ... 933

15.5 Customizing Configuration Data .. 941
15.6 Adding a Backend Data Store .. 942

 16 Office Bean 943

16.1 Introduction .. 943
16.2 Overview of the OfficeBean API .. 944

16.2.1 OfficeConnection Interface ... 945
16.2.2 OfficeWindow Interface .. 946
16.2.3 ContainerFactory Interface .. 946

16.3 LocalOfficeConnection and LocalOfficeWindow ... 946
16.4 Configuring the OfficeBean .. 947

16.4.1 Default Configuration .. 947
16.4.2 Customized Configuration ... 948

16.5 Using the OfficeBean ... 949
16.5.1 SimpleBean Example ... 951

Using SimpleBean .. 951
SimpleBean Internals ... 953

16.5.2 OfficeWriterBean Example .. 955

 17 Accessibility 957

17.1 Overview ... 957
17.2 Bridges ... 958
17.3 Accessibility Tree ... 958

17.4 Content Information .. 959
17.5 Listeners and Broadcasters ... 959
17.6 Implementing Accessible Objects .. 960

17.6.1 Implementation Rules .. 960
17.6.2 Services ... 960

17.7 Using the Accessibility API .. 961
17.7.1 A Simple Screen Reader ... 961

Features ... 962
Class Overview .. 963
Putting the Accessibility Interfaces to Work ... 964

Appendix A: OpenOffice.org API-Design- Guidelines 977

A.1 General Design Rules .. 977
A.1.1 Universality ... 977
A.1.2 Orthogonality .. 978
A.1.3 Inheritance ... 978
A.1.4 Uniformity ... 978
A.1.5 Correct English ... 978

A.2 Definition of API Elements ... 978
A.2.1 Attributes ... 978
A.2.2 Methods ... 979
A.2.3 Interfaces .. 981
A.2.4 Properties ... 981
A.2.5 Events ... 982
A.2.6 Services ... 982
A.2.7 Exceptions .. 983
A.2.8 Enums ... 983
A.2.9 Typedefs ... 984
A.2.10 Structs ... 984
A.2.11 Parameter ... 984

A.3 Special Cases ... 985
A.4 Abbreviations ... 985
A.5 Source Files and Types .. 986

Appendix B: IDL Documentation Guidelines 987

B.1 Introduction .. 987
B.1.1 Process .. 987
B.1.2 File Assembly .. 987
B.1.3 Readable & Editable Structure ... 988
B.1.4 Contents ... 988

B.2 File structure ... 988
B.2.1 General ... 988
B.2.2 File-Header .. 989

B.2.3 File-Footer .. 990
B.3 Element Documentation ... 990

B.3.1 General Element Documentation ... 990
B.3.2 Example for a Major Element Documentation ... 991
B.3.3 Example for a Minor Element Documentation .. 992

B.4 Markups and Tags ... 992
B.4.1 Special Markups ... 992
B.4.2 Special Documentation Tags ... 994
B.4.3 Useful XHTML Tags .. 995

Appendix C: Universal Content Providers 999

C.1 The Hierarchy Content Provider ... 999
C.1.1 Preface .. 999
C.1.2 HCP Contents .. 999
C.1.3 Creation of New HCP Content ... 1000
C.1.4 URL Scheme for HCP Contents .. 1000
C.1.5 Commands and Properties ... 1001

C.2 The File Content Provider ... 1001
C.2.1 Preface .. 1001
C.2.2 File Contents .. 1001
C.2.3 Creation of New File Contents ... 1002
C.2.4 URL Schemes for File Contents .. 1002
C.2.5 Commands and Properties ... 1003

C.3 The FTP Content Provider .. 1003
C.3.1 Preface .. 1003
C.3.2 FTP Contents ... 1003
C.3.3 Creation of New FTP Content .. 1004
C.3.4 URL Scheme for FTP Contents ... 1004
C.3.5 Commands and Properties ... 1005

C.4 The WebDAV Content Provider .. 1006
C.4.1 Preface .. 1006
C.4.2 DCP Contents .. 1006
C.4.3 Creation of New DCP Contents ... 1007
C.4.4 Authentication .. 1007
C.4.5 Property Handling ... 1007
C.4.6 URL Scheme for DCP Contents .. 1008
C.4.7 Commands and Properties ... 1009

C.5 The Package Content Provider ... 1009
C.5.1 Preface .. 1009
C.5.2 PCP Contents .. 1009
C.5.3 Creation of New PCP Contents .. 1010
C.5.4 URL Scheme for PCP Contents .. 1010
C.5.5 Commands and Properties ... 1011

C.6 The Help Content Provider .. 1011
C.6.1 Preface .. 1011
C.6.2 Help Content Provider Contents .. 1012
C.6.3 URL Scheme for Help Contents ... 1012
C.6.4 Properties and Commands ... 1013

Appendix D: UNOIDL Syntax Specification 1017

Glossary 1021

Index 1039

1 Reader's Guide

1.1 What This Manual Covers
This manual describes how to write programs using the component technology UNO (Universal
Network Objects) with OpenOffice.org.

Most examples provided are written in Java. As well as Java, the language binding for C++, the
UNO access for OpenOffice.org Basic and the OLE Automation bridge that uses OpenOffice.org
through Microsoft's component technology COM/DCOM is described.

1.2 How This Book is Organized
First Steps

The First Steps chapter describes the setting up of a Java UNO development environment to
achieve the solutions you need. At the end of this chapter, you will be equipped with the
essentials required for the following chapters about the OpenOffice.org applications.

Professional UNO Projects
This chapter introduces API and UNO concepts and explains the specifics of the programming
languages and technologies that can be used with UNO. It will help you to write industrial-
strength UNO programs, use one of the languages besides Java or improve your under-
standing of the API reference.

Writing UNO Components
This chapter describes how to write UNO components. It also provides an insight into the
UNOIDL (UNO Interface Definition Language) language and the inner workings of service
manager. Before beginning this chapter, you should be familiar with the First Steps and
Professional UNO chapters.

Advanced UNO
This chapter describes the technical basis of UNO, how the language bindings and bridges
work, how the service manager goes about its tasks and what the core reflection actually does.

Office Development
This chapter describes the application framework of the OpenOffice.org application that
includes how the OpenOffice.org API deals with the OpenOffice.org application and the
features available across all parts of OpenOffice.org.

25

Text Documents - Spreadsheet Documents - Drawings and Presentations – Chart
These chapters describes how OpenOffice.org revolves around documents. These chapters
teach you what to do with these documents programmatically.

Basic and Dialogs
This chapter provides the functionality to create and manage Basic macros and dialogs.

Database Access
This chapter describes how you can take advantage of this capability in your own projects
OpenOffice.org can connect to databases in a universal manner.

Forms
This chapter describes how OpenOffice.org documents contain form controls that are
programmed using an event-driven programming model. The Forms chapter shows you how
to enhance your documents with controls for data input.

UCB
This chapter describes how the Universal Content Broker is the generic resource access service
used by the entire office application. It handles not only files and directories, but hierarchic and
non-hierarchic contents, in general.

OpenOffice.org Configuration
This chapter decribes how the OpenOffice.org API offers access to the office configuration
options that is found in the Tools – Options dialog.

OfficeBean
This chapter describes how the OfficeBean Java Bean component allows the developer to inte-
grate office functionality in Java applications.

1.3 OpenOffice.org Version History
OpenOffice.org exists in two versions www.openoffice.org

OpenOffice.org - an open source edition

StarOffice and StarSuite - "branded" editions derived from OpenOffice.org

In 2000, Sun Microsystems released the source code of their current developer version of StarOf-
fice on www.openoffice.org, and made the ongoing development process public. Sun's development
team, which developed StarOffice, continued its work on www.openoffice.org, and developers from
all over the world joined them to port, translate, repair bugs and discuss future plans. StarOffice
6.0 and OpenOffice.org 1.0, which were released in spring 2002, share the same code basis.

1.4 Related documentation
The api and udk projects on www.openoffice.org have related documentation, examples and FAQs
(frequently asked questions) on the OpenOffice.org API. Most important are probably the refer-
ences, you can find them at api.openoffice.org or udk.openoffice.org.

• The API Reference covers the programmable features of OpenOffice.org.

• The Java Reference describes the features of the Java UNO runtime environment.

• The C++ Reference is about the C++ language binding.

26 OpenOffice.org 1.1 Developer's Guide • June 2003

1.5 Conventions
This book uses the following formatting conventions:

• Bold refers to the keys on the keyboard or elements of a user interface, such as the OK button
or File menu.

• Italics are used for emphasis and to signify the first use of a term. Italics are also used for web
sites, file and directory names and email addresses.

• Courier New is used in all Code Listings and for everything that is typed when programming.

1.6 Acknowledgments
A publication like this can never be the work of a single person – it is the result of tremendous
team effort. Of course, the OpenOffice.org /StarOffice development team played the most impor-
tant role by creating the API in the first place. The knowledge and experience of this team will be
documented here. Furthermore, there were several devoted individuals who contributed to
making this documentation reality.

First of all, we would like to thank Ralf Kuhnert and Dietrich Schulten. Using their technical
expertise and articulate mode of expression, they accomplished the challenging task of gathering
the weatlth of API knowledge from the minds of the developers and transforming it into an
understandable document.

Many reviewers were involved in the creation of this documentation. Special thanks go to Michael
Hönnig who was one of the few who reviewed almost every single word. His input also played a
decisive role in how the documentation was structured. A big thank you also goes to Diane
O'Brien for taking on the daunting task of reviewing the final draft and providing us with exten-
sive feedback at such short notice.

When looking at the diagrams and graphics, it is clear that a creative person with the right touch
for design and aesthetics was involved. Many thanks, therefore, are due Stella Schulze who re-
drew all of the diagrams and graphics from the originals supplied by various developers. We also
thank Svante Schubert who converted the original XML file format into HTML pages and was
most patient with us in spite of our demands and changes. Special thanks also to Jörg Heilig, who
made this whole project possible.

Jürgen would like to thank Götz Wohlberg for all his help in getting the right people involved and
making sure things ran smoothly.

Götz would like to thank Jürgen Schmidt for his never-ending energy to hold everything together
and for pushing the contributors in the right direction. He can be considered as the heart of the
opus because of his guidance and endurance throughout the entire project.

We would like to take this opportunity to thank all these people – and anyone else we forgot! – for
their support.

Jürgen Schmidt, Götz Wohlberg

Chapter 1 Reader's Guide 27

2 First Steps
This chapter shows you the first steps when using the OpenOffice.org API. Following these steps
is essential to understand and use the chapters about OpenOffice.org documents such as 7 Text
Documents, 8 Spreadsheet Documents and 9 Drawing. After you have successfully done the first
steps, you can go directly to the other chapters of this manual.

The focus of the first steps will be Java, but other languages are covered as well. If you want to use
OpenOffice.org Basic afterwards, please refer to the chapters 11.1 Basic and Dialogs - First Steps
with OpenOffice.org Basic and 3.4.3 Professional UNO - UNO Language Bindings -
OpenOffice.org Basic. The usage of C++ is described in 3.4.2 Professional UNO - UNO Language
Bindings - UNO C++ Binding.

2.1 Programming with UNO
UNO (pronounced ['ju:nou]) stands for Universal Network Objects and is the base component
technology for OpenOffice.org. You can utilize and write components that interact across
languages, component technologies, computer platforms, and networks. Currently, UNO is avail-
able on Linux, Solaris, and Windows for Java, C++ and OpenOffice.org Basic. As well, UNO is
available through the component technology Microsoft COM for many other languages.

UNO is used to access OpenOffice.org, using its Application Programming Interface (API). The
OpenOffice.org API is the comprehensive specification that describes the programmable features
of OpenOffice.org.

2.2 Fields of Application for UNO
You can connect to a local or remote instance of OpenOffice.org from C++, Java and
COM/DCOM. C++ and Java Desktop applications, Java servlets, Java Server Pages, JScript and
VBScript, and languages, such as Delphi, Visual Basic and many others can use OpenOffice.org to
work with Office documents.

It is possible to develop UNO Components in C++ or Java that can be instantiated by the office
process and add new capabilities to OpenOffice.org. For example, you can write Chart Add- ins or
Calc Add- ins, linguistic extensions, new file filters, database drivers. You can even write complete
applications, such as a groupware client.

UNO components, as Java Beans, integrate with Java IDEs (Integrated Development Environment)
to give easy access to OpenOffice.org. Currently, a set of such components is under development
that will allow editing OpenOffice.org documents in Java Frames.

29

OpenOffice.org Basic cooperates with UNO, so that UNO programs can be directly written in
OpenOffice.org. With this method, you supply your own office solutions and wizards based on an
event-driven dialog environment.

The OpenOffice.org database engine and the data aware forms open another wide area of oppor-
tunities for database driven solutions.

2.3 Getting Started
A number of files and installation sets are required before beginning with the OpenOffice.org API.

2.3.1 Required Files
These files are required for any of the languages you use.

OpenOffice.org Installation
Install a copy of OpenOffice.org. The current version is OpenOffice.org 1.1.

You can download OpenOffice.org from www.openoffice.org. StarOffice can be obtained from
Sun Microsystems or through your distributors.

Note: This book focuses on the current version.

API Reference
The OpenOffice.org API reference is part of the Software Development Kit and provides
detailed information about OpenOffice.org objects. The latest version can be downloaded from
the documents section at api.openoffice.org.

2.3.2 Installation Sets
The following installation sets are necessary to develop OpenOffice.org API applications with
Java. This chapter describes how to set up a Java IDE for the OpenOffice.org API.

JDK 1.3.1
Java applications for OpenOffice.org 1.1 require the Java Development Kit 1.3.1 or later. Down-
load and install a JDK from java.sun.com. To get all features Java 1.4.1_01 is required.

Java IDE
Download an Integrated Development Environment (IDE), such as NetBeans from
www.netbeans.org or Forte for Java from Sun Microsystems. Other IDEs can be used, but
NetBeans /Forte offers the best integration. The integration of OpenOffice.org with IDEs such
as NetBeans is an ongoing effort. Check the files section of api.openoffice.org for the latest infor-
mation about NetBeans and other IDEs.

OpenOffice.org Software Development Kit (SDK)
Obtain the OpenOffice.org Software Development Kit (SDK) from www.openoffice.org. It
contains the build environment for the examples mentioned in this manual and reference docu-
mentation for the OpenOffice.org API, for the Java UNO runtime, and the C++ API. It also
offers more example sources. By means of the SDK you can use GNU make to build and run the
examples we mention here.

30 OpenOffice.org 1.1 Developer's Guide • June 2003

Unpack the SDK somewhere in your file system. The file index.html gives an overview of the
SDK. For detailed instructions which compilers to use and how to set up your development
environment, please refer to the SDK installation guide.

2.3.3 Configuration

Enable Java in OpenOffice.org
OpenOffice.org uses a Java Virtual Machine to instantiate components written in Java. You can
easily tell the office which JVM to use: launch the jvmsetup executable from the programs folder
under the OpenOffice.org, select an installed JRE or JDK and click OK. Close the OpenOffice.org
including the Quickstarter in the taskbar and restart OpenOffice.org. Furthermore, open the Tools
- Options dialog in OpenOffice.org, select the section OpenOffice.org - Security and make sure
that the Java enable option is checked.

Use Java UNO class files
Next, the OpenOffice.org class files must be made known to the Java IDE. For NetBeans these Java
UNO jar files must be mounted to a project. The following steps show how to create a new project
and mount class files in NetBeans from version 3.4.1.

1. From the Project menu, select Project Manager. Click the New ... button in the Project Manager
window to create a new project. NetBeans uses your new project as the current project.

2. Activate the NetBeans Explorer window—it should contain a Filesystems item (to display the
NetBeans Explorer window, click View - Explorer). Open its context menu and select Mount –
Archive Files , navigate to the folder <OfficePath>/program/classes, choose all jar files in that
directory and click Finish to mount the OpenOffice.org jars in your project. As an alternative,
you can also mount files using File - Mount Filesystem .

3. Finally you need a folder for the source files of your project. Choose Mount – Local Directory
from the context menu of the Filesystems icon and use the file manager dialog to create a new
folder somewhere in your file system. Select it without opening it and click Finish to add it to
your project.

Make the office listen
Java uses a TCP/IP socket to talk to the office. For Java clients, OpenOffice.org must be told to
listen for TCP/IP connections using a special connection url parameter. There are two ways to
achieve this, you can make the office listen always or just once.

• To make the office listen whenever it is started, open the file
<OfficePath>/share/registry/data/org/openoffice/Setup.xcu in an editor, and look for the element
<node oor:name="Office"/>
This element contains <prop/> elements. Insert the following <prop/> element on the same
level as the existing elements:
<prop oor:name="ooSetupConnectionURL">
 <value>socket,host=localhost,port=8100;urp;</value>
</prop>
This setting configures OpenOffice.org to provide a socket on port 8100, where it will serve
connections through the UNO remote protocol (urp). If port 8100 is already in use on your

Chapter 2 First Steps 31

machine, it may be necessary to adjust the port number. Block port 8100 for connections from
outside your network in your firewall. If you have a OpenOffice.org network installation, this
setting will affect all users. To make only a particular user installation listen for connections
create a file <OfficePath>/user/registry/data/org/openoffice/Setup.xcu with the same structure as the
file above and add the element <prop oor:name="ooSetupConnectionURL"/> as shown
above.

• An alternative is to launch the office in listening mode using command- line options. To do this,
start it from the command- line:
<OfficePath>/program/soffice “-accept=socket,port=8100;urp;”
When you use this command- line option, the office will only listen during the current session,
and running instances are affected as well.

Choose the procedure that suits your requirements and launch OpenOffice.org in listening mode
now. Check if it is listening by calling netstat -a on the command- line. An output similar to the
following shows that the office is listening:

TCP <Hostname>:8100 <Fully qualified hostname>: 0 Listening
If the office is not listening, it probably was not started with the proper connection URL
parameter. Check the Setup.xcu file or your command- line for typing errors and try again.

Note: In versions before OpenOffice.org 1.1, there are several differences.

The configuration setting that makes the office listen everytime is located elsewhere. Open the file <Office-
Path>/share/config/registry/instance/org/openoffice/Setup.xml in an editor, and look for the element:

<ooSetupConnectionURL cfg:type="string"/>

Extend it with the following code:

<ooSetupConnectionURL cfg:type="string">
socket,port=8100;urp;
</ooSetupConnectionURL>

The commandline option -accept is ignored when there is a running instance of the office, including the
quick starter and the online help. If you use it, make sure that no soffice process runs on your system.

Add the API Reference to your IDE
We recommend to add the API and the Java UNO reference to your Java IDE to get online help for
the OpenOffice.org API and the Java UNO runtime. In NetBeans 3.4.1, follow these steps:

• Open your project and choose the Tools – Javadoc Manager menu. With the button Add
Folder... add the folders docs/common/ref and docs/java/ref of your SDK installation to use the
API and the Java UNO reference in your project.

• You can now use Alt + F1 to view online help while the cursor is on a OpenOffice.org API or
Java UNO identifier in the source editor window.

32 OpenOffice.org 1.1 Developer's Guide • June 2003

2.3.4 First Connection

Getting Connected
The following demonstrates how to write a small program that connects to the office and tells you
if it was able to establish the connection or not. Start the Java IDE or source editor, and enter the
following source code for the FirstConnection class.

To create and run the class in the NetBeans 3.4.1 IDE, use the following steps:

1. Add a main class to the project. In the NetBeans Explorer window, click the Project
<project_name> tab, right click the Project item, select Add New... to display the New Wizard,
open the Java Classes folder, highlight the template Main, and hit Next.

2. In the Name field, enter 'FirstConnection' as classname for the Main class and select the folder
that contains your project files. The FirstConnection is added to the default package of
your project. Click Finish to create the class.

3. Enter the source code shown below (FirstSteps /FirstConnection.java). Then select Build -
Execute to test your first connection. Observe the Output window where NetBeans displays
the result of your attempt to connect to the office.

import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;

public class FirstConnection extends java.lang.Object {

 private XComponentContext xRemoteContext = null;
 private XMultiComponentFactory xRemoteServiceManager = null;

 public static void main(String[] args) {
 FirstConnection firstConnection1 = new FirstConnection();
 try {
 firstConnection1.useConnection();
 }
 catch (java.lang.Exception e) {
 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }
 }

 protected void useConnection() throws java.lang.Exception {
 try {
 xRemoteServiceManager = this.getRemoteServiceManager(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");
 String available = (null != xRemoteServiceManager ? "available" : "not available");
 System.out.println("remote ServiceManager is " + available);

 //
 // do something with the service manager...
 //

 }
catch (com.sun.star.connection.NoConnectException e) {

System.err.println("No process listening on the resource");
e.printStackTrace();
throw e;

}
 catch (com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }
 }

 protected XMultiComponentFactory getRemoteServiceManager(String unoUrl) throws java.lang.Exception {
 if (xRemoteContext == null) {
 // First step: create local component context, get local servicemanager and
 // ask it to create a UnoUrlResolver object with an XUnoUrlResolver interface
 XComponentContext xLocalContext =

Chapter 2 First Steps 33

 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 // query XUnoUrlResolver interface from urlResolver object
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);

 // Second step: use xUrlResolver interface to import the remote StarOffice.ServiceManager,
 // retrieve its property DefaultContext and get the remote servicemanager
 Object initialObject = xUnoUrlResolver.resolve(unoUrl);
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 }
 return xRemoteContext.getServiceManager();
 }
}

For an example that connects to the office with C++, see chapter 3.4.2 Professional UNO - UNO
Language Bindings - UNO C++ Binding. Accessing the office with OpenOffice.org Basic is described
in 11.1 Basic and Dialogs - First Steps with OpenOffice.org Basic.

The next section describes what happens during the connection between a Java program and
OpenOffice.org.

Service Manager s
UNO introduces the concept of service managers, which can be considered as “factories” that create
services. For now, it is sufficient to see services as UNO objects that can be used to perform specific
tasks. Later on we will give a more precise definition for the term service.

For example, the following services are available:

com.sun.star.frame.Desktop
maintains loaded documents: is used to load documents, to get the current document, and
access all loaded documents

com.sun.star.configuration.ConfigurationProvider
yields access to the OpenOffice.org configuration, for instance the settings in the Tools -
Options dialog

com.sun.star.sdb.DatabaseContext
holds databases registered with OpenOffice.org

com.sun.star.system.SystemShellExecute
executes system commands or documents registered for an application on the current platform

com.sun.star.text.GlobalSettings
manages global view and print settings for text documents

34 OpenOffice.org 1.1 Developer's Guide • June 2003

A service always exists in a component context, which consists of the service manager that created
the service and other data to be used by the service.

The FirstConnection class above is considered a client of the OpenOffice.org process,
OpenOffice.org is the server in this respect. Both, client and server, have their own component
context and their own service manager. The client service manager creates UNO objects in the
client process and the server service manager does the same in the server process. This is neces-
sary because only UNO objects created by a service manager can talk to each other across process
boundaries. Now, to work with data located on the server side, the client needs to get the server's
service manager.

The method getRemoteServiceManager() of our FirstConnection class uses two steps to
achieve this:

First, it gets a local UNO component context from the class
com.sun.star.comp.helper.Bootstrap. This local component context contains a small service
manager that knows how to create the services that are necessary to talk to other component
contexts. One such service is a com.sun.star.bridge.UnoUrlResolver, so it asks the local
service manager to create this service.

Next, it uses the UnoUrlResolver object to get the component context together with the service
manager from the server-side. At this stage you should not worry about the queryInterface()
calls—they will be explained later. Now the client holds a reference to the remote service manager.

Chapter 2 First Steps 35

Illustration 1:
Service
manager

For a thorough description of the objects used here, refer to the chapter 3.3.1 Professional UNO -
UNO Concepts - UNO Interprocess Connections.

Failed Connections
A remote connection can fail under certain conditions:

• Client programs should be able to detect errors. For instance, sometimes the bridge might
become unavailable. Simple clients that connect to the office, perform a certain task and exit
afterwards should stop their work and inform the user if an error occurred.

• Clients that are supposed to run over a long period of time should not assume that a reference
to an initial object will be valid over the whole runtime of the client. The client should resume
even if the connection goes down for some reason and comes back later on. When the connec-
tion fails, a robust, long running client should stop the current work, inform the user that the
connection is not available and release the references to the remote process. When the user tries
to repeat the last action, the client should try to rebuild the connection. Do not force the user to
restart your program just because the connection was temporarily unavailable.

When the bridge has become unavailable and access is tried, it throws a
com.sun.star.lang.DisposedException. Whenever you access remote references in your
program, catch this Exception in such a way that you set your remote references to null and
inform the user accordingly. If your client is designed to run for a longer period of time, be
prepared to get new remote references when you find that they are currently null.

Another way is to register a listener at the remote bridge that underlies the UnoUrlResolver.
OpenOffice.org allows to listen for a "bridge disposed" event at the remote bridge so that you can
release invalid references—inform the user what has happened or throw a suitable exception if
necessary. To do this, you must manually create a bridge and register a listener at the bridge. A
connection created by UnoUrlResolver simply throws a java.lang.RuntimeException when -
ever you try to use a reference that no longer works because of a connection failure. The chapter
3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections shows how to write such a
connection aware client.

36 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 2: UnoUrlResolver gets Remote ServiceManager

2.4 How to get Objects in OpenOffice.org
An object in our context is an instance of an implemented class that has methods you can call.
Objects are required to do something with OpenOffice.org. But where do you obtain them?

New objects
In general, new objects or objects which are necessary for a first access are created by service
managers in OpenOffice.org. In the FirstConnection example, the local service manager
created a UnoUrlResolver object:

Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
The remote service manager works exactly like the local service manager. The remote service
manager creates the remote Desktop object, which handles application windows and loaded
documents in OpenOffice.org:

Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);

Document objects
Document objects represent the files that are opened with OpenOffice.org. They are created by
the Desktop object, which has a loadComponentFromURL() method for this purpose.

Objects that are provided by other objects
Objects can hand out other objects. There are two cases:

• Features which are designed to be an integral part of the object that provides the feature can
be obtained by get methods in the OpenOffice.org API. It is common to get an object from a
get method. For instance, getSheets() is required for every Calc document, getText() is
essential for every Writer Document and getDrawpages() is an essential part of every
Draw document. After loading a document, these methods are used to get the Sheets, Text
and Drawpages object of the corresponding document. Object-specific get methods are an
important technique to get objects.

• Features which are not considered integral for the architecture of an object are accessible
through a set of universal methods. In the OpenOffice.org API, these features are called
properties, and generic methods are used, such as getPropertyValue(String property-
Name) to access them. In some cases such a non-integral feature is provided as an object,
therefore the method getPropertyValue() can be another source for objects. For instance,
page styles for spreadsheets have the properties "RightPageHeaderContent" and "Left-
PageHeaderContent", that contain objects for the page header sections of a spreadsheet
document. The generic getPropertyValue() method can sometimes provide an object you
need.

Sets of objects
Objects can be elements in a set of similar objects. In sets, to access an object you need to know
how to get a particular element from the set. The OpenOffice.org API allows four ways to
provide an element in a set. The first three ways are objects with element access methods that
allow access by name, index, or enumeration. The fourth way is a sequence of elements which
has no access methods but can be used as an array directly. How these sets of elements are
used will be discussed later.

The designer of an object decides which of those opportunities to offer, based on special condi-
tions of the object, such as how it performs remotely or which access methods best work with
implementation.

Chapter 2 First Steps 37

2.5 Working with Objects
Working with OpenOffice.org API objects involves the following:

• First we will learn why UNO describes objects as services, consisting of interfaces and proper-
ties and we will get acquainted with UNO's way to use interfaces and properties.

• After that, we will work with a OpenOffice.org document for the first time, and give some
hints for the usage of the most common types in OpenOffice.org API.

• Finally we will introduce the common interfaces that allow you to work with text, tables and
drawings across all OpenOffice.org document types.

2.5.1 Services
In the OpenOffice.org API, objects are called services. However, objects and services are not the
same thing. Services are abstract specifications for objects. All UNO objects have to follow a
service specification and have to support at least one service. A UNO object is called a service,
because it fulfills a service specification.

A service describes an object by combining interfaces and properties into an abstract object specifica-
tion. Do not get confused by the meanings the word service has in other contexts. In UNO, a
service is precisely this: a composition of interfaces and properties.

An interface is a set of methods that together define one single aspect of a service. For instance, the
com.sun.star.view.XPrintable interface prescribes the methods print(), getPrinter() and
setPrinter().

A property is a feature of a service which is not considered an integral or structural part of the
service and therefore is handled through generic getPropertyValue()/setPropertyValue()
methods instead of specialized get methods, such as getPrinter(). An object containing proper-
ties only has to support the com.sun.star.beans.XPropertySet interface to be prepared to
handle all kinds of properties. Typical examples are properties for character or paragraph format-
ting. With properties, you can set multiple features of an object through a single call to setProp-
ertyValues(), which greatly improves the remote performance. For instance, paragraphs support
the setPropertyValues() method through their com.sun.star.beans.XMultiPropertySet
interface.

The concept of services was introduced for the following reasons:

Services separate specification from implementation
The specification of a service is abstract, that is, it does not define how objects supporting a
certain functionality do this internally. Through the abstract specification of the OpenOffice.org
API, it is possible to pull the implementation out from under the API and install a different
implementation if required.

Service names allow to create instances by specification name, not by class names
In Java or C++ you use the new operator to create a class instance. This approach is restricted:
the class you get is hard- coded. You cannot later on exchange it by another class without
editing the code. The concept of services solves this. The central object factory in
OpenOffice.org, the global service manager, is asked to create an object that can be used for a
certain purpose without defining its internal implementation. This is possible, because a
service can be ordered from the factory by its service name and the factory decides which service
implementation it returns. Which implementation you get makes no difference, you only use
the well-defined interfaces and properties of the service.

38 OpenOffice.org 1.1 Developer's Guide • June 2003

Services make fine-grained interfaces manageable
Abstract interfaces are more reusable, if they are fine-grained, i.e. if they are small and describe
only one aspect of an object, not several aspects. But then you need many of them to describe a
useful object. Services allow to have fine-grained interfaces on the one hand and to manage
them easily by forging them into a service. Since it is quite probable that objects in an office
environment will share many aspects, this fine granularity allows the interfaces to be reused
and thus to get objects that behave consistently. For instance, it was possible to realize a unified
way to handle text, no matter if you are dealing with body text, text frames, header or footer
text, footnotes, table cells or text in drawing shapes. It was not necessary to define separate
interfaces for all of these purposes.

Services handle a large number of non-structural properties
If you have only interfaces to specify objects, you need many get and set methods to handle all
the qualities of office documents. Moreover, once you define them, they become a hard part of
the structure of an object, which makes it difficult to reuse the specification elsewhere. With
properties, a multitude of qualities can be specified that are no structural parts of the objects,
and instead of calling many get and set methods, properties in a UNO service can be manipu-
lated at once by a single method call, if necessary.

Let us consider the service com.sun.star.text.TextDocument in UML notation. The UML chart
shown in Illustration 3 depicts the mandatory interfaces of a TextDocument service. These inter-
faces express the basic aspects of a text document in OpenOffice.org. It contains text, it is
searchable and refreshable. It is a model with URL and controller, and it is modifiable, printable
and storable. The UML chart shows how this is specified in the API.

Chapter 2 First Steps 39

On the left of Illustration 3, the services com.sun.star.text.TextDocument and
com.sun.star.document.OfficeDocument are shown. Every TextDocument must include these
services by definition.

On the right of Illustration 3, you find the interfaces, that the services must export. Their method
compartments list the methods contained in the various interfaces. In the OpenOffice.org API, all
interface names have to start with an X to be distinguishable from other object names.

Every TextDocument must support three interfaces: XTextDocument, XSearchable, and
XRefreshable. In addition, because a TextDocument is always an OfficeDocument, it must also
export the interfaces XPrintable, XStorable, XModifiable and XModel. The methods contained
in these interfaces cover these aspects: printing, storing, modification and model handling.

40 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 3: Text Document

Note that the interfaces shown in Illustration 2.2 are only the mandatory interfaces of a TextDocu-
ment. A TextDocument has optional properties and interfaces, among them the properties Charac-
terCount, ParagraphCount and WordCount and the XPropertySet interface which must be
supported if properties are present at all. The current implementation of the TextDocument service
in OpenOffice.org does not only support these interfaces, but all optional interfaces as well. The
usage of a TextDocument is described thoroughly in 7 Text Documents.

Using Interfaces
The fact that every UNO object must be accessed through its interfaces and properties has an effect
in languages like Java and C++, where the compiler needs the correct type of an object reference
before you can call a method from it. In Java or C++, you normally just cast an object before you
access an interface it implements. When working with UNO objects this is different: You must ask
the UNO environment to get the appropriate reference for you whenever you want to access
methods of an interface which your object supports, but your compiler does not yet know about.
Only then you can cast it safely.

The Java UNO environment has a method queryInterface() for this purpose. It looks compli-
cated at first sight, but once you understand that queryInterface() is about safe casting of UNO
types across process boundaries, you will soon get used to it. Remember how we created a
UnoUrlResolver and afterwards had to call queryInterface() in our FirstConnection class:
Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
// query XUnoUrlResolver interface from urlResolver object
XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);

We asked the local service manager to create a com.sun.star.bridge.UnoUrlResolver using its
factory method createInstanceWithContext(). This method is defined to return a Java Object
type, which should not surprise you—after all the factory must be able to return any type:
java.lang.Object createInstanceWithContext(String serviceName, XComponentContext context)

The object we receive is a com.sun.star.bridge.UnoUrlResolver service. Below you find its
specification in UML notation. The service UnoUrlResolver has no properties and it supports one
interface com.sun.star.bridge.XUnoUrlResolver with one method, namely resolve():

The point is, while we know that the object we ordered at the factory is a UnoUrlResolver and
exports the interface XUnoUrlResolver, the compiler does not. Therefore, we have to use the UNO
runtime environment to ask or query for the interface XUnoUrlResolver, since we want to use the
resolve() method on this interface. The method queryInterface() makes sure we get a refer-
ence that can be cast to the needed interface type, no matter if the target object is a local or a
remote object. There are two queryInterface definitions in the Java UNO language binding:
java.lang.Object UnoRuntime.queryInterface(java.lang.Class targetInterface, Object sourceObject)
java.lang.Object UnoRuntime.queryInterface(com.sun.star.uno.Type targetInterface, Object sourceObject)

Since UnoRuntime.queryInterface() is specified to return a java.lang.Object just like the factory
method createInstanceWithContext(), we still must explicitly cast our interface reference to the
needed type. The difference is that after queryInterface() we can safely cast the object to our
interface type and, most important, that the reference will now work even with an object in
another process. Here is the queryInterface() call, explained step by step:

Chapter 2 First Steps 41

Illustration 4: UnoUrlResolver

XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);

XUnoUrlResolver is the interface we want to use, so we define a XUnoUrlResolver variable
named xUnoUrlResolver (lower x) to store the interface we expect from queryInterface.

Then we query our urlResolver object for the XUnoUrlResolver interface, passing in
XUnoUrlResolver.class as target interface and urlResolver as source object. Finally we cast the
outcome to XUnoUrlResolver and assign the resulting reference to our variable xUnoUrlRe-
solver.

If the source object does not support the interface we are querying for, queryInterface() will
return null.

In Java, this call to queryInterface() is necessary whenever you have a reference to an object
which is known to support an interface that you need, but you do not have the proper reference
type yet. Fortunately, you are not only allowed to queryInterface() from java.lang.Object
source types, but you may also query an interface from another interface reference, like this:
// loading a blank spreadsheet document gives us its XComponent interface:
XComponent xComponent = xComponentLoader.loadComponentFromURL(

"private:factory/scalc", "_blank", 0, loadProps);

// now we query the interface XSpreadsheetDocument from xComponent
XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface(
 XSpreadsheetDocument.class, xComponent);

Furthermore, if a method is defined in such a way that it already returns an interface type, you do
not need to query the interface, but you can use its methods right away. In the snippet above, the
method loadComponentFromURL is specified to return an com.sun.star.lang.XComponent inter -
face, so you may call the XComponent methods addEventListener() and removeEventListener
() directly at the xComponent variable, if you want to be notified that the document is being
closed.

It is possible that future versions of the Java UNO language binding will no longer need explicit queries for
interfaces.

The corresponding step in C++ is done by a Reference<> template that takes the source instance
as parameter:
// instantiate a sample service with the servicemanager.
Reference< XInterface > rInstance =

rServiceManager->createInstanceWithContext(
OUString::createFromAscii("com.sun.star.bridge.UnoUrlResolver"),
rComponentContext);

// Query for the XUnoUrlResolver interface
Reference< XUnoUrlResolver > rResolver(rInstance, UNO_QUERY);

In OpenOffice.org Basic, querying for interfaces is not necessary, the Basic runtime engine takes
care about that internally.

Using Properties
A service must offer its properties through interfaces that allow you to work with properties. The
most basic form of these interfaces is the interface com.sun.star.beans.XPropertySet. There are
other interfaces for properties, such as com.sun.star.beans.XMultiPropertySet, that gets and
sets a multitude of properties with a single method call. The XPropertySet is always supported
when properties are present in a service.

In XPropertySet, two methods carry out the property access, which are defined in Java as
follows:

void setPropertyValue(String propertyName, Object propertyValue)
Object getPropertyValue(String propertyName)

42 OpenOffice.org 1.1 Developer's Guide • June 2003

In the FirstConnection example, the XPropertySet interface was used to get the remote compo-
nent context from the initial object. The initial object was a StarOffice.ServiceManager and
therefore had a property DefaultContext which contained the remote component context. The
following code explains how this property was retrieved and queried its
com.sun.star.uno.XComponentContext interface:
// query the XPropertySet interface from the initial object, which is a StarOffice.ServiceManager
XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);

// get the property DefaultContext
Object context = xPropertySet.getPropertyValue("DefaultContext");
// query XComponentContext from the context object, we want to call XComponentContext.getServiceManager
xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);

You are now ready to start working with a OpenOffice.org document.

2.5.2 Example: Working with a Spreadsheet Document
In this example, we will ask the remote service manager to give us the remote Desktop object and
use its loadComponentFromUrl() method to create a new spreadsheet document. From the docu-
ment we get its sheets container where we insert and access a new sheet by name. In the new
sheet, we enter values into A1 and A2 and summarize them in A3. The cell style of the summa-
rizing cell gets the cell style Result, so that it appears in italics, bold and underlined. Finally, we
make our new sheet the active sheet, so that the user can see it.

Add these import lines to the FirstConnection example above:
(FirstSteps /FirstLoadComponent.java)
import com.sun.star.beans.PropertyValue;
import com.sun.star.lang.XComponent;
import com.sun.star.sheet.XSpreadsheetDocument;
import com.sun.star.sheet.XSpreadsheets;
import com.sun.star.sheet.XSpreadsheet;
import com.sun.star.sheet.XSpreadsheetView;
import com.sun.star.table.XCell;
import com.sun.star.frame.XModel;
import com.sun.star.frame.XController;
import com.sun.star.frame.XComponentLoader;

Edit the useConnection method as follows:
protected void useConnection() throws java.lang.Exception {
 try {

 xRemoteServiceManager = this.getRemoteServiceManager(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");

 // get the Desktop, we need its XComponentLoader interface to load a new document
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);

 // query the XComponentLoader interface from the desktop
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // create empty array of PropertyValue structs, needed for loadComponentFromURL
 PropertyValue[] loadProps = new PropertyValue[0];

 // load new calc file
 XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL(
 "private:factory/scalc", "_blank", 0, loadProps);

 // query its XSpreadsheetDocument interface, we want to use getSheets()
 XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface(
 XSpreadsheetDocument.class, xSpreadsheetComponent);

 // use getSheets to get spreadsheets container
 XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets();

Chapter 2 First Steps 43

 //insert new sheet at position 0 and get it by name, then query its XSpreadsheet interface
 xSpreadsheets.insertNewByName("MySheet", (short)0);
 Object sheet = xSpreadsheets.getByName("MySheet");
 XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface(
 XSpreadsheet.class, sheet);

 // use XSpreadsheet interface to get the cell A1 at position 0,0 and enter 21 as value
 XCell xCell = xSpreadsheet.getCellByPosition(0, 0);
 xCell.setValue(21);

// enter another value into the cell A2 at position 0,1
 xCell = xSpreadsheet.getCellByPosition(0, 1);
 xCell.setValue(21);

// sum up the two cells
 xCell = xSpreadsheet.getCellByPosition(0, 2);
 xCell.setFormula("=sum(A1:A2)");

 // we want to access the cell property CellStyle, so query the cell's XPropertySet interface
 XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xCell);

 // assign the cell style "Result" to our formula, which is available out of the box
 xCellProps.setPropertyValue("CellStyle", "Result");
 // we want to make our new sheet the current sheet, so we need to ask the model
 // for the controller: first query the XModel interface from our spreadsheet component
 XModel xSpreadsheetModel = (XModel)UnoRuntime.queryInterface(
 XModel.class, xSpreadsheetComponent);

 // then get the current controller from the model
 XController xSpreadsheetController = xSpreadsheetModel.getCurrentController();
 // get the XSpreadsheetView interface from the controller, we want to call its method
 // setActiveSheet
 XSpreadsheetView xSpreadsheetView = (XSpreadsheetView)UnoRuntime.queryInterface(
 XSpreadsheetView.class, xSpreadsheetController);

 // make our newly inserted sheet the active sheet using setActiveSheet
 xSpreadsheetView.setActiveSheet(xSpreadsheet);
 }
 catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }
}

Alternatively, you can add FirstLoadComponent.java from the samples directory to your current
project, it contains the changes shown above.

2.5.3 Common Types
Until now, literals and common Java types for method parameters and return values have been
used as if the OpenOffice.org API was made for Java. However, it is important to understand that
the OpenOffice.org API is designed to be language independent and therefore has its own internal
types which have to be mapped to the proper types for your language environment. The type
mappings are briefly described in this section.Refer to 3 Professional UNO for detailed information
about type mappings.

Simple Types
Simple types occur in structs, method return values or parameters. The following table shows the
simple types in UNO and, if available, their exact mappings to Java, C++, OpenOffice.org and
Basic types.

UNO Type description Java C++ Basic

char 16-bit unicode character
type

char sal_Unicode -

44 OpenOffice.org 1.1 Developer's Guide • June 2003

UNO Type description Java C++ Basic

boolean boolean type; true and
false

boolean sal_Bool Boolean

byte 8-bit ordinal type byte sal_Int8 Integer
short signed 16-bit ordinal type short sal_Int16 Integer
unsigned
short

unsigned 16-bit ordinal
type

- sal_uInt16 -

long signed 32-bit ordinal type int sal_Int32 Long
unsigned
long unsigned 32-bit type - sal_uInt32 -

hyper signed 64-bit ordinal type long sal_Int64 -
unsigned
hyper

unsigned 64-bit ordinal
type

- sal_uInt64 -

float processor dependent float float float (IEEE float) Single

double processor dependent
double

double double (IEEE double) Double

There are special conditions for types that do not have an exact mapping in this table. Check for
details about these types in the corresponding sections about type mappings in 3.4 Professional
UNO - UNO Language Bindings.

Strings
UNO considers strings to be simple types, but since they need special treatment in some environ-
ments, we discuss them separately here.

UNO Description Java C++ Basic

string string of 16-bit unicode
characters java.lang.String ::rtl::OUString String

In Java, use UNO strings as if they were native java.lang.String objects.

In C++, strings must be converted to UNO unicode strings by means of SAL conversion functions,
usually the function createFromAscii() in the ::rtl::OUString class:
//C++
static OUString createFromAscii(const sal_Char * value) throw();

In Basic, Basic strings are mapped to UNO strings transparently.

Enum Types and Groups of Constants
The OpenOffice.org API uses many enumeration types (called enums) and groups of constants
(called constant groups) . Enums are used to list every plausible value in a certain context. The
constant groups define possible values for properties, parameters, return values and struct
members.

Chapter 2 First Steps 45

For example, there is an enum com.sun.star.table.CellVertJustify that describes the
possible values for the vertical adjustment of table cell content. The vertical adjustment of table
cells is determined by their property com.sun.star.table.CellProperties:VertJustify. The
possible values for this property are, according to CellVertJustify, the values STANDARD, TOP,
CENTER and BOTTOM.
// adjust a cell content to the upper cell border
// The service com.sun.star.table.Cell includes the service com.sun.star.table.CellProperties
// and therefore has a property VertJustify that controls the vertical cell adjustment
// we have to use the XPropertySet interface of our Cell to set it

xCellProps.setPropertyValue("VertJustify", com.sun.star.table.CellVertJustify.TOP);

OpenOffice.org Basic understands enumeration types and constant groups. Their usage is straight-
forward:
'OpenOffice.org Basic
oCellProps.VertJustify = com.sun.star.table.CellVertJustify.TOP

In C++ enums and constant groups are used with the scope operator ::
//C++
rCellProps->setPropertyValue(OUString::createFromAscii("VertJustify"),

::com::sun::star::table::CellVertJustify.TOP);

2.5.4 Struct
Structs in the OpenOffice.org API are used to create compounds of every other UNO type. They
correspond to C structs or Java classes consisting of public member variables only.

While structs do not encapsulate data, they are easier to transport as a whole, instead of marshal-
ling get() and set() calls back and forth. In particular, this has advantages for remote communi-
cation.

You gain access to struct members through the . (dot) operator as in
aProperty.Name = "ReadOnly";

In Java, C++ und OpenOffice.org Basic, the keyword new instantiates structs. In OLE automation,
use com.sun.star.reflection.CoreReflection to get a UNO struct. Do not use the service
manager to create structs.
//In Java:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue();

'In StarBasic
Dim aProperty as new com.sun.star.beans.PropertyValue

2.5.5 Any
The OpenOffice.org API frequently uses an any type, which is the counterpart of the Variant
type known from other environments. The any type holds one arbitrary UNO type. The any type
is especially used in generic UNO interfaces.

Examples for the occurrence of any are the method parameters and return values of the following,
frequently used methods:

Interface returning an any type taking an any type
XPropertySet any getPropertyValue(string

propertyName)
void setPropertyValue(any value)

46 OpenOffice.org 1.1 Developer's Guide • June 2003

Interface returning an any type taking an any type
XNameContainer any getByName(string name) void replaceByName

(string name, any
element)

void insertByName
(string name, any
element)

XIndexContainer any getByIndex(long index) void replaceByIndex
(long index, any
element)

void insertByIndex
(long index, any
element)

XEnumeration any nextElement() -

Furthermore, the any type occurs in the com.sun.star.beans.PropertyValue struct.

This struct has two member variables, Name and Value, and is ubiquitous in sets of Property-
Value structs, where every PropertyValue is a name- value pair that describes a property by name
and value. If you need to set the value of such a PropertyValue struct, you must assign an any
type, and you must be able to interpret the contained any, if you are reading from a Property-
Value. It depends on your language how this is done.

In Java, the any type is wrapped in a java.lang.Object. There are two simple rules to follow:

When you are supposed to pass in an any type, always pass in a java.lang.Object or a Java
UNO object.

For instance, if you use setPropertyValue() to set a property that has a fundamental type in the
target object, you must pass in a java.lang.Object for the new value. If the new value is a funda-
mental type in Java, create the corresponding Object type for the fundamental type:
xCellProps.setPropertyValue("CharWeight", new Double(200.0));

Another example would be a PropertyValue struct you want to use for loadComponentFromURL:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue();
aProperty.Name = "ReadOnly";
aProperty.Value = new Boolean(true);

When you receive an any type, there are three different ways to evaluate it, depending on the UNO
type you expect. If the incoming object has interfaces, use queryInterface() against it. If the
incoming object is a struct, cast the incoming object to a Java UNO struct. If the incoming object is
a simple type, use the com.sun.star.uno.AnyConverter.

The following is an example of a cast:
// the com.sun.star.table.TableBorder property that can be found in tables is a struct
// simply cast the property to the correct UNO struct type
com.sun.star.table.TableBorder bord = (TableBorder)xTableProps.getPropertyValue("TableBorder");

// now you can access the struct member fields
com.sun.star.table.BorderLine theLine = bord.TopLine;
int col = theLine.Color;
System.out.println(col);

The AnyConverter requires a closer look. For instance, if you want to get a property which
contains a fundamental type, you must be aware that getPropertyValue() returns a
java.lang.Object containing your fundamental type wrapped in an any type. The
com.sun.star.uno.AnyConverter is a converter for such objects. Actually it can do more than

Chapter 2 First Steps 47

Illustration 5:
PropertyValue

just conversion, you can find its specification in the Java UNO reference. The following list sums
up the conversion functions in the AnyConverter:

static java.lang.Object toArray(java.lang.Object object)
static boolean toBoolean(java.lang.Object object)
static byte toByte(java.lang.Object object)
static char toChar(java.lang.Object object)
static double toDouble(java.lang.Object object)
static float toFloat(java.lang.Object object)
static int toInt(java.lang.Object object)
static long toLong(java.lang.Object object)
static java.lang.Object toObject(Class clazz, java.lang.Object object)
static java.lang.Object toObject(Type type, java.lang.Object object)
static short toShort(java.lang.Object object)
static java.lang.String toString(java.lang.Object object)
static Type toType(java.lang.Object object)
static int toUnsignedInt(java.lang.Object object)
static long toUnsignedLong(java.lang.Object object)
static short toUnsignedShort(java.lang.Object object)

Its usage is straightforward:
import com.sun.star.uno.AnyConverter;
long cellColor = AnyConverter.toLong(xCellProps.getPropertyValue("CharColor"));

In OpenOffice.org Basic, an any type becomes a Variant:
'OpenOffice.org Basic
Dim cellColor as Variant
cellColor = oCellProps.CharColor

In C++, there are special operators for the any type:
//C++ has >>= and <<= for Any (the pointed brackets are always left)
sal_Int32 cellColor;
Any any;
any = rCellProps->getPropertyValue(OUString::createFromAscii("CharColor"));
// extract the value from any
any >>= cellColor;

2.5.6 Sequence
A sequence is a set of UNO types with a variable number of elements that can be accessed directly
without element access methods. Sequences map to arrays in most current language bindings.
Although these sets in UNO are often implemented as objects with element access methods, there
is also the sequence type, to be used where remote performance matters. Sequences are always
written with pointed brackets in the API reference:
// a sequence of strings is notated as follows in the API reference
sequence < string > aStringSequence;

In Java, you treat sequences as arrays. Empty arrays are created using new and assigning a length
of null. Furthermore, keep in mind that you only create an array of references when creating an
array of Java objects, the actual objects are not allocated. Therefore, you must use new to create the
array itself, then you must again use new for every single object and assign the new objects to the
array.

An empty sequence of PropertyValue structs is frequently needed for loadcomponentFromURL:
// create an empty array of PropertyValue structs for loadComponentFromURL
PropertyValue[] emptyProps = new PropertyValue[0];

A sequence of PropertyValue structs is needed to use loading parameters with loadComponent-
FromURL(). The possible parameter values for loadComponentFromURL() and the
com.sun.star.frame.XStorable interface can be found in the service
com.sun.star.document.MediaDescriptor.
// create an array with one PropertyValue struct for loadComponentFromURL, it contains references only
PropertyValue[] loadProps = new PropertyValue[1];

48 OpenOffice.org 1.1 Developer's Guide • June 2003

// instantiate PropertyValue struct and set its member fields
PropertyValue asTemplate = new PropertyValue();
asTemplate.Name = "AsTemplate";
asTemplate.Value = new Boolean(true);

// assign PropertyValue struct to first element in our array of references to PropertyValue structs
loadProps[0] = asTemplate;

// load calc file as template
XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL(
 "file:///X:/Office60/share/samples/english/spreadsheets/OfficeSharingAssoc.sxc",
 "_blank", 0, loadProps);

In OpenOffice.org Basic, a simple Dim creates an empty array.
'OpenOffice.org Basic
Dim loadProps() 'empty array

A sequence of structs is created using new together with Dim.
'OpenOffice.org Basic
Dim loadProps(0) as new com.sun.star.beans.PropertyValue 'one PropertyValue

In C++, there is a template for sequences. An empty sequence can be created by omitting the
number of elements required.
//C++
Sequence < ::com::sun::star::beans::PropertyValue > loadProperties; // empty sequence

If you pass a number of elements, you get an array of the required type.
//C++
Sequence< ::com::sun::star::beans::PropertyValue > loadProps(1);
// the structs are default constructed
loadProps[0].Name = OUString::createFromAscii("AsTemplate");
loadProps[0].Handle <<= true;

Reference < XComponent > rComponent = rComponentLoader->loadComponentFromURL(
OUString::createFromAscii("private:factory/swriter"),
OUString::createFromAscii("_blank"),
0,
loadProps);

2.5.7 Element Access
We have already seen in section 2.4 First Steps - How to get Objects in OpenOffice.org that sets of
objects can also be provided through element access methods. The three most important kinds of
element access interfaces are com.sun.star.container.XNameContainer,
[com.sun.star.container.XIndexContainer] and com.sun.star.container.XEnumeration.

The three element access interfaces are examples of how the fine-grained interfaces of the
OpenOffice.org API allow consistent object design.

All three interfaces inherit from XElementAccess , i.e. they include the methods:
type getElementType()
boolean hasElements()

to find out basic information about the set of elements. The method hasElements() answers the
question if a set contains elements at all, and which type a set contains. In Java and C++, you can
get information about a UNO type through com.sun.star.uno.Type, cf. the Java UNO and the
C++ UNO reference.

Chapter 2 First Steps 49

The com.sun.star.container.XIndexContainer and
com.sun.star.container.XNameContainer interface have a parallel design. Consider both inter-
faces in UML notation.

The XIndexAccess/XNameAccess interfaces are about getting an element. The
XIndexReplace/XNameReplace interfaces allow you to replace existing elements without changing
the number of elements in the set, whereas the XIndexContainer/XNameContainer interfaces
allow you to increase and decrease the number of elements by inserting and removing elements.

Many sets of named or indexed objects do not support the whole inheritance hierarchy of XIndex-
Container or XNameContainer, because the capabilities added by every subclass are not always
logical for any set of elements.

The XEumerationAccess interface works differently from named and indexed containers below
the XElementAccess interface. XEnumerationAccess does not provide single elements like
XNameAccess and XIndexAccess, but it creates an enumeration of objects which has methods to
go to the next element as long as there are more elements.

50 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 6: Indexed and Named Container

Sets of objects sometimes support all element access methods, some also support only name,
index, or enumeration access. Always look up the various types in the API reference to see which
access methods are available.

For instance, the method getSheets() at the interface
com.sun.star.sheet.XSpreadsheetDocument is specified to return a
com.sun.star.sheet.XSpreadsheets interface inherited from XNameContainer. In addition, the
API reference tells you that the provided object supports a com.sun.star.sheet.Spreadsheets
service, which defines additional element access interfaces besides XSpreadsheets.

Examples that show how to work with XNameAccess, XIndexAccess, and XEnumerationAccess
are provided below.

Name Access
The basic interface which hands out elements by name is the
com.sun.star.container.XNameAccess interface. It has three methods:

any getByName([in] string name)
sequence < string > getElementNames()
boolean hasByName([in] string name)

In the FirstLoadComponent example above, the method getSheets() returned a
com.sun.star.sheet.XSpreadsheets interface, which inherits from XNameAccess. Therefore,
you could use getByName() to obtain the sheet "MySheet" by name from the XSpreadsheets
container:

Chapter 2 First Steps 51

Illustration 7: Enumerated
Container

XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets();
Object sheet = xSpreadsheets.getByName("MySheet");
XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface(
 XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell A1 at position 0,0 and enter 42 as value
XCell xCell = xSpreadsheet.getCellByPosition(0, 0);

Since getByName() returns an any, you have to use queryInterface() before you can call
methods at the spreadsheet object.

Index Access
The interface which hands out elements by index is the com.sun.star.container.XIndexAccess
interface. It has two methods:

any getByIndex([in] long index)
long getCount()

The FirstLoadComponent example allows to demonstrate XIndexAccess. The API reference tells
us that the service returned by getSheets() is a com.sun.star.sheet.Spreadsheet service and
supports not only the interface com.sun.star.sheet.XSpreadsheets, but XIndexAccess as well.
Therefore, the sheets could have been accessed by index and not just by name by performing a
query for the XIndexAccess interface from our xSpreadsheets variable:
XIndexAccess xSheetIndexAccess = (XIndexAccess)UnoRuntime.queryInterface(
 XIndexAccess.class, xSpreadsheets);

Object sheet = XSheetIndexAccess.getByIndex(0);

Enumeration Access
The interface com.sun.star.container.XEnumerationAccess creates enumerations that allow
traveling across a set of objects. It has one method:

com.sun.star.container.XEnumeration createEnumeration()

The enumeration object gained from createEnumeration() supports the interface
com.sun.star.container.XEnumeration. With this interface we can keep pulling elements out
of the enumeration as long as it has more elements. XEnumeration supplies the methods:

boolean hasMoreElements()
any nextElement()

which are meant to build loops such as:
while (xCells.hasMoreElements()) {
 Object cell = xCells.nextElement();
 // do something with cell
}

For example, in spreadsheets you have the opportunity to find out which cells contain formulas.
The resulting set of cells is provided as XEnumerationAccess.

The interface that queries for cells with formulas is com.sun.star.sheet.XCellRangesQuery, it
defines (among others) a method

XSheetCellRanges queryContentCells(short cellFlags)

which queries for cells having content as defined in the constants group
com.sun.star.sheet.CellFlags. One of these cell flags is FORMULA. From queryContentCells() we
receive an object with an com.sun.star.sheet.XSheetCellRanges interface, which has these
methods:

52 OpenOffice.org 1.1 Developer's Guide • June 2003

XEnumerationAccess getCells()
String getRangeAddressesAsString()
sequence< com.sun.star.table.CellRangeAddress > getRangeAddresses()

The method getCells() can be used to list all formula cells and the containing formulas in the
spreadsheet document from our FirstLoadComponent example, utilizing XEnumerationAccess.
(FirstSteps /FirstLoadComponent.java)
XCellRangesQuery xCellQuery = (XCellRangesQuery)UnoRuntime.queryInterface(
 XCellRangesQuery.class, sheet);
XSheetCellRanges xFormulaCells = xCellQuery.queryContentCells(
 (short)com.sun.star.sheet.CellFlags.FORMULA);

XEnumerationAccess xFormulas = xFormulaCells.getCells();
XEnumeration xFormulaEnum = xFormulas.createEnumeration();
while (xFormulaEnum.hasMoreElements()) {
 Object formulaCell = xFormulaEnum.nextElement();
 // do something with formulaCell
 xCell = (XCell)UnoRuntime.queryInterface(XCell.class, formulaCell);
 XCellAddressable xCellAddress = (XCellAddressable)UnoRuntime.queryInterface(
 XCellAddressable.class, xCell);
 System.out.print("Formula cell in column " + xCellAddress.getCellAddress().Column
 + ", row " + xCellAddress.getCellAddress().Row
 + " contains " + xCell.getFormula());
}

2.6 How do I know Which Type I Have?
A common problem is deciding what capabilities an object really has, after you receive it from a
method.

By observing the code completion in Java IDE, you can discover the base interface of an object
returned from a method. You will notice that loadComponentFromURL() returns a
com.sun.star.lang.XComponent.

By pressing Alt + F1 in the NetBeans IDE you can read specifications about the interfaces and
services you are using.

However, methods can only be specified to return one interface type. The interface you get from a
method very often supports more interfaces than the one that is returned by the method. Further-
more, the interface does not tell anything about the properties the object contains.

Therefore you should uses this manual to get an idea how things work. Then start writing code,
using the code completion and the API reference.

In addition, you can try the InstanceInspector, a Java tool which is part of the OpenOffice.org SDK
examples. It is a Java component that can be registered with the office and shows interfaces and
properties of the object you are currently working with.

In OpenOffice.org Basic, you can inspect objects using the following Basic properties.
sub main
 oDocument = thiscomponent
 msgBox(oDocument.dbg_methods)
 msgBox(oDocument.dbg_properties)
 msgBox(oDocument.dbg_supportedInterfaces)
end sub

Chapter 2 First Steps 53

2.7 Example: Hello Text, Hello Table, Hello Shape
The goal of this section is to give a brief overview of those mechanisms in the OpenOffice.org API,
which are common to all document types. The three main application areas of OpenOffice.org are
text, tables and drawing shapes. The point is: texts, tables and drawing shapes can occur in all
three document types, no matter if you are dealing with a Writer, Calc or Draw /Impress file, but
they are treated in the same manner everywhere. When you master the common mechanisms, you
will be able to insert and use texts, tables and drawings in all document types.

2.7.1 Common Mechanisms for Text, Tables and Drawings
We want to stress the common ground, therefore we start with the common interfaces and proper-
ties that allow to manipulate existing texts, tables and drawings. Afterwards we will demonstrate
the different techniques to create text, table and drawings in each document type.

The key interfaces and properties to work with existing texts, tables and drawings are the
following:

For text the interface com.sun.star.text.XText contains the methods that change the actual text
and other text contents (examples for text contents besides conventional text paragraphs are text
tables, text fields, graphic objects and similar things, but such contents are not available in all
contexts). When we talk about text here, we mean any text - text in text documents, text frames,
page headers and footers, table cells or in drawing shapes. XText is the key for text everywhere in
OpenOffice.org.

54 OpenOffice.org 1.1 Developer's Guide • June 2003

The interface com.sun.star.text.XText has the ability to set or get the text as a single string, and
to locate the beginning and the end of a text. Furthermore, XText can insert strings at an arbitrary
position in the text and create text cursors to select and format text. Finally, XText handles text
contents through the methods insertTextContent and removeTextContent, although not all
texts accept text contents other than conventional text. In fact, XText covers all this by inheriting
from com.sun.star.text.XSimpleText that is inherited from com.sun.star.text.XTextRange.

Text formatting happens through the properties which are described in the services
com.sun.star.style.ParagraphProperties and com.sun.star.style.CharacterProperties.

The following example method manipulateText() adds text, then it uses a text cursor to select
and format a few words using CharacterProperties, afterwards it inserts more text. The method
manipulateText() only contains the most basic methods of XText so that it works with every text
object. In particular, it avoids insertTextContent(), since there are no text contents except for
conventional text that can be inserted in all text objects.(FirstSteps /HelloTextTableShape.java)
protected void manipulateText(XText xText) throws com.sun.star.uno.Exception {
 // simply set whole text as one string
 xText.setString("He lay flat on the brown, pine-needled floor of the forest, "
 + "his chin on his folded arms, and high overhead the wind blew in the tops "
 + "of the pine trees.");

 // create text cursor for selecting and formatting
 XTextCursor xTextCursor = xText.createTextCursor();
 XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xTextCursor);

 // use cursor to select "He lay" and apply bold italic
 xTextCursor.gotoStart(false);

Chapter 2 First Steps 55

Illustration 8: XTextRange

 xTextCursor.goRight((short)6, true);
 // from CharacterProperties
 xCursorProps.setPropertyValue("CharPosture",
 com.sun.star.awt.FontSlant.ITALIC);
 xCursorProps.setPropertyValue("CharWeight",
 new Float(com.sun.star.awt.FontWeight.BOLD));

 // add more text at the end of the text using insertString
 xTextCursor.gotoEnd(false);
 xText.insertString(xTextCursor, " The mountainside sloped gently where he lay; "
 + "but below it was steep and he could see the dark of the oiled road "
 + "winding through the pass. There was a stream alongside the road "
 + "and far down the pass he saw a mill beside the stream and the falling water "
 + "of the dam, white in the summer sunlight.", false);
 // after insertString the cursor is behind the inserted text, insert more text
 xText.insertString(xTextCursor, "\n \"Is that the mill?\" he asked.", false);
}

In tables and table cells, the interface com.sun.star.table.XCellRange allows you to retrieve
single cells and subranges of cells. Once you have a cell, you can work with its formula or numeric
value through the interface com.sun.star.table.XCell.

Table formatting is partially different in text tables and spreadsheet tables. Text tables use the
properties specified in com.sun.star.text.TextTable, whereas spreadsheet tables use
com.sun.star.table.CellProperties. Furthermore there are table cursors that allow to select
and format cell ranges and the contained text. But since a com.sun.star.text.TextTableCursor
works quite differently from a com.sun.star.sheet.SheetCellCursor, we will discuss them in
the chapters about text and spreadsheet documents.(FirstSteps /HelloTextTableShape.java)
protected void manipulateTable(XCellRange xCellRange) throws com.sun.star.uno.Exception {

 String backColorPropertyName = "";
 XPropertySet xTableProps = null;

 // enter column titles and a cell value

// Enter "Quotation" in A1, "Year" in B1. We use setString because we want to change the whole
// cell text at once

 XCell xCell = xCellRange.getCellByPosition(0,0);
 XText xCellText = (XText)UnoRuntime.queryInterface(XText.class, xCell);
 xCellText.setString("Quotation");
 xCell = xCellRange.getCellByPosition(1,0);
 xCellText = (XText)UnoRuntime.queryInterface(XText.class, xCell);
 xCellText.setString("Year");

// cell value
xCell = xCellRange.getCellByPosition(1,1);

 xCell.setValue(1940);

56 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 9: Cell and Cell Range

// select the table headers and get the cell properties
XCellRange xSelectedCells = xCellRange.getCellRangeByName("A1:B1");

 XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xSelectedCells);

 // format the color of the table headers and table borders
 // we need to distinguish text and spreadsheet tables:
 // - the property name for cell colors is different in text and sheet cells
 // - the common property for table borders is com.sun.star.table.TableBorder, but

// we must apply the property TableBorder to the whole text table,
// whereas we only want borders for spreadsheet cells with content.

 // XServiceInfo allows to distinguish text tables from spreadsheets
XServiceInfo xServiceInfo = (XServiceInfo)UnoRuntime.queryInterface(

 XServiceInfo.class, xCellRange);

// determine the correct property name for background color and the XPropertySet interface
// for the cells that should get colored border lines
if (xServiceInfo.supportsService("com.sun.star.sheet.Spreadsheet")) {

 backColorPropertyName = "CellBackColor";
 // select cells

 xSelectedCells = xCellRange.getCellRangeByName("A1:B2");
 // table properties only for selected cells

 xTableProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xSelectedCells);
 }
 else if (xServiceInfo.supportsService("com.sun.star.text.TextTable")) {
 backColorPropertyName = "BackColor";

 // table properties for whole table
 xTableProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xCellRange);
 }
 // set cell background color
 xCellProps.setPropertyValue(backColorPropertyName, new Integer(0x99CCFF));

 // set table borders
 // create description for blue line, width 10
 // colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in 0xAARRGGBB

BorderLine theLine = new BorderLine();
 theLine.Color = 0x000099;
 theLine.OuterLineWidth = 10;
 // apply line description to all border lines and make them valid
 TableBorder bord = new TableBorder();
 bord.VerticalLine = bord.HorizontalLine =
 bord.LeftLine = bord.RightLine =
 bord.TopLine = bord.BottomLine =
 theLine;
 bord.IsVerticalLineValid = bord.IsHorizontalLineValid =
 bord.IsLeftLineValid = bord.IsRightLineValid =
 bord.IsTopLineValid = bord.IsBottomLineValid =
 true;

 xTableProps.setPropertyValue("TableBorder", bord);

}

On drawing shapes, the interface com.sun.star.drawing.XShape is used to determine the position
and size of a shape.

Everything else is a matter of property- based formatting and there is a multitude of properties to
use. OpenOffice.org comes with eleven different shapes that are the basis for the drawing tools in
the GUI (graphical user interface). Six of the shapes have individual properties that reflect their
characteristics. The six shapes are:

• com.sun.star.drawing.EllipseShape for circles and ellipses.

• com.sun.star.drawing.RectangleShape for boxes.

Chapter 2 First Steps 57

Illustration 10: XShape

• com.sun.star.drawing.TextShape for text boxes.

• com.sun.star.drawing.CaptionShape for labeling.

• com.sun.star.drawing.MeasureShape for metering.

• com.sun.star.drawing.ConnectorShape for lines that can be "glued" to other shapes to draw
connecting lines between them.

Five shapes have no individual properties, rather they share the properties defined in the service
com.sun.star.drawing.PolyPolygonBezierDescriptor:

• com.sun.star.drawing.LineShape is for lines and arrows.

• com.sun.star.drawing.PolyLineShape is for open shapes formed by straight lines.

• com.sun.star.drawing.PolyPolygonShape is for shapes formed by one or more polygons.

• com.sun.star.drawing.ClosedBezierShape is for closed bezier shapes.

• com.sun.star.drawing.PolyPolygonBezierShape is for combinations of multiple polygon
and Bezier shapes.

All of these eleven shapes use the properties from the following services:

• com.sun.star.drawing.Shape describes basic properties of all shapes such as the layer a
shape belongs to, protection from moving and sizing, style name, 3D transformation and name.

• com.sun.star.drawing.LineProperties determines how the lines of a shape look

• com.sun.star.drawing.Text has no properties of its own, but includes:

• com.sun.star.drawing.TextProperties that affects numbering, shape growth and text
alignment in the cell, text animation and writing direction.

• com.sun.star.style.ParagraphProperties is concerned with paragraph formatting.

• com.sun.star.style.CharacterProperties formats characters

• com.sun.star.drawing.ShadowProperties deals with the shadow of a shape.

• com.sun.star.drawing.RotationDescriptor sets rotation and shearing of a shape.

• com.sun.star.drawing.FillProperties is only for closed shapes and describes how the
shape is filled.

• com.sun.star.presentation.Shape adds presentation effects to shapes in presentation docu-
ments.

Consider the following example showing how these properties work:
(FirstSteps /HelloTextTableShape.java)
protected void manipulateShape(XShape xShape) throws com.sun.star.uno.Exception {
 // for usage of setSize and setPosition in interface XShape see method useDraw() below

XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in 0xAARRGGBB

 xShapeProps.setPropertyValue("FillColor", new Integer(0x99CCFF));
 xShapeProps.setPropertyValue("LineColor", new Integer(0x000099));
 // angles are given in hundredth degrees, rotate by 30 degrees

xShapeProps.setPropertyValue("RotateAngle", new Integer(3000));
}

58 OpenOffice.org 1.1 Developer's Guide • June 2003

2.7.2 Creating Text, Tables and Drawing Shapes
The three manipulateXXX methods above took text, table and shape objects as parameters and
altered them. The following methods show how to create such objects in the various document
types. Note that all documents have their own service factory to create objects to be inserted into
the document. Aside from that it depends very much on the document type how you proceed.
This section only demonstrates the different procedures, the explanation can be found in the chap-
ters about Text, Spreadsheet and Drawing Documents.

First, a small convenience method is used to create new documents.
(FirstSteps /HelloTextTableShape.java)
protected XComponent newDocComponent(String docType) throws java.lang.Exception {
 String loadUrl = "private:factory/" + docType;
 xRemoteServiceManager = this.getRemoteServiceManager(unoUrl);
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);
 PropertyValue[] loadProps = new PropertyValue[0];
 return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);
}

Text, Tables and Drawings in Writer
The method useWriter creates a writer document and manipulates its text, then uses the docu-
ment's internal service manager to instantiate a text table and a shape, inserts them and manipu-
lates the table and shape (FirstSteps /HelloTextTableShape.java). Refer to 7 Text Documents for
more detailed information.
protected void useWriter() throws java.lang.Exception {
 try {
 // create new writer document and get text, then manipulate text
 XComponent xWriterComponent = newDocComponent("swriter");
 XTextDocument xTextDocument = (XTextDocument)UnoRuntime.queryInterface(
 XTextDocument.class, xWriterComponent);
 XText xText = xTextDocument.getText();

 manipulateText(xText);

 // get internal service factory of the document
 XMultiServiceFactory xWriterFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xWriterComponent);

 // insert TextTable and get cell text, then manipulate text in cell
 Object table = xWriterFactory.createInstance("com.sun.star.text.TextTable");
 XTextContent xTextContentTable = (XTextContent)UnoRuntime.queryInterface(
 XTextContent.class, table);

 xText.insertTextContent(xText.getEnd(), xTextContentTable, false);

 XCellRange xCellRange = (XCellRange)UnoRuntime.queryInterface(
 XCellRange.class, table);
 XCell xCell = xCellRange.getCellByPosition(0, 1);
 XText xCellText = (XText)UnoRuntime.queryInterface(XText.class, xCell);

 manipulateText(xCellText);
 manipulateTable(xCellRange);

 // insert RectangleShape and get shape text, then manipulate text
 Object writerShape = xWriterFactory.createInstance(
 "com.sun.star.drawing.RectangleShape");
 XShape xWriterShape = (XShape)UnoRuntime.queryInterface(
 XShape.class, writerShape);
 xWriterShape.setSize(new Size(10000, 10000));
 XTextContent xTextContentShape = (XTextContent)UnoRuntime.queryInterface(
 XTextContent.class, writerShape);

 xText.insertTextContent(xText.getEnd(), xTextContentShape, false);

 XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, writerShape);
 // wrap text inside shape
 xShapeProps.setPropertyValue("TextContourFrame", new Boolean(true));

Chapter 2 First Steps 59

 XText xShapeText = (XText)UnoRuntime.queryInterface(XText.class, writerShape);

 manipulateText(xShapeText);
 manipulateShape(xWriterShape);
 }
 catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }

}

Text, Tables and Drawings in Calc
The method useCalc creates a calc document, uses its document factory to create a shape and
manipulates the cell text, table and shape. The chapter 8 Spreadsheet Documents treats all aspects of
spreadsheets. (FirstSteps /HelloTextTableShape.java)
protected void useCalc() throws java.lang.Exception {
 try {
 // create new calc document and manipulate cell text
 XComponent xCalcComponent = newDocComponent("scalc");
 XSpreadsheetDocument xSpreadsheetDocument =
 (XSpreadsheetDocument)UnoRuntime.queryInterface(
 XSpreadsheetDocument .class, xCalcComponent);
 Object sheets = xSpreadsheetDocument.getSheets();
 XIndexAccess xIndexedSheets = (XIndexAccess)UnoRuntime.queryInterface(
 XIndexAccess.class, sheets);
 Object sheet = xIndexedSheets.getByIndex(0);

 //get cell A2 in first sheet
 XCellRange xSpreadsheetCells = (XCellRange)UnoRuntime.queryInterface(
 XCellRange.class, sheet);
 XCell xCell = xSpreadsheetCells.getCellByPosition(0,1);
 XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xCell);
 xCellProps.setPropertyValue("IsTextWrapped", new Boolean(true));

 XText xCellText = (XText)UnoRuntime.queryInterface(XText.class, xCell);

 manipulateText(xCellText);
 manipulateTable(xSpreadsheetCells);

 // get internal service factory of the document
 XMultiServiceFactory xCalcFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xCalcComponent);
 // get Drawpage
 XDrawPageSupplier xDrawPageSupplier =

 (XDrawPageSupplier)UnoRuntime.queryInterface(XDrawPageSupplier.class, sheet);
 XDrawPage xDrawPage = xDrawPageSupplier.getDrawPage();

 // create and insert RectangleShape and get shape text, then manipulate text
 Object calcShape = xCalcFactory.createInstance(
 "com.sun.star.drawing.RectangleShape");
 XShape xCalcShape = (XShape)UnoRuntime.queryInterface(
 XShape.class, calcShape);
 xCalcShape.setSize(new Size(10000, 10000));
 xCalcShape.setPosition(new Point(7000, 3000));

 xDrawPage.add(xCalcShape);

 XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, calcShape);
 // wrap text inside shape
 xShapeProps.setPropertyValue("TextContourFrame", new Boolean(true));

 XText xShapeText = (XText)UnoRuntime.queryInterface(XText.class, calcShape);

 manipulateText(xShapeText);
 manipulateShape(xCalcShape);

 }
 catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }

}

60 OpenOffice.org 1.1 Developer's Guide • June 2003

Drawings and Text in Draw
The method useDraw creates a draw document and uses its document factory to instantiate and
add a shape, then it manipulates the shape. The chapter 9 Drawing casts more light on drawings
and presentations. (FirstSteps /HelloTextTableShape.java)
protected void useDraw() throws java.lang.Exception {
 try {
 //create new draw document and insert ractangle shape
 XComponent xDrawComponent = newDocComponent("sdraw");
 XDrawPagesSupplier xDrawPagesSupplier =
 (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xDrawComponent);

 Object drawPages = xDrawPagesSupplier.getDrawPages();
 XIndexAccess xIndexedDrawPages = (XIndexAccess)UnoRuntime.queryInterface(
 XIndexAccess.class, drawPages);
 Object drawPage = xIndexedDrawPages.getByIndex(0);
 XDrawPage xDrawPage = (XDrawPage)UnoRuntime.queryInterface(XDrawPage.class, drawPage);

 // get internal service factory of the document
 XMultiServiceFactory xDrawFactory =
 (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xDrawComponent);

 Object drawShape = xDrawFactory.createInstance(
 "com.sun.star.drawing.RectangleShape");
 XShape xDrawShape = (XShape)UnoRuntime.queryInterface(XShape.class, drawShape);
 xDrawShape.setSize(new Size(10000, 20000));
 xDrawShape.setPosition(new Point(5000, 5000));
 xDrawPage.add(xDrawShape);

 XText xShapeText = (XText)UnoRuntime.queryInterface(XText.class, drawShape);
 XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, drawShape);

 // wrap text inside shape
 xShapeProps.setPropertyValue("TextContourFrame", new Boolean(true));

 manipulateText(xShapeText);
 manipulateShape(xDrawShape);
 }
 catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
 xRemoteContext = null;
 throw e;
 }

}

Chapter 2 First Steps 61

3 Professional UNO

This chapter provides in-depth information about UNO and the use of UNO in various program-
ming languages. There are four sections:

• The 3.1 Professional UNO - Introduction gives an outline of the UNO architecture.

• The section 3.2 Professional UNO - API Concepts supplies background information on the API
reference.

• The section 3.3 Professional UNO - UNO Concepts describes the mechanics of UNO, i.e. it shows
how UNO objects connect and communicate with each other.

• The section 3.4 Professional UNO - UNO Language Bindings elaborates on the use of UNO from
Java, C++, OpenOffice.org Basic and COM automation.

3.1 Introduction
The goal of UNO (Universal Network Objects) is to provide an environment for network objects
across programming language and platform boundaries. UNO objects run and communicate
everywhere. UNO reaches this goal by providing the following fundamental framework:

• UNO objects are specified in an abstract meta language, called UNO IDL (UNO Interface Defi-
nition Language), which is similar to CORBA IDL or MIDL. From UNO IDL specifications,
language dependent header files and libraries can be generated to implement UNO objects in
the target language. UNO objects in the form of compiled and bound libraries are called compo-
nents. Components must support certain base interfaces to be able to run in the UNO environ-
ment.

• To instantiate components in a target environment UNO uses a factory concept. This factory is
called the service manager. It maintains a database of registered components which are known
by their name and can be created by name. The service manager might ask Linux to load and
instantiate a shared object written in C++ or it might call upon the local Java VM to instantiate
a Java class. This is transparent for the developer, there is no need to care about a component's
implementation language. Communication takes place exclusively over interface calls as speci-
fied in UNO IDL.

• UNO provides bridges to send method calls and receive return values between processes and
between objects written in different implementation languages. The bridges use a special UNO
remote protocol (urp) for this purpose which is supported for sockets and pipes. Both ends of
the bridge must be UNO environments, therefore a language- specific UNO runtime environ-
ment to connect to another UNO process in any of the supported languages is required. These
runtime environments are provided as language bindings.

63

• Most objects of OpenOffice.org are able to communicate in a UNO environment. The specifica-
tion for the programmable features of OpenOffice.org is called the OpenOffice.org API.

3.2 API Concepts
The OpenOffice.org API is a language independent approach to specify the functionality of
OpenOffice.org. Its main goals are to provide an API to access the functionality of OpenOffice.org,
to enable users to extend the functionality by their own solutions and new features, and to make
the internal implementation of OpenOffice.org exchangeable.

A long term target on the OpenOffice.org roadmap is to split the existing OpenOffice.org into
small components which are combined to provide the complete OpenOffice.org functionality.
Such components are manageable, they interact with each other to provide high level features and
they are exchangeable with other implementations providing the same functionality, even if these
new implementations are implemented in a different programming language. When this target
will be reached, the API, the components and the fundamental concepts will provide a construc-
tion kit, which makes OpenOffice.org adaptable to a wide range of specialized solutions and not
only an office suite with a predefined and static functionality.

This section provides you with a thorough understanding of the concepts behind the
OpenOffice.org API. In the API reference there are UNO IDL data types which are unknown
outside of the API. The reference provides abstract specifications which sometimes can make you
wonder how they map to implementations you can actually use.

The data types of the API reference are explained in 3.2.1 Professional UNO - API Concepts - Data
Types. The relationship between API specifications and OpenOffice.org implementations is treated
in 3.2.2 Professional UNO - API Concepts - Understanding the API Reference.

3.2.1 Data Types
The data types in the API reference are UNO IDL types which have to be mapped to the types of
any programming language that can be used with the OpenOffice.org API. In the chapter 2 First
Steps the most important UNO types were introduced. However, there is much more to be said
about simple types, interfaces, properties and services in UNO. There are special flags, conditions
and relationships between these types which you will want to know if you are working with UNO
on a professional level.

This section explains the types of the API reference from the perspective of a developer who wants
to use the OpenOffice.org API. If you are interested in writing your own components, and you
must define new interfaces and types, please refer to the chapter 4 Writing UNO Components,
which describes how to write your own UNO IDL specifications and how to create UNO compo-
nents.

Simple Types
UNO IDL provides a set of predefined and fundamental base types which are listed in the
following table:

UNO IDL Type Description
boolean Can be true or false.

64 OpenOffice.org 1.1 Developer's Guide • June 2003

UNO IDL Type Description
byte One-byte type representing a type that is not modified by the UNO runtime during

transport (marshaling) over a UNO bridge.

char Represents a unicode character. When this type is mapped to a programming
language, the representation depends on the respective hardware or software archi-
tecture.

double Processor dependent double.

float Processor dependent float.

hyper 64-bit integer type.

long 32-bit integer type.

short 16-bit integer type.

string Unicode string type.

type Meta type that describes any other UNO IDL types.

void Empty return value, only possible as return value.

unsigned hyper Deprecated. Unsigned 64-bit integer value.

unsigned long Deprecated. Unsigned 32-bit integer value.

unsigned short Deprecated. Unsigned 16-bit integer value.

The chapters about language bindings 3.4.1 Professional UNO - UNO Language Bindings - Java
Language Binding, 3.4.2 Professional UNO - UNO Language Bindings - UNO C++ Binding, 3.4.3 Profes-
sional UNO - UNO Language Bindings - OpenOffice.org Basic and 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge describe how these types are mapped to the types of your
target language.

The Any Type
The special type any can represent all other known and defined UNO IDL types. In the target
languages, the any type requires special treatment. There is an AnyConverter in Java and special
operators in C++. For details, see the section 3.4 Professional UNO - UNO Language Bindings about
language bindings.

Interfaces
Communication between UNO objects is based on object interfaces. Interfaces can be seen from the
outside or the inside of an object.

From the outside of an object, an interface provides a functionality or special aspect of the object.
Interfaces provide access to objects by publishing a set of operations that cover a certain aspect of
an object without telling anything about its internals.

The concept of interfaces is quite natural and frequently used in everyday life. Interfaces allow the
creation of things that fit in with each other without knowing internal details about them. A power
plug that fits into a standard socket or a one-size-fits-all working glove are simple examples. They
all work by standardizing the minimal conditions that must be met to make things work together.

A more advanced example would be the "remote control aspect" of a simple TV system. One
possible feature of a TV system is a remote control. The remote control functions can be described
by an XPower and an XChannel interface. The illustration below shows a RemoteControl object
with these interfaces:

Chapter 3 Professional UNO 65

The XPower interface has the functions turnOn() and turnOff() to control the power and the
XChannel interface has the functions select(), next(), previous() to control the current
channel. The user of these interfaces does not care if he uses an original remote control that came
with a TV set or a universal remote control as long as it carries out these functions. The user is
only dissatisfied if some of the functions promised by the interface do not work with a remote
control.

From the inside of an object, or from the perspective of someone who implements a UNO object,
interfaces are abstract specifications. The abstract specification of all the interfaces in the
OpenOffice.org API has the advantage that user and implementer can enter into a contract,
agreeing to adhere to the interface specification. A program that strictly uses the OpenOffice.org
API according to the specification will always work, while an implementer can do whatever he
wants with his objects, as long as he serves the contract.

UNO uses the interface type to describe such aspects of UNO objects. All interface names start
with the letter X to distinguish them from other types. All interface types must inherit the
com.sun.star.uno.XInterface interface for basic object communication, either directly or in the
inheritance hierarchy. XInterface is explained in 3.3.3 Professional UNO - UNO Concepts - Using
UNO Interfaces. The interface types define operations to provide access to the specified UNO
objects.

Interface operations allow access to the data inside an object through dedicated methods (member
functions) which encapsulate the data of the object. Interfaces only consist of operations. The
operations always have a parameter list and a return value, and they may define exceptions for
smart error handling.

The exception concept in the OpenOffice.org API is comparable with the exception concepts
known from Java or C++. All operations can raise com.sun.star.uno.RuntimeExceptions
without explicit specification, but all other exceptions must be specified. UNO exceptions are
explained in the section 3.3.6 Professional UNO - UNO Concepts - Exception Handling below.

Consider the following two examples for interface definitions in UNO IDL notation. UNO IDL
interfaces resemble Java interfaces, and operations look similar to Java method signatures.
However, note the flags in square brackets in the following example:
// base interface for all UNO interfaces

interface XInterface
{

any queryInterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

};

// fragment of the Interface com.sun.star.io.XInputStream

interface XInputStream: com::sun::star::uno::XInterface
{
 long readBytes([out] sequence<byte> aData,
 [in] long nBytesToRead)
 raises(com::sun::star::io::NotConnectedException,
 com::sun::star::io::BufferSizeExceededException,
 com::sun::star::io::IOException);

66 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 11: RemoteControl service

 ...
};

The [oneway] flag indicates that an operation will be executed asynchronously. For instance, the
method acquire() in the interface com.sun.star.uno.XInterface is defined to be oneway.

There are also parameter flags. Each parameter definition begins with one of the direction flags in,
out, or inout to specify the use of the parameter:

• in specifies that the parameter will be used as an input parameter only

• out specifies that the parameter will be used as an output parameter only

• inout specifies that the parameter will be used as an input and output parameter

These parameter flags do not appear in the API reference. The fact that a parameter is an [out] or
[inout] parameter is explained in the method details.

Interfaces consisting of operations form the basis for service specifications.

Services
We have seen that an interface describes only one aspect of an object. However, it is quite common
that objects have more than one aspect. UNO uses services to specify complete objects which can
have many aspects.

A service comprises a set of interfaces and properties that are needed to support a certain func-
tionality. It can include other services as well. Services are abstract specifications which have to be
implemented.

From the perspective of a user of a UNO object, the object offers one or sometimes even several
services described in the API reference. The services are utilized through method calls grouped in
interfaces, and through properties, which are handled through special interfaces as well. Because
the access to the functionality is provided by interfaces only, the implementation is irrelevant to a
user who wants to use a service.

From the perspective of an implementer of a UNO object, services are used to define a functionality
independently of a programming language and without giving instructions about the internal
implementation of the service. Implementing a service means that the component must implement
all specified interfaces and properties. It is possible that a UNO object implements more than one
service. Sometimes it is useful to implement two or more services because they have related func-
tionality or the services support different views to the component.

Illustration 11 shows the relationship between interfaces, services and components. The language
independent specification of a service with several interfaces is used to implement a UNO compo-
nent that fulfills the specification.

Chapter 3 Professional UNO 67

The functionality of a TV system with a TV set and a remote control can be described in terms of
service specifications. The interfaces XPower and XChannel described above would be part of a
service specification RemoteControl. The new service TVSet consists of the three interfaces
XPower, XChannel and XStandby to control the power, the channel selection, the additional power
function standby() and a timer() function.

Referencing Interfaces
References to interfaces in a service definition mean that an implementation of this service must
offer the specified interfaces. However, optional interfaces are possible. If a service contains an
optional interface, the service may or may not export this interface. If you utilize an optional inter-
face of a UNO object, always check if the result of queryInterface() is equal to null and react
accordingly—otherwise your code will not be compatible with implementations without the
optional interface and you might end up with null pointer exceptions. The following UNO IDL
snippet shows a fragment of the specification for the com.sun.star.text.TextDocument service
in the OpenOffice.org API. Note the flag optional in square brackets, which makes the interfaces
XFootnotesSupplier and XEndnotesSupplier non-mandatory.

68 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 12: Interfaces, services and implementation

Illustration 13: TV System Specification

// com.sun.star.text.TextDocument
service TextDocument
{
 ...

 interface com::sun::star::text::XTextDocument;
 interface com::sun::star::util::XSearchable;
 interface com::sun::star::util::XRefreshable;
 [optional] interface com::sun::star::text::XFootnotesSupplier;
 [optional] interface com::sun::star::text::XEndnotesSupplier;
 ...
};

Including Properties
When the structure of the OpenOffice.org API was founded, the designers discovered that the
objects in an office environment would have huge numbers of qualities that did not appear to be
part of the structure of the objects, rather they seemed to be superficial changes to the underlying
objects. It was also clear that not all qualities would be present in each object of a certain kind.
Therefore, instead of defining a complicated pedigree of optional and non-optional interfaces for
each and every quality, the concept of properties was introduced. Properties are data in an object
that are provided by name over a generic interface for property access, that contains getProper-
tyValue() and setPropertyValue() access methods. The concept of properties has other advan-
tages, and there is more to know about properties. Please refer to 3.3.4 Professional UNO - UNO
Concepts - Properties for further information about properties.

Properties are added to a service in its UNO IDL specification. A property defines a member vari-
able with a specific type that is accessible at the implementing component by a specific name. It is
possible to add further restrictions to a property through additional flags. The following service
references one interface and three optional properties. All known API types can be valid property
types:
// com.sun.star.text.TextContent
service TextContent
{
 interface com::sun::star::text::XTextContent;
 [optional, property] com::sun::star::text::TextContentAnchorType AnchorType;
 [optional, readonly, property] sequence<com::sun::star::text::TextContentAnchorType> AnchorTypes;
 [optional, property] com::sun::star::text::WrapTextMode TextWrap;
};

Possible property flags are:

• optional
The property does not have to be supported by the implementing component.

• readonly
The value of the property cannot be changed using com.sun.star.beans.XPropertySet.

• bound
Changes of property values are broadcast to
com.sun.star.beans.XPropertyChangeListeners, if any were registered through
com.sun.star.beans.XPropertySet.

• constrained
The property broadcasts an event before its value changes. Listeners have the right to veto the
change.

• maybeambiguous
Possibly the property value cannot be determined in some cases, for example, in multiple selec-
tions with different values.

• maybedefault
The value might be stored in a style sheet or in the environment instead of the object itself.

Chapter 3 Professional UNO 69

• maybevoid
In addition to the range of the property type, the value can be void. It is similar to a null value
in databases.

• removable
The property is removable, this is used for dynamic properties.

• transient
The property will not be stored if the object is serialized

Referencing other Services
Services can include other services. Such references may be optional. That a service is included by
another service has nothing to do with implementation inheritance, only the specifications are
combined. It is up to the implementer if he inherits or delegates the necessary functionality, or if
he implements it from scratch.

The service com.sun.star.text.Paragraph in the following UNO IDL example includes one
mandatory service com.sun.star.text.TextContent and five optional services. Every Para-
graph must be a TextContent. It can be a TextTable and it is used to support formatting proper -
ties for paragraphs and characters:
// com.sun.star.text.Paragraph
service Paragraph
{
 service com::sun::star::text::TextContent;
 [optional] service com::sun::star::text::TextTable;
 [optional] service com::sun::star::style::ParagraphProperties;
 [optional] service com::sun::star::style::CharacterProperties;
 [optional] service com::sun::star::style::CharacterPropertiesAsian;
 [optional] service com::sun::star::style::CharacterPropertiesComplex;

 ...
};

Service Implementations in Components
A component is a shared library or Java archive containing implementations of one or more services
in one of the target programming languages supported by UNO. Such a component must meet
basic requirements, mostly different for the different target language, and it must support the
specification of the implemented services. That means all specified interfaces and properties must
be implemented. Components must be registered in the UNO runtime system. After the registra-
tion all implemented services can be used by ordering an instance of the service at the appropriate
service factory and accessing the functionality over interfaces.

Based on our example specifications for a TVSet and a RemoteControl service, a component
RemoteTVImpl could simulate a remote TV system:

70 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 14: RemoteTVImpl Component

Such a RemoteTV component could be a jar file or a shared library. It would contain two service
implementations, TVSet and RemoteControl. Once the RemoteTV component is registered with
the global service manager, users can call the factory method of the service manager and ask for a
TVSet or a RemoteControl service. Then they could use their functionality over the interfaces
XPower, XChannel and XStandby. When a new implementation of these services with better
performance or new features is available later on, the old component can be replaced without
breaking existing code, provided that the new features are introduced by adding interfaces.

Structs
A struct type defines several elements in a record. The elements of a struct are UNO IDL types
with a unique name within the struct. Structs have the disadvantage not to encapsulate data, but
the absence of get () and set() methods can help to avoid the overhead of method calls over a
UNO bridge. UNO IDL supports single inheritance for struct types. A derived struct recur -
sively inherits all elements of the parent and its parents.
// com.sun.star.lang.EventObject
/** specifies the base for all event objects and identifies the

source of the event.
 */
struct EventObject
{

/** refers to the object that fired the event.
 */
com::sun::star::uno::XInterface Source;

};

// com.sun.star.beans.PropertyChangeEvent
struct PropertyChangeEvent : com::sun::star::lang::EventObject {
 string PropertyName;
 boolean Further;
 long PropertyHandle;
 any OldValue;
 any NewValue;
};

Predefined Values
The API offers many predefined values, that are used as method parameters, or returned by
methods. In UNO IDL there are two different data types for predefined values: constants and
enumerations.

const
A const defines a named value of a valid UNO IDL type. The value depends on the specified type
and can be a literal (integer number, floating point number or a character), an identifier of another
const type or an arithmetic term using the operators: +, -, *, /, ~, &, |, %, ^, <<, >>.
Since a wide selection of types and values is possible in a const, const is occasionally used to build
bit vectors which encode combined values.
const short ID = 23;
const boolean ERROR = true;
const double PI = 3.1415;

Usually const definitions are part of a constants group.

Chapter 3 Professional UNO 71

constants
The constants type defines a named group of const values. A const in a constants group is
denoted by the group name and the const name. In the UNO IDL example below,
ImageAlign.RIGHT refers to the value 2:
constants ImageAlign {
 const short LEFT = 0;
 const short TOP = 1;
 const short RIGHT = 2;
 const short BOTTOM = 3;
};

enum
An enum type is equivalent to an enumeration type in C++. It contains an ordered list of one or
more identifiers representing long values of the enum type. By default, the values are numbered
sequentially, beginning with 0 and adding 1 for each new value. If an enum value has been
assigned a value, all following enum values without a predefined value get a value starting from
this assigned value.
// com.sun.star.uno.TypeClass
enum TypeClass {
 VOID,
 CHAR,
 BOOLEAN,
 BYTE,
 SHORT,
 ...
};

enum Error {
 SYSTEM = 10, // value 10
 RUNTIME, // value 11
 FATAL, // value 12
 USER = 30, // value 30
 SOFT // value 31
};

If enums are used during debugging, you should be able to derive the numeric value of an enum
by counting its position in the API reference. However, never use literal numeric values instead of
enums in your programs.

Once an enum type has been specified and published, you can trust that it is not extended later on, for that
would break existing code. However, new const vaues may be added to a constant group.

Sequences
A sequence type is a set of elements of the same type, that has a variable number of elements. In
UNO IDL, the used element always references an existing and known type or another sequence
type. A sequence can occur as a normal type in all other type definitions.
sequence< com::sun::star::uno::XInterface >
sequence< string > getNamesOfIndex(sequence< long > indexes);

Modules
Modules are namespaces, similar to namespaces in C++ or packages in Java. They group services,
interfaces, structs, exceptions, enums, typedefs, constant groups and submodules with related
functional content or behavior. They are utilized to specify coherent blocks in the API, this allows
for a well-structured API. For example, the module com.sun.star.text contains interfaces and
other types for text handling. Some other typical modules are com.sun.star.uno,
com.sun.star.drawing, com.sun.star.sheet and com.sun.star.table. Identifiers inside a

72 OpenOffice.org 1.1 Developer's Guide • June 2003

module do not clash with identifiers in other modules, therefore it is possible for the same name to
occur more than once. The global index of the API reference shows that this does happen.

Although it may seem that the modules correspond with the various parts of OpenOffice.org,
there is no direct relationship between the API modules and the OpenOffice.org applications
Writer, Calc and Draw. Interfaces from the module com.sun.star.text are used in Calc and
Draw. Modules like com.sun.star.style or com.sun.star.document provide generic services
and interfaces that are not specific to any one part of OpenOffice.org.

The modules you see in the API reference were defined by nesting UNO IDL types in module
instructions. For example, the module com.sun.star.uno contains the interface XInterface:
module com {
 module sun {
 module star {
 module uno {
 interface XInterface {
 ...
 };
 };
 };
 };
};

Exceptions
An exception type indicates an error to the caller of a function. The type of an exception gives a
basic description of the kind of error that occurred. In addition, the UNO IDL exception types
contain elements which allow for an exact specification and a detailed description of the error. The
exception type supports inheritance, this is freqzuently used to define a hierarchy of errors.
Exceptions are only used to raise errors, not as method parameters or return types.

UNO IDL requires that all exceptions must inherit from com.sun.star.uno.Exception. This is a
precondition for the UNO runtime.
// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {
 string Message;
 Xinterface Context;
};

// com.sun.star.uno.RuntimeException is the base exception for serious problems
// occuring at runtime, usually programming errors or problems in the runtime environment
exception RuntimeException : com::sun::star::uno::Exception {
};

// com.sun.star.uno.SecurityException is a more specific RuntimeException
exception SecurityException : com::sun::star::uno::RuntimeException {
};

Exceptions may only be thrown by operations which were specified to do so. In contrast,
com.sun.star.uno.RuntimeExceptions can always occur.

The methods acquire() and release of the UNO base interface com.sun.star.uno.XInterface are an
exception to the above rule. They are the only operations that may not even throw runtime exceptions. But in
Java and C++ programs, you do not use these methods directly, they are handled by the respective language
binding.

Singletons
Singletons are used to specify named objects where exactly one instance can exist in the life of a
UNO component context. A singleton references one service and specifies that the only existing
instance of this service can be reached over the component context using the name of the
singleton. If no instance of the service exists, the component context will instantiate a new one.

Chapter 3 Professional UNO 73

singleton theServiceManager {
 service com::sun::star::lang::ServiceManager
};

3.2.2 Understanding the API Reference

Specification, Implementation and Instances
The API specifications you find in the API reference are abstract. The service descriptions of the
API reference are not about classes that previously exist somewhere. The specifications are first,
then the UNO implementation is created according to the specification. That holds true even for
legacy implementations that had to be adapted to UNO.

Moreover, since a component developer is free to implement services and interfaces as required,
there is not necessarily a one-to-one relationship between a certain service specification and a real
object. The real object can be capable of more things than specified in a service definition. For
example, if you order a service at the factory or receive an object from a getter or getProperty-
Value() method, the specified features will be present, but there may be additional features. For
instance, the text document model has a few interfaces which are not included in the specification
for the com.sun.star.text.TextDocument.

Because of the optional interfaces and properties, it is impossible to comprehend fully from the
API reference what a given instance of an object in OpenOffice.org is capable of. The optional
interfaces and properties are correct for an abstract specification, but it means that when you leave
the scope of mandatory interfaces and properties, the reference only defines how things are
allowed to work, not how they actually work.

Another important point is the fact that there are several entry points where service implementa-
tions are actually available. You cannot instantiate every service that can be found in the API refer-
ence by means of the global service manager. The reasons are:

• Some services need a certain context. For instance, it does not make sense to instantiate a
com.sun.star.text.TextFrame independently from an existing text document or any other
surrounding where it could be of any use. Such services are usually not created by the global
service manager, but by document factories which have the necessary knowledge to create
objects that work in a certain surrounding. That does not mean you will never be able to get a
text frame from the global service manager to insert. So, if you wish to use a service in the API
reference, ask yourself where you can get an instance that supports this service, and consider
the context in which you want to use it. If the context is a document, it is quite possible that the
document factory will be able to create the object.

• Services are not only used to specify possible class implementations. Sometimes they are used
to specify nothing but groups of properties that can be referenced by other service implementa-
tions. That is, there are services with no interfaces at all. You cannot create such a service at the
service manager.

• A few services need special treatment. For example, you cannot ask the service manager to
create an instance of a com.sun.star.text.TextDocument. You must load it using the method
loadComponentFromUrl() at the desktop's com.sun.star.frame.XComponentLoader inter -
face.

Consequently, it is sometimes confusing to look up a needed functionality in the API reference, for
you need a basic understanding how a functionality works, which services are involved, where
they are available etc., before you can really utilize the reference. This manual aims at giving you

74 OpenOffice.org 1.1 Developer's Guide • June 2003

this understanding about the OpenOffice.org document models, the database integration and the
application itself.

Object Composition
Interfaces only support single inheritance and they are all based on
com.sun.star.uno.XInterface. In the API reference, this is mirrored in the Base Hierarchy
section of any interface specification. If you look up an interface, always check the base hierarchy
section to understand the full range of supported methods. For instance, if you look up
com.sun.star.text.XText, you see two methods, insertTextContent() and removeTextCon-
tent(), but there are nine more methods provided by the inherited interfaces. The same applies
to exceptions and sometimes also to structs, which support single inheritance as well.

The service specifications in the API reference can contain a section Included Services , which is
similar to the above in that a single included service might encompass a whole world of services.
However, the fact that a service is included has nothing to do with class inheritance. In which
manner a service implementation technically includes other services, by inheriting from base
implementations, by aggregation, some other kind of delegation or simply by reimplementing
everything is by no means defined. And it is uninteresting for an API user – he can absolutely rely
on the availability of the described functionality, but he must never rely on inner details of the
implementation, which classes provide the functionality, where they inherit from and what they
delegate to other classes.

3.3 UNO Concepts
Now that you have an advanced understanding of OpenOffice.org API concepts and you under-
stand the specification of UNO objects , we are ready to explore UNO, i.e. to see how UNO objects
connect and communicate with each other.

3.3.1 UNO Interprocess Connections
UNO objects in different environments connect via the interprocess bridge. You can execute calls
on UNO object instances, that are located in a different process. This is done by converting the
method name and the arguments into a byte stream representation, and sending this package to
the remote process, for example, through a socket connection. Most of the examples in this manual
use the interprocess bridge to communicate with the OpenOffice.org.

This section deals with the creation of UNO interprocess connections using the UNO API.

Starting OpenOffice.org in Listening Mode
Most examples in this developers guide connect to a running OpenOffice.org and perform API
calls, which are then executed in OpenOffice.org. By default, the office does not listen on a
resource for security reasons. This makes it necessary to make OpenOffice.org listen on an inter-
process connection resource, for example, a socket. Currently this can be done in two ways:

• Start the office with an additional parameter:
soffice -accept=socket,host=0,port=2002;urp;
This string has to be quoted on unix shells, because the semicolon ';' is interpreted by the shells

Chapter 3 Professional UNO 75

• Place the same string without '-accept=' into a configuration file. You can edit the file
<OfficePath>/share/registry/data/org/openoffice/Setup.xcu
and replace the tag
<prop oor:name="ooSetupConnectionURL"/>
with
<prop oor:name="ooSetupConnectionURL">
 <value>socket,host=localhost,port=2002;urp;StarOffice.ServiceManager
 </value>
</prop>
If the tag is not present, add it within the tag
<node oor:name="Office"/>
This change affects the whole installation. If you want to configure it for a certain user in a
network installation, add the same tag within the node <node oor:name="Office/> to the file
Setup.xcu in the user dependent configuration directory
<OfficePath>/user/registry/data/org/openoffice/

The various parts of the connection URL will be discussed in the next section.

Importing a UNO Object
The most common use case of interprocess connections is to import a reference to a UNO object
from an exporting server. For instance, most of the Java examples described in this manual
retrieve a reference to the OpenOffice.org ComponentContext. The correct way to do this is using
the com.sun.star.bridge.UnoUrlResolver service. Its main interface
com.sun.star.bridge.XUnoUrlResolver is defined in the following way:
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
 /** resolves an object on the UNO URL */
 com::sun::star::uno::XInterface resolve([in] string sUnoUrl)
 raises (com::sun::star::connection::NoConnectException,
 com::sun::star::connection::ConnectionSetupException,
 com::sun::star::lang::IllegalArgumentException);
};

The string passed to the resolve() method is called a UNO URL. It must have the following
format:

An example URL could be uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager. The
parts of this URL are:

I. The URL schema uno:. This identifies the URL as UNO URL and distinguishes it from others,
such as http: or ftp: URLs.

II. A string which characterizes the type of connection to be used to access the other process.
Optionally, directly after this string, a comma separated list of name-value pairs can follow,
where name and value are separated by a '='. The currently supported connection types are
described in 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections - Opening a
Connection. The connection type specifies the transport mechanism used to transfer a byte
stream, for example, TCP/IP sockets or named pipes.

76 OpenOffice.org 1.1 Developer's Guide • June 2003

III. A string which characterizes the type of protocol used to communicate over the established byte
stream connection. The string can be followed by a comma separated list of name-value pairs,
which can be used to customize the protocol to specific needs. The suggested protocol is urp
(UNO Remote Protocol). Some useful parameters are explained below. Refer to the document
named UNO-URL at udk.openoffice.org. for the complete specification.

IV.A process must explicitly export a certain object by a distinct name. It is not possible to access
an arbitrary UNO object (which would be possible with IOR in CORBA, for instance).

The following example demonstrates how to import an object using the UnoUrlResolver:
(ProfUNO /InterprocessConn /UrlResolver.java):
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);

 // initial serviceManager
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();

 // create a URL resolver
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);

 // query for the XUnoUrlResolver interface
 XUnoUrlResolver xUrlResolver =
 (XUnoUrlResolver) UnoRuntime.queryInterface(XUnoUrlResolver.class, urlResolver);

 // Import the object
 Object rInitialObject = xUrlResolver.resolve(
 “uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager”);

 // XComponentContext
 if (null != rInitialObject) {
 System.out.println("initial object successfully retrieved");
 } else {
 System.out.println("given initial-object name unknown at server side");
 }

The usage of the UnoUrlResolver has certain disadvantages. You cannot:

• be notified when the bridge terminates for whatever reasons

• close the underlying interprocess connection

• offer a local object as an initial object to the remote process

These issues are addressed by the underlying API, which is explained below. in 3.3.1 Professional
UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.

Characteristics of the Interprocess Bridge
The whole bridge is threadsafe and allows multiple threads to execute remote calls. The dispatcher
thread inside the bridge cannot block because it never executes calls. It instead passes the requests
to worker threads.

• A synchronous call sends the request through the connection and lets the requesting thread wait
for the reply. All calls that have a return value, an out parameter, or throw an exceptions other
than a RuntimeException must be synchronous.

• An asynchronous (or oneway) call sends the request through the connection and immediately
returns without waiting for a reply. It is currently specified at the IDL interface if a request is
synchronous or asynchronous by using the [oneway] modifier.

For synchronous requests, thread identity is guaranteed . When process A calls process B, and
process B calls process A, the same thread waiting in process A will take over the new request.
This avoids deadlocks when the same mutex is locked again. For asynchronous requests, this is
not possible because there is no thread waiting in process A. Such requests are executed in a new

Chapter 3 Professional UNO 77

thread. The series of calls between two processes is guaranteed. If two asynchronous requests
from process A are sent to process B, the second request waits until the first request is finished.

The remote bridge can be started in a mode that disables the oneway feature and thus executes
every call as a synchronous call. To do this, the protocol part of the UNO URL on the server and
client must be extended by ',Negotiate=0,forceSynchronous=1' . For example:

soffice -accept=socket,host=0,port=2002;urp,Negotiate=0,forceSynchronous=1;
for starting the office and

"uno:socket,host=localhost,port=2002;urp,Negotiate=0,forceSynchronous=1;StarOffic
e.ServiceManager"
as UNO URL for connecting to it. This can be useful to avoid deadlocks within OpenOffice.org.

Do not activate this mode unless you experience such problems.

Opening a Connection
The method to import a UNO object using the UnoUrlResolver has drawbacks as described in the
previous chapter. The layer below the UnoUrlResolver offers full flexibility in interprocess
connection handling.

UNO interprocess bridges are established on the com.sun.star.connection.XConnection inter -
face, which encapsulates a reliable bidirectional byte stream connection (such as a TCP/IP connec-
tion).
interface XConnection: com::sun::star::uno::XInterface
{
 long read([out] sequence < byte > aReadBytes , [in] long nBytesToRead)
 raises(com::sun::star::io::IOException);
 void write([in] sequence < byte > aData)
 raises(com::sun::star::io::IOException);
 void flush() raises(com::sun::star::io::IOException);
 void close() raises(com::sun::star::io::IOException);
 string getDescription();
};

There are different mechanisms to establish an interprocess connection. Most of these mechanisms
follow a similar pattern. One process listens on a resource and waits for one or more processes to
connect to this resource.

This pattern has been abstracted by the services com.sun.star.connection.Acceptor that
exports the com.sun.star.connection.XAcceptor interface and
com.sun.star.connection.Connector that exports the com.sun.star.connection.XConnector
interface.
interface XAcceptor: com::sun::star::uno::XInterface
{
 XConnection accept([in] string sConnectionDescription)
 raises(AlreadyAcceptingException,
 ConnectionSetupException,
 com::sun::star::lang::IllegalArgumentException);

 void stopAccepting();
};

interface XConnector: com::sun::star::uno::XInterface
{
 XConnection connect([in] string sConnectionDescription)
 raises(NoConnectException,ConnectionSetupException);
};

The acceptor service is used in the listening process while the connector service is used in the
actively connecting service. The methods accept() and connect() get the connection string as a
parameter. This is the connection part of the UNO URL (between uno: and ;urp).

78 OpenOffice.org 1.1 Developer's Guide • June 2003

The connection string consists of a connection type followed by a comma separated list of name-
value pairs. The following table shows the connection types that are supported by default.

Connection
type
socket Reliable TCP/IP socket connection

Parameter Description
host Hostname or IP number of the resource to listen on /connect. May be

localhost. In an acceptor string, this may be 0 ('host=0'), which means,
that it accepts on all available network interfaces.

port TCP/IP port number to listen on /connect to.

tcpNoDelay Corresponds to the socket option tcpNoDelay. For a UNO connection,
this parameter should be set to 1 (this is NOT the default ― it must be
added explicitly). If the default is used (0), it may come to 200 ms
delays at certain call combinations.

pipe A named pipe (uses shared memory). This type of interprocess connection is marginally
faster than socket connections and works only if both processes are located on the same
machine. It does not work on Java by default, because Java does not support named pipes
directly

Parameter Description
name Name of the named pipe. Can only accept one process on name on one

machine at a time.

You can add more kinds of interprocess connections by implementing connector and acceptor services, and
choosing the service name by the scheme com.sun.star.connection.Connector.<connection-
type>, where <connection-type> is the name of the new connection type.

If you implemented the service com.sun.star.connection.Connector.mytype, use the UnoUrlRe-
solver with the URL 'uno:mytype,param1=foo;urp;StarOffice.ServiceManager' to establish the interprocess
connection to the office.

Chapter 3 Professional UNO 79

Creating the Bridge

The XConnection instance can now be used to establish a UNO interprocess bridge on top of the
connection, regardless if the connection was established with a Connector or Acceptor service (or
another method). To do this, you must instantiate the service
com.sun.star.bridge.BridgeFactory. It supports the com.sun.star.bridge.XBridgeFactory
interface.
interface XBridgeFactory: com::sun::star::uno::XInterface
{
 XBridge createBridge(
 [in] string sName,
 [in] string sProtocol ,
 [in] com::sun::star::connection::XConnection aConnection ,
 [in] XInstanceProvider anInstanceProvider)
 raises (BridgeExistsException , com::sun::star::lang::IllegalArgumentException);
 XBridge getBridge([in] string sName);
 sequence < XBridge > getExistingBridges();
};

The BridgeFactory service administrates all UNO interprocess connections. The createBridge()
method creates a new bridge:

80 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 15: The interaction of services that are needed to initiate a UNO interprocess bridge. The
interfaces have been simplified.

• You can give the bridge a distinct name with the sName argument. Later the bridge can be
retrieved by using the getBridge() method with this name. This allows two independent code
pieces to share the same interprocess bridge. If you call createBridge() with the name of an
already working interprocess bridge, a BridgeExistsException is thrown. When you pass an
empty string, you always create a new anonymous bridge, which can never be retrieved by
getBridge() and which never throws a BridgeExistsException.

• The second parameter specifies the protocol to be used on the connection. Currently, only the
'urp' protocol is supported. In the UNO URL, this string is separated by two ';'. The urp string
may be followed by a comma separated list of name- value pairs describing properties for the
bridge protocol. The urp specification can be found on udk.openoffice.org.

• The third parameter is the XConnection interface as it was retrieved by Connector /Acceptor
service.

• The fourth parameter is a UNO object, which supports the
com.sun.star.bridge.XInstanceProvider interface. This parameter may be a null reference
if you do not want to export a local object to the remote process.

interface XInstanceProvider: com::sun::star::uno::XInterface
{
 com::sun::star::uno::XInterface getInstance([in] string sInstanceName)
 raises (com::sun::star::container::NoSuchElementException);
};

The BridgeFactory returns a com.sun.star.bridge.XBridge interface.
interface XBridge: com::sun::star::uno::XInterface
{
 XInterface getInstance([in] string sInstanceName);
 string getName();
 string getDescription();
};

The XBridge.getInstance() method retrieves an initial object from the remote counterpart. The
local XBridge.getInstance() call arrives in the remote process as an
XInstanceProvider.getInstance() call. The object returned can be controlled by the string
sInstanceName. It completely depends on the implementation of XInstanceProvider, which
object it returns.

The XBridge interface can be queried for a com.sun.star.lang.XComponent interface, that adds a
com.sun.star.lang.XEventListener to the bridge. This listener will be terminated when the
underlying connection closes (see above). You can also call dispose() on the XComponent inter -
face explicitly, which closes the underlying connection and initiates the bridge shutdown proce-
dure.

Closing a Connection
The closure of an interprocess connection can occur for the following reasons:

• The bridge is not used anymore. The interprocess bridge will close the connection when all the
proxies to remote objects and all stubs to local objects have been released. This is the normal
way for a remote bridge to destroy itself. The user of the interprocess bridge does not need to
close the interprocess connection directly—it is done automatically. When one of the communi-
cating processes is implemented in Java, the closure of a bridge is delayed to that point in time
when the VM finalizes the last proxies /stubs. Therefore it is unspecified when the interprocess
bridge will be closed.

• The interprocess bridge is directly disposed by calling its dispose() method.

• The remote counterpart process crashes.

Chapter 3 Professional UNO 81

• The connection fails. For example, failure may be due to a dialup internet connection going
down.

• An error in marshalling /unmarshalling occurs due to a bug in the interprocess bridge imple-
mentation, or an IDL type is not available in one of the processes.

Except for the first reason, all other connection closures initiate an interprocess bridge shutdown
procedure. All pending synchronous requests abort with a
com.sun.star.lang.DisposedException, which is derived from the
com.sun.star.uno.RuntimeException. Every call that is initiated on a disposed proxy throws a
DisposedException. After all threads have left the bridge (there may be a synchronous call from
the former remote counterpart in the process), the bridge explicitly releases all stubs to the original
objects in the local process, which were previously held by the former remote counterpart. The
bridge then notifies all registered listeners about the disposed state using
com.sun.star.lang.XEventListener. The example code for a connection-aware client below
shows how to use this mechanism. The bridge itself is destroyed, after the last proxy has been
released.

Unfortunately, the various listed error conditions are not distinguishable.

Example: A Connection Aware Client
The following example shows an advanced client which can be informed about the status of the
remote bridge. A complete example for a simple client is given in the chapter 2 First Steps.

The following Java example opens a small awt window containing the buttons new writer and
new calc that opens a new document and a status label. It connects to a running office when a
button is clicked for the first time. Therefore it uses the connector /bridge factory combination, and
registers itself as an event listener at the interprocess bridge.

When the office is terminated, the disposing event is terminated, and the Java program sets the
text in the status label to 'disconnected' and clears the office desktop reference. The next time a
button is pressed, the program knows that it has to re-establish the connection.

The method getComponentLoader() retrieves the XComponentLoader reference on demand:

(ProfUNO /InterprocessConn /ConnectionAwareClient.java)
 XComponentLoader _officeComponentLoader = null;

 // local component context
 XComponentContext _ctx;

 protected com.sun.star.frame.XComponentLoader getComponentLoader()
 throws com.sun.star.uno.Exception {
 XComponentLoader officeComponentLoader = _officeComponentLoader;

 if (officeComponentLoader == null) {
 // instantiate connector service
 Object x = _ctx.getServiceManager().createInstanceWithContext(
 "com.sun.star.connection.Connector", _ctx);

 XConnector xConnector = (XConnector) UnoRuntime.queryInterface(XConnector.class, x);

 // helper function to parse the UNO URL into a string array
 String a[] = parseUnoUrl(_url);
 if (null == a) {
 throw new com.sun.star.uno.Exception("Couldn't parse UNO URL "+ _url);
 }

 // connect using the connection string part of the UNO URL only.
 XConnection connection = xConnector.connect(a[0]);

 x = _ctx.getServiceManager().createInstanceWithContext(
 "com.sun.star.bridge.BridgeFactory", _ctx);

 XBridgeFactory xBridgeFactory = (XBridgeFactory) UnoRuntime.queryInterface(
 XBridgeFactory.class , x);

82 OpenOffice.org 1.1 Developer's Guide • June 2003

 // create a nameless bridge with no instance provider
 // using the middle part of the UNO URL
 XBridge bridge = xBridgeFactory.createBridge("" , a[1] , connection , null);

 // query for the XComponent interface and add this as event listener
 XComponent xComponent = (XComponent) UnoRuntime.queryInterface(
 XComponent.class, bridge);
 xComponent.addEventListener(this);

 // get the remote instance
 x = bridge.getInstance(a[2]);

 // Did the remote server export this object ?
 if (null == x) {
 throw new com.sun.star.uno.Exception(
 "Server didn't provide an instance for" + a[2], null);
 }

 // Query the initial object for its main factory interface
 XMultiComponentFactory xOfficeMultiComponentFactory = (XMultiComponentFactory)
 UnoRuntime.queryInterface(XMultiComponentFactory.class, x);

 // retrieve the component context (it's not yet exported from the office)
 // Query for the XPropertySet interface.
 XPropertySet xProperySet = (XPropertySet)
 UnoRuntime.queryInterface(XPropertySet.class, xOfficeMultiComponentFactory);

 // Get the default context from the office server.
 Object oDefaultContext =
 xProperySet.getPropertyValue("DefaultContext");

 // Query for the interface XComponentContext.
 XComponentContext xOfficeComponentContext =
 (XComponentContext) UnoRuntime.queryInterface(
 XComponentContext.class, oDefaultContext);

 // now create the desktop service
 // NOTE: use the office component context here !
 Object oDesktop = xOfficeMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xOfficeComponentContext);

 officeComponentLoader = (XComponentLoader)
 UnoRuntime.queryInterface(XComponentLoader.class, oDesktop);

 if (officeComponentLoader == null) {
 throw new com.sun.star.uno.Exception(
 "Couldn't instantiate com.sun.star.frame.Desktop" , null);
 }
 _officeComponentLoader = officeComponentLoader;
 }
 return officeComponentLoader;
 }

This is the button event handler:
 public void actionPerformed(ActionEvent event) {
 try {
 String sUrl;
 if (event.getSource() == _btnWriter) {
 sUrl = "private:factory/swriter";
 } else {
 sUrl = "private:factory/scalc";
 }
 getComponentLoader().loadComponentFromURL(
 sUrl, "_blank", 0,new com.sun.star.beans.PropertyValue[0]);
 _txtLabel.setText("connected");
 } catch (com.sun.star.connection.NoConnectException exc) {
 _txtLabel.setText(exc.getMessage());
 } catch (com.sun.star.uno.Exception exc) {
 _txtLabel.setText(exc.getMessage());
 exc.printStackTrace();
 throw new java.lang.RuntimeException(exc.getMessage());
 }
 }

And the disposing handler clears the _officeComponentLoader reference:
 public void disposing(com.sun.star.lang.EventObject event) {
 // remote bridge has gone down, because the office crashed or was terminated.
 _officeComponentLoader = null;
 _txtLabel.setText("disconnected");
 }

Chapter 3 Professional UNO 83

3.3.2 Service Manager and Component Context
This chapter discusses the root object for connections to OpenOffice.org (and to any UNO applica-
tion) – the service manager. The root object serves as the entry point for every UNO application
and is passed to every UNO component during instantiation.

Two different concepts to get the root object currently exist. StarOffice6.0 and OpenOffice.org1.0
use the previous concept. Newer versions or product patches use the the newer concept and
provide the previous concept for compatibility issues only. First we will look at the previous
concept, the service manager as it is used in the main parts of the underlying OpenOffice.org imple-
mentation of this guide. Second, we will introduce the component context—which is the newer
concept and explain the migration path.

Service Manager
The com.sun.star.lang.ServiceManager is the main factory in every UNO application. It instan-
tiates services by their service name , to enumerate all implementations of a certain service, and to
add or remove factories for a certain service at runtime. The service manager is passed to every
UNO component during instantiation.

XMultiServiceFactory Interface
The main interface of the service manager is the com.sun.star.lang.XMultiServiceFactory
interface. It offers three methods: createInstance(), createInstanceWithArguments() and
getAvailableServiceNames().
interface XMultiServiceFactory: com::sun::star::uno::XInterface
{
 com::sun::star::uno::XInterface createInstance([in] string aServiceSpecifier)
 raises(com::sun::star::uno::Exception);

 com::sun::star::uno::XInterface createInstanceWithArguments(
 [in] string ServiceSpecifier,
 [in] sequence<any> Arguments)
 raises(com::sun::star::uno::Exception);

 sequence<string> getAvailableServiceNames();
};

• createInstance() returns a default constructed service instance. The returned service is guar-
anteed to support at least all interfaces, which were specified for the requested servicename.
The returned XInterface reference can now be queried for the interfaces specified at the
service description.

When using the service name, the caller does not have any influence on which concrete imple-
mentation is instantiated. If multiple implementations for a service exist, the service manager is
free to decide which one to employ. This in general does not make a difference to the caller
because every implementation does fulfill the service contract. Performance or other details
may make a difference. So it is also possible to pass the implementation name instead of the
service name, but it is not advised to do so as the implementation name may change.

In case the service manager does not provide an implementation for a request, a null reference
is returned, so it is mandatory to check. Every UNO exception may be thrown during instantia-
tion. Some may be described in the specification of the service that is to be instantiated, for
instance, because of a misconfiguration of the concrete implementation. Another reason may be
the lack of a certain bridge, for instance the Java-C++ bridge, in case a Java component shall be
instantiated from C++ code.

84 OpenOffice.org 1.1 Developer's Guide • June 2003

• createInstanceWithArguments() instantiates the service with additional parameters. A
service signals that it expects parameters during instantiation by supporting the
com.sun.star.lang.XInitialization interface. The service definition should describe the
meaning of each element of the sequence. There maybe services which can only be instantiated
with parameters.

• getAvailableServiceNames() returns every servicename the service manager does support.

XContentEnumerationAccess Interface
The com.sun.star.container.XContentEnumerationAccess interface allows the creation of an
enumeration of all implementations of a concrete servicename.
interface XContentEnumerationAccess: com::sun::star::uno::XInterface
{
 com::sun::star::container::XEnumeration createContentEnumeration([in] string aServiceName);

 sequence<string> getAvailableServiceNames();

};

The createContentEnumeration() method returns a com.sun.star.container.XEnumeration
interface. Note that it may return an empty reference in case the enumeration is empty.
interface XEnumeration: com::sun::star::uno::XInterface
{
 boolean hasMoreElements();

 any nextElement()
 raises(com::sun::star::container::NoSuchElementException,
 com::sun::star::lang::WrappedTargetException);

};

In the above case, the returned any of the method Xenumeration.nextElement() contains a
com.sun.star.lang.XSingleServiceFactory interface for each implementation of this specific
service. You can, for instance, iterate over all implementations of a certain service and check each
one for additional implemented services. The XSingleServiceFactory interface provides such a
method. With this method, you can instantiate a feature rich implementation of a service.

XSet Interface
The com.sun.star.container.XSet interface allows the insertion or removal of
com.sun.star.lang.XSingleServiceFactory or
com.sun.star.lang.XSingleComponentFactory implementations to the service manager at
runtime without making the changes permanent. When the office application terminates, all the
changes are lost. The object must also support the com.sun.star.lang.XServiceInfo interface
that provides information about the implementation name and supported services of the compo-
nent implementation.

This feature may be of particular interest during the development phase. For instance, you can
connect to a running office, insert a new factory into the service manager and directly instantiate
the new service without having it registered before.

The chapter 4.9.6 Writing UNO Components - Deployment Options for Components - Special Service
Manager Configurations shows an example that demonstrates how a factory is inserted into the
service manager.

Component Context
The service manager was described above as the main factory that is passed to every new instanti-
ated component. Often a component needs more functionality or information that must be

Chapter 3 Professional UNO 85

exchangeable after deployment of an application. In this context, the service manager approach is
limited.

Therefore, the concept of the component context was created. In future, it will be the central object in
every UNO application. It is basically a read- only container offering named values. One of the
named values is the service manager. The component context is passed to a component during its
instantiation. This can be understood as an environment where components live (the relationship
is similar to shell environment variables and an executable program).

ComponentContext API

The component context only supports the com.sun.star.uno.XComponentContext interface.

// module com::sun::star::uno
interface XComponentContext : XInterface
{
 any getValueByName([in] string Name);
 com::sun::star::lang::XMultiComponentFactory getServiceManager();
};

The getValueByName() method returns a named value. The getServiceManager() is a conven -
ient way to retrieve the value named /singleton/com.sun.star.lang.theServiceManager. It
returns the ServiceManager singleton, because most components need to access the service
manager. The component context offers at least three kinds of named values:

Singletons (/singletons/...)
The singleton concept was introduced in 3.2.1 Professional UNO - API Concepts - Data Types. In
OpenOffice.org 1.0.2 there is only the ServiceManager singleton. From OpenOffice.org 1.1, a
singleton /singletons/com.sun.star.util.theMacroExpander has been added, which can
be used to expand macros in configuration files. Other possible singletons can be found in the
IDL reference.

Implementation properties (not yet defined)
These properties customize a certain implementation and are specified in the module descrip-
tion of each component. A module description is an xml-based description of a module (DLL
or jar file) which contains the formal description of one or more components.

Service properties (not yet defined)
These properties can customize a certain service independent from the implementation and are
specified in the IDL specification of a service.
Note that service context properties are different from service properties. Service context prop-
erties are not subject to change and are the same for every instance of the service that shares the

86 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 16: ComponentContext and the ServiceManager

same component context. Service properties are different for each instance and can be changed
at runtime through the XPropertySet interface.

Note, that in the scheme above, the ComponentContext has a reference to the service manager, but
not conversely.

Besides the interfaces discussed above, the ServiceManager supports the
com.sun.star.lang.XMultiComponentFactory interface.
interface XMultiComponentFactory : com::sun::star::uno::XInterface
{

com::sun::star::uno::XInterface createInstanceWithContext(
 [in] string aServiceSpecifier,
 [in] com::sun::star::uno::XComponentContext Context)
 raises (com::sun::star::uno::Exception);

com::sun::star::uno::XInterface createInstanceWithArgumentsAndContext(
 [in] string ServiceSpecifier,
 [in] sequence<any> Arguments,
 [in] com::sun::star::uno::XComponentContext Context)
 raises (com::sun::star::uno::Exception);

sequence< string > getAvailableServiceNames();
};

It replaces the XMultiServiceFactory interface. It has an additional XComponentContext
parameter for the two object creation methods. This parameter enables the caller to define the
component context that the new instance of the component receives. Most components use their
initial component context to instantiate new components. This allows for context propagation.

The illustration above shows the context propagation. A user might want a special component to
get a customized context. Therefore, the user creates a new context by simply wrapping an
existing one. The user overrides the desired values and delegates the properties that he is not
interested into the original C1 context.The user defines which context Instance A and B receive.
Instance A and B propagate their context to every new object that they create. Thus, the user has
established two instance trees, the first tree completely uses the context Ctx C1, while the second
tree uses Ctx C2.

Chapter 3 Professional UNO 87

Illustration 17: Context propagation.

Availability
The final API for the component context is available in StarOffice 6.0 and OpenOffice 1.0. Use this
API instead of the API explained in the service manager section. Currently the component context
does not have a persistent storage, so named values can not be added to the context of a deployed
OpenOffice.org. Presently, there is no additional benefit from the new API until there is a future
release.

Compatibility Issues and Migration Path

As discussed previously, both concepts are currently used within the office. The ServiceManager
supports the interfaces com.sun.star.lang.XMultiServiceFactory and
com.sun.star.lang.XMultiComponentFactory. Calls to the XMultiServiceFactory interface
are delegated to the XMultiComponentFactory interface. The service manager uses its own XCom-
ponentContext reference to fill the missing parameter. The component context of the Service-
Manager can be retrieved through the XPropertySet interface as 'DefaultContext'.
// Query for the XPropertySet interface.
// Note xOfficeServiceManager is the object retrieved by the
// UNO URL resolver
XPropertySet xPropertySet = (XPropertySet)

UnoRuntime.queryInterface(XPropertySet.class, xOfficeServiceManager);

// Get the default context from the office server.
Object oDefaultContext = xpropertysetMultiComponentFactory.getPropertyValue("DefaultContext");

// Query for the interface XComponentContext.
xComponentContext = (XComponentContext) UnoRuntime.queryInterface(

XComponentContext.class, objectDefaultContext);

This solution allows the use of the same service manager instance, regardless if it uses the old or
new style API. In future, the whole OpenOffice.org code will only use the new API. However, the
old API will still remain to ensure compatibility.

The described compromise has a drawback. The service manager now knows the component context, that
was not necessary in the original design. Thus, every component that uses the old API (plain createIn-
stance()) breaks the context propagation (see Illustration 14). Therefore, it is recommended to use the new
API in every new piece of code that is written.

88 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 18Compromise between service-manger-only und component context
concept

3.3.3 Using UNO Interfaces
Every UNO object must inherit from the interface com.sun.star.uno.XInterface. Before using
an object, know how to use it and how long it will function. By prescribing XInterface to be the
base interface for each and every UNO interface, UNO lays the groundwork for object communi-
cation.
// module com::sun::star::uno
interface XInterface
{
 any queryInterface([in] type aType);
 [oneway] void acquire();
 [oneway] void release();
};

The methods acquire() and release() handle the lifetime of the UNO object by reference
counting. Detailed information about Reference counting is discussed in chapter 3.3.7 Professional
UNO - UNO Concepts - Lifetime of UNO Objects. All current language bindings take care of acquire
() and release() internally whenever there is a reference to a UNO object.

The queryInterface() method obtains other interfaces exported by the object. The caller asks the
implementation of the object if it supports the interface specified by the type argument. The type
parameter is an UNO IDL base type, and generally stores the name of a type and its
com.sun.star.uno.TypeClass. The call may return with an interface reference of the requested
type or with a void any. In C++ or Java simply test if the result is not equal null.

Unknowingly, we encountered XInterface when the service manager was asked to create a
service instance:
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);

 // initial serviceManager
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();

 // create a urlresolver
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);

The IDL specification of XmultiComponentFactory shows:
// module com::sun::star::lang
interface XMultiComponentFactory : com::sun::star::uno::XInterface
{
 com::sun::star::uno::XInterface createInstanceWithContext(
 [in] string aServiceSpecifier,
 [in] com::sun::star::uno::XComponentContext Context)
 raises (com::sun::star::uno::Exception);
 ...
}

The above code shows that createInstanceWithContext() provides an instance of the given
service, but it only returns a com.sun.star.uno.XInterface. This is mapped to java.lang.Object
by the Java UNO binding afterwards.

In order to access a service, you need to know which interfaces the service exports. This informa-
tion is available in the IDL reference. For instance, for the
com.sun.star.bridge.UnoUrlResolver service, you learn:
// module com::sun::star::bridge
service UnoUrlResolver
{
 interface com::sun::star::bridge::XUnoUrlResolver;
};

This means the service you ordered at the service manager must support
com.sun.star.bridge.XUnoUrlResolver. Next query the returned object for this interface:
// query urlResolver for its com.sun.star.bridge.XUnoUrlResolver interface
XUnoUrlResolver xUrlResolver = (XUnoUrlResolver)
 UnoRuntime.queryInterface(UnoUrlResolver.class, urlResolver);

Chapter 3 Professional UNO 89

// test if the interface was available
if (null == xUrlResolver) {
 throw new java.lang.Exception(
 “Error: UrlResolver service does not export XUnoUrlResolver interface”);
}
// use the interface
Object remoteObject = xUrlResolver.resolve(
 “uno:socket,host=0,port=2002;urp;StarOffice.ServiceManager”);

The object decides whether or not it returns the interface. You have encountered a bug if the object
does not return an interface that is specified to be mandatory in a service. When the interface refer-
ence is retrieved, invoke a call on the reference according to the interface specification. You can
follow this strategy with every service you instantiate at a service manager, leading to success.

With this method, you may not only get UNO objects through the service manager, but also by
normal interface calls:
// Module com::sun::star::text
interface XTextRange: com::sun::star::uno::XInterface
{
 XText getText();
 XTextRange getStart();

};

The returned interface types are specified in the operations, so that calls can be invoked directly on
the returned interface. Often, an object implementing multiple interfaces are returned, instead of
an object implementing one certain interface.

You can then query the returned object for the other interfaces specified in the given service, here
com.sun.star.drawing.Text.

UNO has a number of generic interfaces. For example, the interface
com.sun.star.frame.XComponentLoader:
// module com::sun::star::frame
interface XComponentLoader: com::sun::star::uno::XInterface
{
 com::sun::star::lang::XComponent loadComponentFromURL([in] string aURL,
 [in] string aTargetFrameName,
 [in] long nSearchFlags,
 [in] sequence<com::sun::star::beans::PropertyValue> aArgs)
 raises(com::sun::star::io::IOException,
 com::sun::star::lang::IllegalArgumentException);
};

It becomes difficult to find which interfaces are supported beside XComponent, because the kind of
returned document (text, calc, draw, etc.) depends on the incoming URL.

These dependencies are described in the appropriate chapters of this manual.

Tools such as the InstanceInspector component is a quick method to find out which interfaces a
certain object supports. The InstanceInspector component comes with the OpenOffice.org SDK
that allows the inspection of a certain object at runtime. Do not rely on implementation details of
certain objects. If an object supports more interfaces than specified in the service description,
query the interface and perform calls. The code may only work for this distinct office version and
not work with an update of the office!

Unfortunately, there may still be bugs in the service specifications. Please provide feedback about missing
interfaces to openoffice.org to ensure that the specification is fixed and that you can rely on the support of this
interface.

There are certain specifications a queryInterface() implementation must not violate:

• If queryInterface() on a specific object returned a valid interface reference for a given type, it
must return a valid reference for any successive queryInterface() calls on this object for the
same type.

90 OpenOffice.org 1.1 Developer's Guide • June 2003

• If queryInterface() on a specific object returned a null reference for a given type, it must
always return a null reference for the same type.

• If queryInterface() on reference A returns reference B, queryInterface() on B for Type A
must return interface reference A or calls made on the returned reference must be equivalent to
calls made on reference A.

• If queryInterface() on a reference A returns reference B, queryInterface() on A and B for
XInterface must return the same interface reference (object identity).

These specifications must not be violated because a UNO runtime environment may choose to
cache queryInterface() calls. The rules are basically identical to the rules of QueryInterface in
MS COM.

3.3.4 Properties
Properties are name- value pairs belonging to a service and determine the characteristics of an
object in a service instance. Usually, properties are used for non-structural attributes, such as font,
size or color of objects, whereas get and set methods are used for structural attributes like a parent
or sub-object.

In almost all cases, com.sun.star.beans.XPropertySet is used to access properties by name.
Other interfaces, for example, are com.sun.star.beans.XPropertyAccess which is used to set
and retrieve all properties at once or com.sun.star.beans.XMultiPropertySet which is used to
access several specified properties at once. This is useful on remote connections. Additionally,
there are interfaces to access properties by numeric ID, such as
com.sun.star.beans.XFastPropertySet.

The following example demonstrates how to query and change the properties of a given text docu-
ment cursor using its XPropertySet interface:
 // get an XPropertySet, here the one of a text cursor
 XPropertySet xCursorProps = (XPropertySet)
 UnoRuntime.queryInterface(XPropertySet.class, mxDocCursor);

 // get the character weight property
 Object aCharWeight = xCursorProps.getPropertyValue("CharWeight");
 float fCharWeight = AnyConverter.toFloat(aCharWeight);
 System.out.println("before: CharWeight=" + fCharWeight);

 // set the character weight property to BOLD
 xCursorProps.setPropertyValue("CharWeight", new Float(com.sun.star.awt.FontWeight.BOLD));

 // get the character weight property again
 aCharWeight = xCursorProps.getPropertyValue("CharWeight");
 fCharWeight = AnyConverter.toFloat(aCharWeight);
 System.out.println("after: CharWeight=" + fCharWeight);

A possible output of this code could be:

before: CharWeight=100.0
after: CharWeight=150.0

The sequence of property names must be sorted.

The following example deals with multiple properties at once:
// get an XMultiPropertySet, here the one of the first paragraph
XEnumerationAccess xEnumAcc = (XEnumerationAccess) UnoRuntime.queryInterface(
 XEnumerationAccess.class, mxDocText);
XEnumeration xEnum = xEnumAcc.createEnumeration();
Object aPara = xEnum.nextElement();
XMultiPropertySet xParaProps = (XMultiPropertySet) UnoRuntime.queryInterface(
 XMultiPropertySet.class, aPara);

Chapter 3 Professional UNO 91

// get three property values with a single UNO call
String[] aNames = new String[3];
aNames[0] = "CharColor";
aNames[1] = "CharFontName";
aNames[2] = "CharWeight";
Object[] aValues = xParaProps.getPropertyValues(aNames);

// print the three values
System.out.println("CharColor=" + AnyConverter.toLong(aValues[0]));
System.out.println("CharFontName=" + AnyConverter.toString(aValues[1]));
System.out.println("CharWeight=" + AnyConverter.toFloat(aValues[2]));

Properties can be assigned flags to determine a specific behavior of the property, such as read-
only, bound, constrained or void. Possible flags are specified in
com.sun.star.beans.PropertyAttribute. Read-only properties cannot be set. Bound properties
broadcast changes of their value to registered listeners and constrained properties veto changes to
these listeners.

Properties might have a status specifying where the value comes from. See
com.sun.star.beans.XPropertyState. The value determines if the value comes from the object,
a style sheet or if it cannot be determined at all. For example, in a multi-selection with multiple
values within this selection.

The following example shows how to find out status information about property values:
 // get an XPropertySet, here the one of a text cursor
 XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);

 // insert “first” in NORMAL character weight
 mxDocText.insertString(mxDocCursor, "first ", true);
 xCursorProps.setPropertyValue("CharWeight", new Float(com.sun.star.awt.FontWeight.NORMAL));

 // append “second” in BODL characer weight
 mxDocCursor.collapseToEnd();
 mxDocText.insertString(mxDocCursor, "second", true);
 xCursorProps.setPropertyValue("CharWeight", new Float(com.sun.star.awt.FontWeight.BOLD));

 // try to get the character weight property of BOTH words
 mxDocCursor.gotoStart(true);
 try {

Object aCharWeight = xCursorProps.getPropertyValue("CharWeight");
float fCharWeight = AnyConverter.toFloat(aCharWeight);
System.out.println("CharWeight=" + fCharWeight);

 } catch (NullPointerException e) {
System.out.println("CharWeight property is NULL");

 }

 // query the XPropertState interface of the cursor properties
 XPropertyState xCursorPropsState = (XPropertyState) UnoRuntime.queryInterface(
 XPropertyState.class, xCursorProps);

 // get the status of the character weight property
 PropertyState eCharWeightState = xCursorPropsState.getPropertyState("CharWeight");
 System.out.print("CharWeight property state has ");
 if (eCharWeightState == PropertyState.AMBIGUOUS_VALUE)
 System.out.println("an ambiguous value");
 else
 System.out.println("a clear value");

The property state of character weight is queried for a string like this:

first second

And the output is:
CharWeight property is NULL
CharWeight property state has an ambiguous value

The description of properties available for a certain object is given by
com.sun.star.beans.XPropertySetInfo. Multiple objects can share the same property informa-
tion for their description. This makes it easier for introspective caches that are used in scripting
languages where the properties are accessed directly, without directly calling the methods of the
interfaces mentioned above.

92 OpenOffice.org 1.1 Developer's Guide • June 2003

This example shows how to find out which properties an object provides using
com.sun.star.beans.XPropertySetInfo:
try {
 // get an XPropertySet, here the one of a text cursor
 XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);

 // get the property info interface of this XPropertySet
 XPropertySetInfo xCursorPropsInfo = xCursorProps.getPropertySetInfo();

 // get all properties (NOT the values) from XPropertySetInfo
 Property[] aProps = xCursorPropsInfo.getProperties();
 int i;
 for (i = 0; i < aProps.length; ++i) {
 // number of property within this info object
 System.out.print("Property #" + i);

 // name of property
 System.out.print(": Name<" + aProps[i].Name);

 // handle of property (only for XFastPropertySet)
 System.out.print("> Handle<" + aProps[i].Handle);

 // type of property
 System.out.print("> " + aProps[i].Type.toString());

 // attributes (flags)
 System.out.print(" Attributes<");
 short nAttribs = aProps[i].Attributes;
 if ((nAttribs & PropertyAttribute.MAYBEVOID) != 0)
 System.out.print("MAYBEVOID|");
 if ((nAttribs & PropertyAttribute.BOUND) != 0)
 System.out.print("BOUND|");
 if ((nAttribs & PropertyAttribute.CONSTRAINED) != 0)
 System.out.print("CONSTRAINED|");
 if ((nAttribs & PropertyAttribute.READONLY) != 0)
 System.out.print("READONLY|");
 if ((nAttribs & PropertyAttribute.TRANSIENT) != 0)
 System.out.print("TRANSIENT|");
 if ((nAttribs & PropertyAttribute.MAYBEAMBIGUOUS) != 0)
 System.out.print("MAYBEAMBIGUOUS|");
 if ((nAttribs & PropertyAttribute.MAYBEDEFAULT) != 0)
 System.out.print("MAYBEDEFAULT|");
 if ((nAttribs & PropertyAttribute.REMOVEABLE) != 0)
 System.out.print("REMOVEABLE|");
 System.out.println("0>");
 }
} catch (Exception e) {
 // If anything goes wrong, give the user a stack trace
 e.printStackTrace(System.out);
}

The following is an example output for the code above. The output shows the names of the text
cursor properties, and their handle, type and property attributes. The handle is not unique, since
the specific object does not implement com.sun.star.beans.XFastPropertySet, so proper handles are
not needed here.
Using default connect string: socket,host=localhost,port=8100
Opening an empty Writer document
Property #0: Name<BorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|0>
Property #1: Name<BottomBorder> Handle<93> Type<com.sun.star.table.BorderLine> Attributes<MAYBEVOID|0>
Property #2: Name<BottomBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|0>
Property #3: Name<BreakType> Handle<81> Type<com.sun.star.style.BreakType> Attributes<MAYBEVOID|0>

...

Property #133: Name<TopBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|0>
Property #134: Name<UnvisitedCharStyleName> Handle<38> =Type<string> Attributes<MAYBEVOID|0>
Property #135: Name<VisitedCharStyleName> Handle<38> Type<string> Attributes<MAYBEVOID|0>

In some cases properties are used to specify the options in a sequence of
com.sun.star.beans.PropertyValue. See com.sun.star.view.PrintOptions or
com.sun.star.document.MediaDescriptor for examples properties in sequences. These are not
accessed by the methods mentioned above, but by accessing the sequence specified in the
language binding.

This example illustrates how to deal with sequences of property values:
// create a sequence of PropertyValue

Chapter 3 Professional UNO 93

PropertyValue[] aArgs = new PropertyValue[2];

// set name/value pairs (other fields are irrelevant here)
aArgs[0] = new PropertyValue();
aArgs[0].Name = "FilterName";
aArgs[0].Value = "HTML (StarWriter)";
aArgs[1] = new PropertyValue();
aArgs[1].Name = "Overwrite";
aArgs[1].Value = Boolean.TRUE;

// use this sequence of PropertyValue as an argument
// where a service with properties but witouth any interfaces is specified
com.sun.star.frame.XStorable xStorable = (com.sun.star.frame.XStorable) UnoRuntime.queryInterface(
 com.sun.star.frame.XStorable.class, mxDoc);
xStorable.storeAsURL("file:///tmp/devmanual-test.html", aArgs);

Usually the properties supported by an object, as well as their type and flags are fixed over the
lifetime of the object. There may be exceptions. If the properties can be added and removed exter-
nally, the interface com.sun.star.beans.XPropertyContainer has to be used. In this case, the
fixed com.sun.star.beans.XPropertySetInfo changes its supplied information over the lifetime
of the object. Listeners for such changes can register at
com.sun.star.beans.XPropertyChangeListener.

If you use a component from other processes or remotely, try to adhere to the rule to use
com.sun.star.beans.XPropertyAccess and com.sun.star.beans.XMultiPropertySet instead
of having a separate call for each single property.

The following diagram shows the relationship between the property- related interfaces.

94 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 19: Properties

3.3.5 Collections and Containers
Collections and containers are concepts for objects that contain multiple sub-objects where the
number of sub-objects is usually not predetermined. While the term collection is used when the
sub-objects are implicitly determined by the collection itself, the term container is used when it is
possible to add new sub-objects and remove existing sub-objects explicitly. Thus, containers add
methods like insert() and remove() to the collection interfaces.

In general, the OpenOffice.org API collection and container interfaces contain any type that can be
represented by the UNO type any. However, many container instances can be bound to a specific
type or subtypes of this type. This is a runtime and specification agreement, and cannot be
checked at runtime.

The base interface for collections is com.sun.star.container.XElementAccess that determines
the types of the sub-object, if they are determined by the collection, and the number of contained
sub-objects. Based on XElementAccess, there are three main types of collection interfaces:

• com.sun.star.container.XIndexAccess
Offers direct access to the sub-objects by a subsequent numeric index beginning with 0.

• com.sun.star.container.XNameAccess
Offers direct access to the sub-objects by a unique name for each sub object.

Chapter 3 Professional UNO 95

Illustration 20: Interfaces in com.sun.star.container

• com.sun.star.container.XEnumerationAccess
Creates uni-directional iterators that enumerate all sub-objects in an undefined order.

com.sun.star.container.XIndexAccess is extended by
com.sun.star.container.XIndexReplace to replace existing sub-objects by index, and
com.sun.star.container.XIndexContainer to insert and remove sub-objects. You can find the
same similarity for com.sun.star.container.XNameAccess and other specific collection types.

All containers support com.sun.star.container.XContainer that has interfaces to register
com.sun.star.container.XContainerListener interfaces. This way it is possible for an applica-
tion to learn about insertion and removal of sub-objects in and from the container.

The com.sun.star.container.XIndexAccess is appealing to programmers because in most cases, it is
easy to implement. But this interface should only be implemented if the collection really is indexed.

Refer to the module com.sun.star.container in the API reference for details about collection
and container interfaces.

The following examples demonstrate the usage of the three main collection interfaces. First, we
iterate through an indexed collection. The index always starts with 0 and is continuous:
// get an XIndexAccess interface from the collection
XIndexAccess xIndexAccess = (XIndexAccess) UnoRuntime.queryInterface(
 XIndexAccess.class, mxCollection);

// iterate through the collection by index
int i;
for (i = 0; i < xIndexAccess.getCount(); ++i) {
 Object aSheet = xIndexAccess.getByIndex(i);
 Named xSheetNamed = (XNamed) oRuntime.queryInterface(XNamed.class, aSheet);
 System.out.println("sheet #" + i + " is named '" + xSheetNamed.getName() + "'");
}

Our next example iterates through a collection with named objects. The element names are unique
within the collection and case sensitive.
// get an XNameAccess interface from the collection
XNameAccess xNameAccess = (XNameAccess) UnoRuntime.queryInterface(XNameAccess.class, mxCollection);

// get the list of names
String[] aNames = xNameAccess.getElementNames();

// iterate through the collection by name
int i;
for (i = 0; i < aNames.length; ++i) {
 // get the i-th object as a UNO Any
 Object aSheet = xNameAccess.getByName(aNames[i]);

 // get the name of the sheet from its XNamed interface
 XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface(XNamed.class, aSheet);
 System.out.println("sheet '" + aNames[i] + "' is #" + i);
}

The next example shows how we iterate through a collection using an enumerator. The order of
the enumeration is undefined. It is only defined that all elements are enumerated. The behavior is
undefined, if the collection is modified after creation of the enumerator.
// get an XEnumerationAccess interface from the collection
XEnumerationAccess xEnumerationAccess = (XEnumerationAccess) UnoRuntime.queryInterface(
 XEnumerationAccess.class, mxCollection);

// create an enumerator
XEnumeration xEnum = xEnumerationAccess.createEnumeration();

// iterate through the collection by name
while (xEnum.hasMoreElements()) {
 // get the next element as a UNO Any
 Object aSheet = xEnum.nextElement();

 // get the name of the sheet from its XNamed interface
 XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface(XNamed.class, aSheet);
 System.out.println("sheet '" + xSheetNamed.getName() + "'");
}

96 OpenOffice.org 1.1 Developer's Guide • June 2003

For an example showing the use of containers, see 7.4.1 Text Documents - Overall Document Features
- Styles where a new style is added into the style family ParagraphStyles.

3.3.6 Event Model
Events are a well known concept in graphical user interface (GUI) models, although they can be
used in many contexts. The purpose of events is to notify an application about changes in the
components used by the application. In a GUI environment, for example, an event might be the
click on a button. Your application might be registered to this button and thus be able to execute
certain code when this button is clicked.

The OpenOffice.org event model is similar to the JavaBeans event model. Events in
OpenOffice.org are, for example, the creation or activation of a document, as well as the change of
the current selection within a view. Applications interested in these events can register handlers
(listener interfaces) that are called when the event occurs. Usually these listeners are registered at
the object container where the event occurs or to the object itself. These listener interfaces are
named X...Listener.

Event listeners are subclasses of com.sun.star.lang.XEventListener that receives one event by
itself, the deletion of the object to which the listener is registered. On this event, the listener has to
unregister from the object, otherwise it would keep it alive with its interface reference counter.

Important! Implement the method disposing() to unregister at the object you are listening to and release
all other references to this object.

Many event listeners can handle several events. If the events are generic, usually a single callback
method is used. Otherwise, multiple callback methods are used. These methods are called with at
least one argument: com.sun.star.lang.EventObject. This argument specifies the source of the
event, therefore, making it possible to register a single event listener to multiple objects and still
know where an event is coming from. Advanced listeners might get an extended version of this
event descriptor struct.

Chapter 3 Professional UNO 97

Illustration 21

3.3.7 Exception Handling
UNO uses exceptions as a mechanism to propagate errors from the called method to the caller. This
error mechanism is preferred instead of error codes (as in MS COM) to allow a better separation of
the error handling code from the code logic. Furthermore, Java, C++ and other high- level
programming languages provide an exception handling mechanism, so that this can be mapped
easily into these languages.

In IDL, an exception is a structured container for data, comparable to IDL structs. Exceptions
cannot be passed as a return value or method argument, because the IDL compiler does not allow
this. They can be specified in raise clauses and transported in an any. There are two kinds of
exceptions, user-defined exceptions and runtime exceptions.

User-Defined Exceptions
The designer of an interface should declare exceptions for every possible error condition that
might occur. Different exceptions can be declared for different conditions to distinguish between
different error conditions.

The implementation may throw the specified exceptions and exceptions derived from the speci-
fied exceptions. The implementation must not throw unspecified exceptions, that is, the imple-
mentation must not throw an exception if no exception is specified. This applies to all exceptions
except for RuntimeExceptions, described later.

When a user-defined exception is thrown, the object should be left in the state it was in before the
call. If this cannot be guaranteed, then the exception specification must describe the state of the
object. Note that this is not recommended.

Every UNO IDL exception must be derived from com.sun.star.uno.Exception, whether directly
or indirectly. Its UNO IDL specification looks like this:
module com { module sun { module star { module uno {
exception Exception
{
 string Message;
 com::sun::star::uno::XInterface Context;
};
}; }; }; };

The exception has two members:

• The message should contain a detailed readable description of the error (in English), which is
useful for debugging purposes, though it cannot be evaluated at runtime. There is currently no
concept of having localized error messages.

• The Context member should contain the object that initially threw the exception.

The following .IDL file snippet shows a method with a proper exception specification and proper
documentation.
module com { module sun { module star { module beans {

interface XPropertySet: com::sun::star::uno::XInterface
{
 ...
 /** @returns
 the value of the property with the specified name.

 @param PropertyName
 This parameter specifies the name of the property.

 @throws UnknownPropertyException
 if the property does not exist.

 @throws com::sun::star::uno::lang::WrappedTargetException
 if the implementation has an internal reason for the

98 OpenOffice.org 1.1 Developer's Guide • June 2003

 exception. In this case the original exception
 is wrapped into that WrappedTargetException.
 */
 any getPropertyValue([in] string PropertyName)
 raises(com::sun::star::beans::UnknownPropertyException,
 com::sun::star::lang::WrappedTargetException);
 ...
};

}; }; }; };

Runtime Exceptions
Throwing a runtime exception signals an exceptional state. Runtime exceptions and exceptions
derived from runtime exceptions cannot be specified in the raise clause of interface methods in
IDL.

These are a few reasons for throwing a runtime exception are:

• The connection of an underlying interprocess bridge has broken down during the call.

• An already disposed object is called (see com.sun.star.lang.XComponent and the called
object cannot fulfill its specification because of its disposed state.

• A method parameter was passed in an explicitly forbidden manner. For instance, a null inter-
face reference was passed as a method argument where the specification of the interface explic-
itly forbids this.

Every UNO call may throw a com.sun.star.uno.RuntimeException, except acquire and release.
This is independent of how many calls have been completed successfully. Every caller should
ensure that its own object is kept in a consistent state even if a call to another object replied with a
runtime exception. The caller should also ensure that no resource leaks occur in these cases. For
example, allocated memory, file descriptors, etc.

If a runtime exception occurs, the caller does not know if the call has been completed successfully
or not. The com.sun.star.uno.RuntimeException is derived from
com.sun.star.uno.Exception. Note, that in the Java UNO binding, the
com.sun.star.uno.Exception is derived from java.lang.Exception, while the
com.sun.star.uno.RuntimeException is directly derived from java.lang.RuntimeException.

A common misuse of the runtime exception is to reuse it for an exception that was forgotten
during interface specification. This should be avoided under all circumstances. Consider, defining
a new interface.

An exception should not be misused as a new kind of programming flow mechanism. It should
always be possible that during a session of a program, no exception is thrown. If this is not the
case, the interface design should be reviewed.

Good Exception Handling
This section provides tips on exception handling strategies. Under certain circumstances, the code
snippets we call bad below might make sense, but often they do not.

• Do not throw exceptions with empty messages

Often, especially in C++ code where you generally do not have a stack trace, the message within
the exception is the only method that informs the caller about the reason and origin of the excep-
tion. The message is important, especially when the exception comes from a generic interface
where all kinds of UNO exceptions can be thrown.

Chapter 3 Professional UNO 99

When writing exceptions, put descriptive text into them. To transfer the text to another exception,
make sure to copy the text.

• Do not catch exceptions without handling them

Many people write helper functions to simplify recurring coding tasks. However, often code will
be written like the following:
// Bad example for exception handling
public static void insertIntoCell(XPropertySet xPropertySet) {
 [...]
 try {
 xPropertySet.setPropertyValue("CharColor",new Integer(0));
 } catch (Exception e) {
 }
}

This code is ineffective, because the error is hidden. The caller will never know that an error has
occurred. This is fine as long as test programs are written or to try out certain aspects of the API
(although even test programs should be written correctly). Exceptions must be addressed because
the compiler can not perform correctly. In real applications, handle the exception.

The appropriate solution depends on the appropriate handling of exceptions. The following is the
minimum each programmer should do:
// During early development phase, this should be at least used instead
public static void insertIntoCell(XPropertySet xPropertySet) {
 [...]
 try {
 xPropertySet.setPropertyValue("CharColor",new Integer(0));
 } catch (Exception e) {
 e.dumpStackTrace();
 }
}

The code above dumps the exception and its stack trace, so that a message about the occurrence of
the exception is received on stderr. This is acceptable during development phase, but it is insuffi-
cient for deployed code. Your customer does not watch the stderr window.

The level where the error can be handled must be determined. Sometimes, it would be better not
to catch the exception locally, but further up the exception chain. The user can then be informed of
the error through dialog boxes. Note that you can even specify exceptions on the main() function:
// this is how the final solution could look like
public static void insertIntoCell(XPropertySet xPropertySet) throws UnknownPropertyException,
 PropertyVetoException, IllegalArgumentException, WrappedTargetException {
 [...]
 xPropertySet.setPropertyValue("CharColor",new Integer(0));
}

As a general rule, if you cannot recover from an exception in a helper function, let the caller deter-
mine the outcome. Note that you can even throw exceptions at the main() method.

3.3.8 Lifetime of UNO Objects
The UNO component model has a strong impact on the lifetime of UNO objects, in contrast to
CORBA, where object lifetime is completely unspecified. UNO uses the same mechanism as
Microsoft COM by handling the lifetime of objects by reference counting.

Each UNO runtime environment defines its own specification on lifetime management. While in
C++ UNO, each object maintains its own reference count. Java UNO uses the normal Java garbage
collector mechanism. The UNO core of each runtime environment needs to ensure that it upholds
the semantics of reference counting towards other UNO environments.

The last paragraph of this chapter explains the differences between the lifetime of Java and C++
objects in detail.

100 OpenOffice.org 1.1 Developer's Guide • June 2003

acquire() and release()
Every UNO interface is derived from com.sun.star.uno.XInterface:
// module com::sun::star::uno
interface XInterface
{
 any queryInterface([in] type aType);
 [oneway] void acquire();
 [oneway] void release();
};

UNO objects must maintain an internal reference counter. Calling acquire() on a UNO interface
increases the reference count by one. Calling release() on UNO interfaces decreases the refer-
ence count by one. If the reference count drops to zero, the UNO object may be destroyed .
Destruction of an object is sometimes called death of an object or that the object dies. The reference
count of an object must always be non-negative.

Once acquire() is called on the UNO object, there is a reference or a hard reference to the object, as
opposed to a weak reference. Calling release() on the object is often called releasing or clearing
the reference.

The UNO object does not export the state of the reference count, that is, acquire() and release()
do not have return values. Generally, the UNO object should not make any assumptions on the
concrete value of the reference count, except for the transition from one to zero.

The invocation of a method is allowed first when acquire () has been called before. For every
call to acquire() , there must be a corresponding release call, otherwise the object leaks.

Note: The UNO Java binding encapsulates acquire() and release() in the
UnoRuntime.queryInterface() call. The same applies to the Reference<> template in C++. As long as
the interface references are obtained through these mechanisms, acquire() and release() do not have to
be called in your programs.

The XComponent Interface
A central problem of reference counting systems is cyclic references. Assume Object A keeps a
reference on object B and B keeps a direct or indirect reference on object A. Even if all the external
references to A and B are released, the objects are not destroyed, which results in a resource leak.

In general, a Java developer does not have to be concerned about this kind of issue, as the garbage collector
algorithm detects ring references. However, in the UNO world one never knows, whether object A and
object B really live in the same Java virtual machine. If they do, the ring reference is really garbage collected.
If they do not, the object leaks, because the Java VM is not able to inspect the object outside of the VM for its
references.

In UNO, the developer must explicitly decide when to the break cyclic references. To support this
concept, the interface com.sun.star.lang.XComponent exists. When an XComponent is disposed
of, it can inform other objects that have expressed interest to be notified.

Chapter 3 Professional UNO 101

Illustration 22: Cyclic Reference

// within the module com::sun::star::lang
// when dispose() is called, previously added XEventListeners are notified
interface XComponent: com::sun::star::uno::XInterface
{
 void dispose();
 void addEventListener([in] XEventListener xListener);
 void removeEventListener([in] XEventListener aListener);
};

// An XEventListener is notified by calling its disposing() method
interface XEventListener: com::sun::star::uno::XInterface
{
 void disposing([in] com::sun::star::lang::EventObject Source);
};

Other objects can add themselves as com.sun.star.lang.XEventListener to an XComponent.
When the dispose() method is called, the object notifies all XEventListeners through the
disposing() method and releases all interface references, thus breaking the cyclic reference.

A disposed object is unable to comply with its specification, so it is necessary to ensure that an
object is not disposed of before calling it. UNO uses an owner/user concept for this purpose. Only
the owner of an object is allowed to call dispose and there can only be one owner per object. The
owner is always free to dispose of the object. The user of an object knows that the object may be
disposed of at anytime. The user adds an event listener to discover when an object is being
disposed. When the user is notified, the user releases the interface reference to the object. In this
case, the user should not call removeEventListener(), because the disposed object releases the
reference to the user.

One major problem of the owner /user concept is that there always must be someone who calls dispose().
This must be considered at the design time of the services and interfaces, and be specified explicitly.

This solves the problem described above. However, there are a few conditions which still have to
be met.

102 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 23: Object C calls dispose() on XComponent of Object B

If an object is called while it is disposed of, it should behave passively. For instance, if removeLis-
tener() is called, the call should be ignored. If methods are called while the object is no longer
able to comply with its interface specification, it should throw a
com.sun.star.lang.DisposedException, derived from com.sun.star.uno.RuntimeException.
This is one of the rare situations in which an implementation should throw a RuntimeException.
The situation described above can always occur in a multithreaded environment, even if the caller
has added an event listener to avoid calling objects which were disposed of by the owner.

The owner /user concept may not always be appropriate, especially when there is more than one
possible owner. In these cases, there should be no owner but only users. In a multithreaded
scenario, dispose() might be called several times. The implementation of an object should be able
to cope with such a situation.

The XComponent implementation should always notify the disposing() listeners that the object is
being destroyed, not only when dispose() is called, but when the object is deleted. When the
object is deleted, the reference count of the object drops to zero. This may happen when the
listeners do not hold a reference on the broadcaster object.

The XComponent does not have to be implemented when there is only one owner and no further
users.

Children of the XEventListener Interface
The com.sun.star.lang.XEventListener interface is the base for all listener interfaces . This
means that not only XEventListeners, but every listener must implement disposing(), and
every broadcaster object that allows any kind of listener to register, must call disposing() on the
listeners as soon as it dies. However, not every broadcaster is forced to implement the XComponent
interface with the dispose() method, because it may define its own condition when it is disposed.

In a chain of broadcaster objects where every element is a listener of its predecessor and only the
root object is an XComponent that is being disposed, all the other chain links must handle the
disposing() call coming from their predecessor and call disposing() on their registered
listeners.

Chapter 3 Professional UNO 103

Illustration 24: B releases all interface references, which leads to destruction of Object A, which then
releases its reference to B, thus the cyclic reference is broken.

Weak Objects and References
A strategy to avoid cyclic references is to use weak references. Having a weak reference to an object
means that you can reestablish a hard reference to the object again if the object still exists, and
there is another hard reference to it.

In the cyclic reference shown in illustration 12: Interfaces, services and implementation, object B could
be specified to hold a hard reference on object A, but object A only keeps a weak reference to B. If
object A needs to invoke a method on B, it temporarily tries to make the reference hard. If this
succeeds, it invokes the method and releases the hard reference afterwards.

To be able to create a weak reference on an object, the object needs to support it explicitly by
exporting the com.sun.star.uno.XWeak interface. The illustration 13: TV System Specification
depicts the UNO mechanism for weak references.

When an object is assigned to a weak reference, the weak reference calls queryAdapter() at the
original object and adds itself (with the com.sun.star.uno.XReference interface) as reference to
the adapter.

When a hard reference is established from the weak reference, it calls the queryAdapted()
method at the com.sun.star.uno.XAdapter interface of the adapter object. When the original
object is still alive, it gets a reference for it, otherwise a null reference is returned.

The adapter notifies the destruction of the original object to all weak references which breaks the
cyclic reference between the adapter and weak reference.

4 Writing UNO Components describes the helper classes in C++ and Java that implement a Xweak
interface and a weak reference..

Differences Between the Lifetime of C++ and Java Objects
Note: It is recommended that you read 3.4.2 Professional UNO - UNO Language Bindings - UNO
C++ Binding and 3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding for infor-
mation on language bindings, and 4.6 Writing UNO Components - C++ Component and 4.5.6 Writing
UNO Components - Simple Component in Java - Storing the Service Manager for Further Use about
component implementation before beginning this section.

104 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 25: The UNO weak reference mechanism

The implementation of the reference count specification is different in Java UNO and C++ UNO.
In C++ UNO, every object maintains its own reference counter. When you implement a C++ UNO
object, instantiate it, acquire it and afterwards release it, the destructor of the object is called imme-
diately. The following example uses the standard helper class ::cppu::OWeakObject and prints a
message when the destructor is called. [SOURCE:ProfUNO /Lifetime /object_lifetime.cxx]
class MyOWeakObject : public ::cppu::OWeakObject
{
public:
 MyOWeakObject() { fprintf(stdout, "constructed\n"); }
 ~MyOWeakObject() { fprintf(stdout, "destroyed\n"); }
};

The following method creates a new MyOWeakObject, acquires it and releases it for demonstration
purposes. The call to release() immediately leads to the destruction of MyOWeakObject. If the
Reference<> template is used, you do not need to care about acquire() and release().
void simple_object_creation_and_destruction()
{
 // create the UNO object
 com::sun::star::uno::XInterface * p = new MyOWeakObject();

 // acquire it
 p->acquire();
 // releast it
 fprintf(stdout, "before release\n");
 p->release();
 fprintf(stdout, "after release\n");
}

This piece of code produces the following output:
constructed
before release
destroyed
after release

Java UNO objects behave differently, because they are finalized by the garbage collector at a time
of its choosing. com.sun.star.uno.XInterface has no methods in the Java UNO language
binding, therefore no methods need to be implemented, although MyUnoObject implements
XInterface: [SOURCE:ProfUNO/Lifetime /MyUnoObject.java]
class MyUnoObject implements com.sun.star.uno.XInterface {

 public MyUnoObject() {
 }

 void finalize() {
 System.out.println("finalizer called");
 }

 static void main(String args[]) throws java.lang.InterruptedException {
 com.sun.star.uno.XInterface a = new MyUnoObject();
 a = null;

 // ask the garbage collector politely
 System.gc();
 System.runFinalization();

 System.out.println("leaving");

 // It is java VM dependent, whether or not the finalizer was called
 }
}

The output of this code depends on the Java VM implementation. The output “finalizer called” is
not a usual result. Be aware of the side effects when UNO brings Java and C++ together.

When a UNO C++ object is mapped to Java, a Java proxy object is created that keeps a hard UNO
reference to the C++ object. The UNO core takes care of this. The Java proxy only clears the refer-
ence when it enters the finalize() method, thus the destruction of the C++ object is delayed until
the Java VM collects some garbage.

Chapter 3 Professional UNO 105

When a UNO Java object is mapped to C++, a C++ proxy object is created that keeps a hard UNO
reference to the Java object. Internally, the Java UNO bridge keeps a Java reference to the original
Java object. When the C++ proxy is no longer used, it is destroyed immediately. The Java UNO
bridge is notified and immediately frees the Java reference to the original Java object. When the
Java object is finalized is dependent on the garbage collector.

When a Java program is connected to a running OpenOffice.org, the UNO objects in the office
process are not destroyed until the garbage collector finalizes the Java proxies or until the inter-
process connection is closed (see 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connec-
tions).

3.3.9 Object Identity
UNO guarantees if two object references are identical, that a check is performed and it always
leads to a correct result, whether it be true or false. This is different from CORBA, where a return
of false does not necessarily mean that the objects are different.

Every UNO runtime environment defines how this check should be performed. In Java UNO,
there is a static areSame() function at the com.sun.star.uno.UnoRuntime class. In C++, the
check is performed with the Reference<>::operator == () function that queries both references
for XInterface and compares the resulting XInterface pointers.

This has a direct effect in the API design. For instance, look at com.sun.star.lang.XComponent:
interface XComponent: com::sun::star::uno::XInterface
{
 void dispose();
 void addEventListener([in] XEventListener xListener);
 void removeEventListener([in] XEventListener aListener);
};

The method removeEventListener() that takes a listener reference, is logical if the implementa-
tion can check for object identity, otherwise it could not identify the listener that has to be
removed. CORBA interfaces are not designed in this manner. They need an object ID, because
object identity is not guaranteed.

3.4 UNO Language Bindings
This chapter documents the mapping of UNO to various programming languages or component
models. These language bindings are sometimes called UNO Runtime Environment (URE). Each
URE needs to fulfill the specifications given in the earlier chapters. The use of UNO services and
interfaces are also explained in this chapter. Refer to 4 Writing UNO Components for information
about the implementation of UNO objects.

Each chapter provides detail information for the following topics:

– Mapping of all UNO types to the programming language types.

– Mapping of the UNO exception handling to the programming language.

– Mapping of the XInterface features (querying interfaces, object lifetime, object identity).

– Bootstrapping of a service manager.

Other programming language specific material (like core libraries in C++ UNO).

106 OpenOffice.org 1.1 Developer's Guide • June 2003

C++, Java, OpenOffice.org Basic and all languages supporting MS OLE automation on the win32
platform are currently supported. In future, the UNO component model may extend the number
of supported language bindings.

3.4.1 Java Language Binding
The Java language binding gives developers the choice of using Java or UNO components for
client programs. A Java program can access components written in other languages and built with
a different compiler, as well as remote objects, because of the seamless interaction of UNO bridges.

Java delivers a rich set of classes that can be used within client programs or component implemen-
tations. However, when it comes to interaction with other UNO objects, use UNO interfaces,
because only those are known to the bridge and can be mapped into other environments.

To control the office from a client program, the client needs a Java 1.3 installation, a free socket
port, and the following jar files jurt.jar, jut.jar, javaunohelper.jar, ridl.jar, classes.jar and sandbox.jar. A
Java installation on the server-side is not necessary. A step-by-step description is given in the
chapter 2 First Steps

When using Java components, the office is installed with Java support. Also make sure that Java is
enabled: there is a switch that can be set to achieve this in the Tools - Options - OpenOffice.org -
Security dialog. All necessary jar files should have been installed during the OpenOffice.org
setup. A detailed explanation can be found in the chapter 4.5.6 Writing UNO Components - Simple
Component in Java - Storing the Service Manager for Further Use.

The Java UNO Runtime is documented in the Java UNO Reference which can be found in the
OpenOffice.org Software development Kit (SDK) or on udk.openoffice.org.

Getting a Service Manager
Office objects that provide the desired functionality are required when writing a client application
that accesses the office. The root of all these objects is the service manager component, therefore
clients need to instantiate it. Service manager runs in the office process, therefore office must be
running first when you use Java components that are instantiated by the office. In a client-server
scenario, the office has to be launched directly. The interprocess communication uses a remote
protocol that can be provided as a command- line argument to the office:

soffice -accept=socket,host=localhost,port=8100;urp;
The client obtains a reference to the global service manager of the office (the server) using a local
com.sun.star.bridge.UnoUrlResolver. The global service manager of the office is used to get
objects from the other side of the bridge. In this case, an instance of the
com.sun.star.frame.Desktop is acquired:
import com.sun.star.uno.XComponentContext;
import com.sun.star.comp.helper.Bootstrap;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.beans.XPropertySet
import com.sun.star.uno.UnoRuntime;

XComponentContext xcomponentcontext = Bootstrap.createInitialComponentContext(null);

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xcomponentcontext.getServiceManager();

// create a connector, so that it can contact the office
Object xUrlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xcomponentcontext);

XUnoUrlResolver urlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(

Chapter 3 Professional UNO 107

 XUnoUrlResolver.class, xUrlResolver);

Object initialObject = urlResolver.resolve(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");

XMultiComponentFactory xOfficeFactory = (XMultiComponentFactory) UnoRuntime.queryInterface(
 XMultiComponentFactory.class, initialObject);
// retrieve the component context as property (it is not yet exported from the office)
// Query for the XPropertySet interface.
XPropertySet xProperySet = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xOfficeFactory);

// Get the default context from the office server.
Object oDefaultContext = xProperySet.getPropertyValue("DefaultContext");

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext = (XComponentContext) UnoRuntime.queryInterface(
 XComponentContext.class, oDefaultContext);

// now create the desktop service
// NOTE: use the office component context here!
Object oDesktop = xOfficeFactory.createInstanceWithContext(

“com.sun.star.frame.Desktop", xOfficeComponentContext);

As the example shows, a local service manager is created through the
com.sun.star.comp.helper.Bootstrap class (a Java UNO runtime class). Its implementation
provides a service manager that is limited in the number of services it can create. The names of
these services are:

com.sun.star.lang.ServiceManager
com.sun.star.lang.MultiServiceFactory
com.sun.star.loader.Java
com.sun.star.loader.Java2
com.sun.star.bridge.UnoUrlResolver
com.sun.star.bridge.BridgeFactory
com.sun.star.connection.Connector
com.sun.star.connection.Acceptor
They are sufficient to establish a remote connection and obtain the fully featured service manager
provided by the office.

The local service manager could create other components, but this is only possible if the service manager is
provided with the respective factories during runtime. An example that shows how this works can be found
in the implementation of the Bootstrap class in the project javaunohelper.
There is also a service manager that uses a registry database to locate services. It is implemented by the class
com.sun.star.comp.helper.RegistryServiceFactory in the project javaunohelper. However, the implementa-
tion uses a native registry service manager instead of providing a pure Java implementation.

Handling Interfaces
The service manager is created in the server process and the Java UNO remote bridge ensures that
its XInterface is transported back to the client. A Java proxy object is constructed that can be
used by the client code. This object is called the initial object , because it is the first object created by
the bridge. When another object is obtained through this object, then the bridge creates a new
proxy. For instance, if a function is called that returns an interface. That is, the original object is
actually running in the server process (the office) and calls to the proxy are forwarded by the
bridge. Not only interfaces are converted, but function arguments, return values and exceptions.

The Java bridge maps objects on a per- interface basis, that is, in the first step only the interface is
converted that is returned by a function described in the API reference. For example, if you have
the service manager and use it to create another component, you initially get a
com.sun.star.uno.XInterface:
XInterface xint= (XInterface) serviceManager.createInstance(“com.sun.star.bridge.OleObjectFactory”);

108 OpenOffice.org 1.1 Developer's Guide • June 2003

You know from the service description that the OleObjectFactory implements a
com.sun.star.lang.XMultiServiceFactory interface. However, you cannot cast the object or
call the interface function on the object, since the object is only a proxy for just one interface,
XInterface. Therefore, you have to use a mechanism that is provided with the Java bridge that
generates proxy objects on demand. For example:
XMultiServiceFactory xfac = (XMultiServiceFactory) UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xint);

If xint is a proxy, then queryInterface() hands out another proxy for XMultiServiceFactory
provided that the original object implements it. Interface proxies can be used as arguments in
function calls on other proxy objects. For example:
// client side
// obj is a proxy interface and returns another interface through its func() method
XSomething ret = obj.func();

// anotherObject is a proxy interface, too. Its method func(XSomething arg)
// takes the interface ret obtained from obj
anotherObject.func(ret);

In the server process, the obj object would receive the original ret object as a function argument.

It is also possible to have Java components on the client side. As well, they can be used as function
arguments, then the bridge would set up proxies for them in the server process.

Not all language elements of UNO IDL have a corresponding language element in Java. For
example, there are no structs and all-purpose out parameters. Refer to 3.4.1 Professional UNO -
UNO Language Bindings - Java Language Binding - Type Mappings for how those elements are
mapped.

Interface handling normally involves the ability of com.sun.star.uno.XInterface to acquire and
release objects by reference counting. In Java, the programmer does not bother with acquire()
and release(), since the Java UNO runtime automatically acquires objects on the server side
when com.sun.star.uno.UnoRuntime.queryInterface() is used. Conversely, when the Java
garbage collector deletes your references, the Java UNO runtime releases the corresponding office
objects. If a UNO object is written in Java, no reference counting is used to control its lifetime. The
garbage collector takes that responsibility.

Sometimes it is necessary to find out if two interfaces belong to the same object. In Java, you
would compare the references with the equality operator '=='. This works as long as the interfaces
refer to a local Java object. Often the interfaces are proxies and the real objects reside in a remote
process. There can be several proxies that belong to the same object, because objects are bridged on
a per- interface basis. Those proxies are Java objects and comparing their references would not
establish them as parts of the same object. To determine if interfaces are part of the same object,
use the method areSame() at the com.sun.star.uno.UnoRuntime class:

static public boolean areSame(Object object1, Object object2)

Type Mappings

Mapping of Simple Types
The following table shows the mapping of IDL basic types to the corresponding Java types.

Users should be careful when using unsigned types in Java, since there is no support for unsigned
types in the Java language. A user is responsible for the conversion of large unsigned IDL type
values as signed values in Java.

Chapter 3 Professional UNO 109

IDL Java
boolean boolean
short short
unsigned short short
long int
usigned long int
hyper long
unsigned hyper long
float float
double double
char char
byte byte
string java.lang.String
any java.lang.Object/com.sun.star.uno.Any
type com.sun.star.uno.Type
void void

Mapping of Any
There is a dedicated com.sun.star.uno.Any type, but it is not always used. An any in the API
reference is represented by a java.lang.Object in Java UNO. An Object reference can be used to
refer to all possible Java objects. This does not work with primitive types, but if you need to use
them as an any, there are Java wrapper classes available that allow primitive types to be used as
objects. Also, a Java Object always brings along its type information by means of an instance of
java.lang.Class. Therefore a variable declared as :
Object ref;

can be used with all objects and its type information is available by calling:
ref.getClass();

Those qualities of Object are sufficient to replace the Any in most cases. Even Java interfaces
generated from IDL interfaces do not contain Anys, instead Object references are used in place of
Anys. Cases where an explicit Any is needed to not loose information contain unsigned integral
types, all interface types except the basic XInterface, and the void type.

However, implementations of those interfaces must be able to deal with real Anys that can also be passed by
means of Object references.

To facilitate the handling of the Any type, use the com.sun.star.uno.AnyConverter class. It is
documented in the Java UNO reference. The following list sums up its methods:

static boolean isArray(java.lang.Object object)
static boolean isBoolean(java.lang.Object object)
static boolean isByte(java.lang.Object object)
static boolean isChar(java.lang.Object object)
static boolean isDouble(java.lang.Object object)
static boolean isFloat(java.lang.Object object)
static boolean isInt(java.lang.Object object)
static boolean isLong(java.lang.Object object)
static boolean isObject(java.lang.Object object)
static boolean isShort(java.lang.Object object)
static boolean isString(java.lang.Object object)
static boolean isType(java.lang.Object object)
static boolean isVoid(java.lang.Object object)
static java.lang.Object toArray(java.lang.Object object)
static boolean toBoolean(java.lang.Object object)
static byte toByte(java.lang.Object object)
static char toChar(java.lang.Object object)

110 OpenOffice.org 1.1 Developer's Guide • June 2003

static double toDouble(java.lang.Object object)
static float toFloat(java.lang.Object object)
static int toInt(java.lang.Object object)
static long toLong(java.lang.Object object)
static java.lang.Object toObject(Type type, java.lang.Object object)
static short toShort(java.lang.Object object)
static java.lang.String toString(java.lang.Object object)
static Type toType(java.lang.Object object)

The Java com.sun.star.uno.Any is needed in situations when the type needs to be specified
explicitly. Assume there is a C++ component with an interface function which is declared in UNO
IDL as:
//UNO IDL
void foo(any arg);

The corresponding C++ implementation could be:
void foo(const Any& arg)
{
 const Type& t = any.getValueType();
 if (t == getCppuType((const Reference<XReference>*) 0))
 {
 Reference<XReference> myref = *reinterpret_cast<const Reference<XReference>*>(any.getValue());

...
 }
}

In the example, the any is checked if it contains the expected interface. If is does, it is assigned
accordingly. If the any contained a different interface, a query would be performed for the
expected interface. If the function is called from Java, then an interface has to be supplied that is an
object. That object could implement several interfaces and the bridge would use the basic XInter-
face. If this is not the interface that is expected, then the C++ implementation has to call queryIn-
terface to obtain the desired interface. In a remote scenario, those queryInterface() calls could
lead to a noticeable performance loss. If you use a Java Any as a parameter for foo(), the intended
interface is sent across the bridge.

Preserving UNO Type Information for Complex Types

In C++ UNO, all necessary type information is described by the type Type. In Java, type informa -
tion is mapped to the Java type Class, but some information described in IDL is lost. The Java
mapping for the complex types (interface, struct, exception) creates an additional public static final
member array of type com.sun.star.lib.uno.typelib.TypeInfo named UNOTYPEINFO to
describe this information. This array can be filled with objects of the following types:

• MethodTypeInfo
To describe the attributes of a method, is it oneway, or const and if the return type is unsigned.

• ParameterTypeInfo
To describe if the parameter type is unsigned, and if the direction is inout or out.

• AttributeTypeInfo
To describe if the type is unsigned and if the attribute is readonly.

• MemberTypeInfo
To describe if the type is unsigned

Note Only these definitions are maintained in UNOTYPEINFO. This additional type information
and the information from Class is used by the Java UNO runtime to handle the type during trans-
port over a remote connection or conversion to another object model.

All generated types (interface, struct, enum, exception) have another public static member of type
Object UNORUNTIMEDATA. This member is reserved for internal use by the UNO runtime.

Chapter 3 Professional UNO 111

Mapping of Sequence
Sequence types are mapped to a Java array of the Java type that corresponds to the element types
of the original IDL sequence.

• An IDL sequence<long> is mapped to int[]
• An IDL sequence< sequence <long> > is mapped to int[][]

Mapping of Module
An IDL module is mapped to a Java package with the same name. All IDL type declarations
within the module are mapped to corresponding Java class or interface declarations within the
generated package. IDL declarations not enclosed in any modules are mapped into the Java global
scope.

Example:

An IDL module org {...} is mapped to package org; ...

Mapping of Interface
An IDL interface is mapped to a Java interface with the same name as the IDL interface type. If an
IDL interface inherits another interface, the Java interface extends the appropriate Java interface.

Mapping of Method Parameters
In Java there are special conditions concerning the value null for parameters and return values,
and concerning out and inout parameters. It is common for Java that arguments or return values
which are objects can be null. Since UNO interfaces, sequences, structs and strings are mapped to
Java objects (sequence is mapped to an array which is a special kind of object), the respective
method arguments or return values could be null. But UNO allows only interface values to be
passed as null values. If a UNO interface function has parameters, in, inout or out parameters,
or a return value of type sequence, struct or string, then the respective values of the Java method
must not be null. The example below uses a struct FooStruct in an interface XFoo to show how to
use empty parameters and return values, and how to use out and inout parameters.
//UNO IDL
struct FooStruct
{
 long nval;
 string strval;
};

interface XFoo: com.sun.star.uno.XInterface
{
 string funcOne([in] string value);
 FooStruct funcTwo([inout] FooStruct value);
 sequence<byte> funcThree([out] sequence <byte> value);
};

IDL in parameters that call-by-value semantics are mapped to normal Java actual parameters. The
result of IDL operations is returned as the result of the corresponding Java method. IDL out and
inout parameters that implement call-by-reference semantics are mapped to arrays of the appro-
priate types. The type is determined according to the mappings defined in this document. The
arrays contain one element, that is, the length of the array is 1. Therefore, the Java interface for the
IDL interface XFoo would look:
// Java
public interface XFoo extends com.sun.star.uno.XInterface {
 public String funcOne(String value);
 public FooStruct funcTwo(FooStruct[] value);
 public byte[] funcThree(byte[][] value);
 ...

112 OpenOffice.org 1.1 Developer's Guide • June 2003

}

This is how FooStruct would be mapped to Java:
// Java
public class FooStruct {
 public int nval;
 public String strval;

 // default constructor
 public FooStruct() {
 strval=””;
 }

 public FooStruct(int _nval, String _strval) {
 nval = _nval;
 strval = _strval;
 }

 // extra type information
 ...
}

When providing a value as an inout parameter, the caller has to write the input value into the
element at index 0 of the array. When the function returns, the value at index 0 reflects the output
value, which may be a new value, modified input value, or unmodified input value. The object
obj implements XFoo:
// calling the interface in Java
obj.funcOne(null); // error
obj.funcOne(“”); // OK

FooStruct[] inoutstruct= new FooStruct[1];
obj.funcTwo(inoutstruct); //error, inoutstruct[0] = null

inoutstruct[0]= new FooStruct(); // now we initialise inoutstruct[0]
obj.funcTwo(inoutstruct); // inoutstruct[0] is valid now

When a method receives an argument that is an out parameter, it has to provide a value that has
to be put at index null of the array.
// method implementations of interface XFoo
public String funcOne(String value) {
 // param value always != null otherwise it is a bug of the caller!
 return null; //error
 // instead
 // return “”;
}

public FooStruct funcTwo(FooStruct[] value) {
 value[0] = null; //error
 // instead
 // value[0] = new FooStruct();
 return null; // error
 // instead
 // return new FooStruct();
}

public byte[] funcThree(byte[][] value) {
 value[0]= null; //error
 // instead
 // value[0]= new byte[0];
 return null; //error
 // instead
 // return new byte[0];
}

Exceptions specified in UNO IDL are mapped to normal Java throws statements. Any method
may throw a com.sun.star.uno.RuntimeException, therefore a RuntimeException never has to
be specified explicitly in UNO IDL.
module com { module sun { module star { module registry {

interface XImplementationRegistration: com::sun::star::uno::XInterface
{
 void registerImplementation(
 [in] string aImplementationLoader,
 [in] string aLocation,
 [in] com::sun::star::registry::XSimpleRegistry xReg)
 raises(com::sun::star::registry::CannotRegisterImplementationException);

Chapter 3 Professional UNO 113

 boolean revokeImplementation(
 [in] string aLocation,
 [in] com::sun::star::registry::XSimpleRegistry xReg);

 sequence getImplementations(
 [in] string aImplementationLoader,
 [in] string aLocation);

 sequence checkInstantiation([in] string implementationName);
};

is mapped to:
package com.sun.star.registry;

public interface XImplementationRegistration extends com.sun.star.uno.XInterface {
 // Methods
 public void registerImplementation(/*IN*/String aImplementationLoader,
 /*IN*/String aLocation, /*IN*/XSimpleRegistry xReg)
 throws CannotRegisterImplementationException, com.sun.star.uno.RuntimeException;
 public boolean revokeImplementation(/*IN*/String aLocation, /*IN*/XSimpleRegistry xReg)
 throws com.sun.star.uno.RuntimeException;
 public String[] getImplementations(/*IN*/String aImplementationLoader, /*IN*/String aLocation)
 throws com.sun.star.uno.RuntimeException;
 public String[] checkInstantiation(/*IN*/String implementationName)
 throws com.sun.star.uno.RuntimeException;

 // static Member
 public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = {
 new com.sun.star.lib.uno.typeinfo.MethodTypeInfo("registerImplementation", 0, 0),
 new com.sun.star.lib.uno.typeinfo.ParameterTypeInfo("xReg", "registerImplementation", 2,
 com.sun.star.lib.uno.typeinfo.TypeInfo.INTERFACE),
 new com.sun.star.lib.uno.typeinfo.MethodTypeInfo("revokeImplementation", 1, 0),
 new com.sun.star.lib.uno.typeinfo.ParameterTypeInfo("xReg", "revokeImplementation", 1,
 com.sun.star.lib.uno.typeinfo.TypeInfo.INTERFACE),
 new com.sun.star.lib.uno.typeinfo.MethodTypeInfo("getImplementations", 2, 0),
 new com.sun.star.lib.uno.typeinfo.MethodTypeInfo("checkInstantiation", 3, 0)
 };

 public static Object UNORUNTIMEDATA = null;
}

Mapping of Structs
An IDL struct is mapped to a Java class with the same name as the struct type. Each member of the
IDL struct is mapped to a public instance variable with the same type and name. The class also
provides a default constructor which initializes all members with default values, and a constructor
which takes values for all struct members. If a struct inherits from another struct, the generated
class extends the class of the inherited struct. The default constructor only initializes the complex
type members. The member constructor has all fields of the extended class and its own fields as
parameters.
module com { module sun { module star { module chart {

struct ChartDataChangeEvent: com::sun::star::lang::EventObject
{
 com::sun::star::chart::ChartDataChangeType Type;
 short StartColumn;
 short EndColumn;
 short StartRow;
 short EndRow;
};

}; }; }; };

is mapped to:
package com.sun.star.chart;

public class ChartDataChangeEvent extends com.sun.star.lang.EventObject {
 //instance variables
 public ChartDataChangeType Type;
 public short StartColumn;
 public short EndColumn;
 public short StartRow;
 public short EndRow;

 //constructors
 public ChartDataChangeEvent() {

114 OpenOffice.org 1.1 Developer's Guide • June 2003

 Type = com.sun.star.chart.ChartDataChangeType.getDefault();
 }

 public ChartDataChangeEvent(java.lang.Object _Source, ChartDataChangeType _Type,
 short _StartColumn, short _EndColumn, short _StartRow, short _EndRow) {
 super(_Source);
 Type = _Type;
 StartColumn = _StartColumn;
 EndColumn = _EndColumn;
 StartRow = _StartRow;
 EndRow = _EndRow;
 }

 public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = {
 new com.sun.star.lib.uno.typeinfo.MemberTypeInfo("Type", 0, 0),
 new com.sun.star.lib.uno.typeinfo.MemberTypeInfo("StartColumn", 1, 0),
 new com.sun.star.lib.uno.typeinfo.MemberTypeInfo("EndColumn", 2, 0),
 new com.sun.star.lib.uno.typeinfo.MemberTypeInfo("StartRow", 3, 0),
 new com.sun.star.lib.uno.typeinfo.MemberTypeInfo("EndRow", 4, 0)
 };
}

Mapping of Exceptions
An IDL exception is mapped to a Java class with the same name as the exception type.

There are two UNO exceptions that are the base for all other exceptions. These are the
com.sun.star.uno.Exception and com.sun.star.uno.RuntimeException that are inherited by
all other exceptions. The corresponding exceptions in Java inherit from Java exceptions:
//UNO IDL
module com { module sun { module star { module uno {
exception Exception
{
 string Message;
 com::sun::star::uno::XInterface Context;
};
}; }; }; };

module com { module sun { module star { module uno {
exception RuntimeException
{
 string Message;
 com::sun::star::uno::XInterface Context;
};
}; }; }; };

The com.sun.star.uno.Exception in Java:
package com.sun.star.uno;

public class Exception extends java.lang.Exception {
 // instance variables
 public java.lang.Object Context;

 // constructors
 public Exception() {
 }

 public Exception(String _Message) {
 super (_Message);
 }

 public Exception(String _Message, java.lang.Object _Context) {
 super (_Message);
 Context = _Context;
 }

 public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = {
 new com.sun.star.lib.uno.typeinfo.MemberTypeInfo("Context", 0,
 com.sun.star.lib.uno.typeinfo.TypeInfo.INTERFACE)
 };
}

Chapter 3 Professional UNO 115

The com.sun.star.uno.RuntimeException in Java:
package com.sun.star.uno;

public class RuntimeException extends java.lang.RuntimeException {
 // instance variables
 public java.lang.Object Context;

 // constructors
 public RuntimeException() {
 }

 public RuntimeException(String _Message) {
 super (_Message);
 }

 public RuntimeException(String _Message, java.lang.Object _Context) {
 super(_Message);
 Context = _Context;
 }

 public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = {
 new com.sun.star.lib.uno.typeinfo.MemberTypeInfo("Context", 0,
 com.sun.star.lib.uno.typeinfo.TypeInfo.INTERFACE)
 };
}

As shown, the Message member has no direct counterpart in the respective Java class. Instead, the
constructor argument _Message is used to initialize the base class which is a Java exception. The
message is accessible through the inherited getMessage() method. All other members of the IDL
exceptions are mapped to public instance variables with the same type and name. A generated
Java exception class always has a default constructor that initializes all members with default
values, and a constructor which takes values for all instance variables.

If an exception inherits from another exception, the generated class extends the class of the inher-
ited exception, and the constructor takes the arguments for all fields of the class and the base
classes.

Mapping of Enums and Constants
An IDL enum is mapped to a Java final class with the same name as the enum type, derived
from the class com.sun.star.uno.Enum. This base class declares a protected member to store the
actual value, a protected constructor to initialize the value and a public getValue() method to get
the actual value. The generated final class has a protected constructor and a public method getDe-
fault() that returns an enum with the value of the first enum label as a default. For each IDL
enum label, the class declares a public static member of the same type as the enum and is initial-
ized with the defined value in IDL. The Java class for the enum has an additional public method
fromInt() that which returns the enum with the specified value. The following IDL definition for
com.sun.star.uno.TypeClass:
module com { module sun { star { module uno {
 enum TypeClass
 {
 INTERFACE,
 SERVICE,
 IMPLEMENTATION,
 STRUCT,
 TYPEDEF,
 ...
 };
}; }; }; };

is mapped to:
package com.sun.star.uno;

final public class TypeClass extends com.sun.star.uno.Enum {
 private TypeClass(int value) {
 super (value);
 }

 public static TypeClass getDefault() {
 return INTERFACE;

116 OpenOffice.org 1.1 Developer's Guide • June 2003

 }

 public static final TypeClass INTERFACE = new TypeClass(0);
 public static final TypeClass SERVICE = new TypeClass(1);
 public static final TypeClass IMPLEMENTATION = new TypeClass(2);
 public static final TypeClass STRUCT = new TypeClass(3);
 public static final TypeClass TYPEDEF = new TypeClass(4);
 ...

 public static TypeClass fromInt(int value) {
 switch (value) {
 case 0:
 return INTERFACE;
 case 1:
 return SERVICE;
 case 2:
 return IMPLEMENTATION;
 case 3:
 return STRUCT;
 case 4:
 return TYPEDEF;
 ...
 }
 }

 public static Object UNORUNTIMEDATA = null;
}

An IDL const named USERFLAG:
module example {
 const long USERFLAG = 1;
};

is mapped to:
package example;

public interface USERFLAG {
 public static final int value = (int)1L;
}

IDL constants groups are mapped to a public interface with the same name as the constants
group. All const defined in this constant group are mapped to public static members of the inter-
face with type and name of the const that holds the value.

An IDL constants group User containing three const values FLAG1, FLAG2 and FLAG3:
module example {
 constants User
 {
 const long FLAG1 = 1;
 const long FLAG2 = 2;
 const long FLAG3 = 3;
 };
};

is mapped to:
package example;

public interface User {
 public static final int FLAG1 = (int)1L;
 public static final int FLAG2 = (int)2L;
 public static final int FLAG3 = (int)3L;
}

3.4.2 UNO C++ Binding
This chapter describes the UNO C++ language binding. It provides an experienced C++
programmer the first steps in UNO to establish UNO interprocess connections to a remote
OpenOffice.org and to use its UNO objects.

Chapter 3 Professional UNO 117

Library Overview
Illustration 16: ComponentContext and the ServiceManager gives an overview about the core libraries
of the UNO component model.

These shared libraries can be found in the <officedir>/program folder of your OpenOffice.org instal-
lation. The label (c) in the illustration above means C-linkage and (C++) means C++ linkage. For
all libraries, a C++ compiler to build is required.

The basis for all UNO libraries is the sal library. It contains the system abstraction layer (sal) and
additional runtime library functionality, but does not contain any UNO-specific information. The
commonly used C-functions of the sal library can be accessed through C++ inline wrapper classes.
This allows functions to be called from any other programming language, because most program-
ming languages have some mechanism to call a C function.

The salhelper library is a small C++ library which offers additional runtime library functionality,
that could not be implemented inline.

The cppu (C++ UNO) library is the core UNO library. It offers methods to access the UNO type
library, and allows the creation, copying and comparing values of UNO data types in a generic
manner. Moreover, all UNO bridges (= mappings + environments) are administered in this
library.

118 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 26: Shared Libraries for C++ UNO

The examples msci_uno.dll, libsunpro5_uno.so and libgcc2_uno.so are only examples for language
binding libraries for certain C++ compilers.

The cppuhelper library is a C++ library that contains important base classes for UNO objects and
functions to bootstrap the UNO core. C++ Components and UNO programs have to link the
cppuhelper library.

All the libraries shown above will be kept compatible in all future releases of UNO. You will be
able to build and link your application and component once, and run it with the current and later
versions of OpenOffice.org.

System Abstraction Layer
C++ UNO client programs and C++ UNO components use the system abstraction layer (sal) for
types, files, threads, interprocess communication, and string handling. The sal library offers oper-
ating system dependent functionality as C-functions. The aim is to minimize or to eliminate oper-
ating system dependent #ifdef in libraries above sal. Sal offers high performance access because
sal is a thin layer above the API offered by each operating system.

In OpenOffice.org GUI APIs are encapsulated in the vcl library.

Sal exports only C-symbols. The inline C++ wrapper exists for convenience. Refer to the UNO C++
reference that is part of the OpenOffice.org SDK or in the References section of udk.openoffice.org to
gain a full overview of the features provided by the sal library. In the following sections, the C++
wrapper classes will be discussed. The sal types used for UNO IDL types are discussed in section
3.4.2 Professional UNO - UNO Language Bindings - UNO C++ Binding - Type Mappings. If you want
to use them, look up the names of the appropriate include files in the C++ reference.

File Access
The classes listed below manage platform independent file access. They are C++ classes that call
corresponding C functions internally.

• osl::FileBase

• osl::VolumeInfo

• osl::FileStatus

• osl::File

• osl::DirectoryItem

• osl::Directory

An unfamiliar concept is the use of absolute filenames throughout the whole API. In a multi-
threaded program, the current working directory cannot be relied on, thus relative paths must be
explicitly made absolute by the caller.

Threadsafe Reference Counting
The functions osl_incrementInterlockedCount() and osl_decrementInterlockedCount() in
the global C++ namespace increase and decrease a 4-byte counter in a threadsafe manner. This is
needed for reference counted objects. Many UNO APIs control object lifetime through refcounting.

Chapter 3 Professional UNO 119

Since concurrent incrementing the same counter does not increase the reference count reliably,
these functions should be used. This is faster than using a mutex on most platforms.

Threads and Thread Synchronization
The class osl::Thread is meant to be used as a base class for your own threads. Overwrite the run
() method.

The following classes are commonly used synchronization primitives:

 osl::Mutex

• osl::Condition

• osl::Semaphore

Socket and Pipe

The following classes allow you to use interprocess communication in a platform independent
manner:

• osl::Socket

• osl::Pipe

Strings

The classes rtl::OString (8-bit, encoded) and rtl::OUString (16-bit, UTF16) are the base-string
classes for UNO programs. The strings store their data in a heap memory block. The string is
refcounted and incapable of changing, thus it makes copying faster and creation is an expensive
operation. An OUString can be created using the static function OUString::createFromASCII()
or it can be constructed from an 8-bit string with encoding using this constructor:

OUString(const sal_Char * value,
sal_Int32 length,
rtl_TextEncoding encoding,
sal_uInt32 convertFlags = OSTRING_TO_OUSTRING_CVTFLAGS);

It can be converted into an 8-bit string, for example, for printf() using the rtl::OUStringToOS-
tring() function that takes an encoding, such as RTL_TEXTENCODING_ASCII_US).

For fast string concatenation, the classes rtl::OStringBuffer and rtl::OUStringBuffer should be used,
because they offer methods to concatenate strings and numbers. After preparing a new string
buffer, use the makeStringAndClear() method to create the new OUString or OString. The
following example illustrates this :
 sal_Int32 n = 42;
 double pi = 3.14159;

 // create a buffer with a suitable size, rough guess is sufficient
 // stringbuffer extends if necessary
 OUStringBuffer buf(128);

 // append an ascii string
 buf.appendAscii("pi (here ");

 // numbers can be simply appended
 buf.append(pi);
 // RTL_CONSTASCII_STRINGPARAM()
 // lets the compiler count the stringlength, so this is more efficient than
 // the above appendAscii call, where the length of the string must be calculated at
 // runtime
 buf.appendAscii(RTL_CONSTASCII_STRINGPARAM(") multiplied with "));
 buf.append(n);
 buf.appendAscii(RTL_CONSTASCII_STRINGPARAM(" gives "));
 buf.append((double)(n * pi));
 buf.appendAscii(RTL_CONSTASCII_STRINGPARAM("."));

 // now transfer the buffer into the string.
 // afterwards buffer is empty and may be reused again !

120 OpenOffice.org 1.1 Developer's Guide • June 2003

 OUString string = buf.makeStringAndClear();

 // You could of course use the OStringBuffer directly to get an OString
 OString oString = rtl::OUStringToOString(string , RTL_TEXTENCODING_ASCII_US);

 // just to print something
 printf("%s\n" ,oString.getStr());

Establishing Interprocess Connections
Any language binding supported by UNO establishes interprocess connections using a local
service manager to create the services necessary to connect to the office. Refer to chapter 3.3.1
Professional UNO - UNO Concepts - UNO Interprocess Connections for additional information. The
following client program connects to a running office and retrieves the
com.sun.star.lang.XMultiServiceFactory in C++:
(ProfUNO /CppBinding /office_connect.cxx)
#include <stdio.h>

#include <cppuhelper/bootstrap.hxx>
#include <com/sun/star/bridge/XUnoUrlResolver.hpp>
#include <com/sun/star/lang/XMultiServiceFactory.hpp>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace com::sun::star::bridge;
using namespace rtl;
using namespace cppu;

int main()
{
 // create the initial component context
 Reference< XComponentContext > rComponentContext =
 defaultBootstrap_InitialComponentContext();

 // retrieve the service manager from the context
 Reference< XMultiComponentFactory > rServiceManager =
 rComponentContext->getServiceManager();

 // instantiate a sample service with the service manager.
 Reference< XInterface > rInstance =
 rServiceManager->createInstanceWithContext(
 OUString::createFromAscii("com.sun.star.bridge.UnoUrlResolver"),
 rComponentContext);

 // Query for the XUnoUrlResolver interface
 Reference< XUnoUrlResolver > rResolver(rInstance, UNO_QUERY);

 if(! rResolver.is())
 {
 printf("Error: Couldn't instantiate com.sun.star.bridge.UnoUrlResolver service\n");
 return 1;
 }
 try
 {
 // resolve the uno-URL
 rInstance = rResolver->resolve(OUString::createFromAscii(
 "uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager"));

 if(! rInstance.is())
 {
 printf("StarOffice.ServiceManager is not exported from remote process\n");
 return 1;
 }

 // query for the simpler XMultiServiceFactory interface, sufficient for scripting
 Reference< XMultiServiceFactory > rOfficeServiceManager (rInstance, UNO_QUERY);

 if(! rOfficeServiceManager.is())
 {
 printf("XMultiServiceFactory interface is not exported\n");
 return 1;
 }

 printf("Connected sucessfully to the office\n");
 }
 catch(Exception &e)
 {
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("Error: %s\n", o.pData->buffer);

Chapter 3 Professional UNO 121

 return 1;
 }
 return 0;
}

Type Mappings

Mapping of Simple Types
The following table provides a summary of the mappings from IDL types to C++ UNO types.

IDL type Size [byte] C++ type Description

void - void void

byte 1 sal_Int8 Signed 8-bit integer

short 2 sal_Int16 Signed 16-bit integer

unsigned
short

2 sal_uInt16 Unsigned 16-bit integer

signed long 4 sal_Int32 Signed 32-bit integer

unsigned
long

4 sal_uInt32 Unsigned 32-bit integer

hyper 8 sal_Int64 Signed 64-bit integer

unsigned
hyper

8 sal_uInt64 Unsigned 64-bit integer

float sizeof
(float)

float processor dependent: Intel,
Sparc = IEEE float

double sizeof
(double)

double processor dependent: Intel,
Sparc = IEEE double

boolean 1 sal_Bool { 0, 1 } 8-bit unsigned char

char 2 sal_Unicode 16-bit unicode char

string 4 rtl::OUString Unicode string

type 4 com::sun::star::uno::Type Type descriptor

The basic integer types are all mapped to sal_x types, where x describes the bit length and sign of
the simple type. The sal prefix is used to avoid name clashes with other libraries or applications.

A string is mapped to an rtl::OUString that is a reference counted, non-changing UTF-16 string.
There are no 8-bit strings in UNO.

Mapping of Any

IDL type Size [byte] C++ type Description

any sizeof
(uno_Any)

com::sun::star::uno::Any universal type

The IDL any is mapped to com::sun::star::uno::Any. It holds an instance of an arbitrary UNO type.
Only UNO types can be stored within the any, because the data from the type library are required
for any handling.

122 OpenOffice.org 1.1 Developer's Guide • June 2003

A default constructed Any contains the void type and no value. You can assign a value to the Any
using the operator <<= and retrieve a value using the operator >>=.
// default construct an any
Any any;

sal_Int32 n = 3;

// Store the value into the any
any <<= n;

// extract the value again
sal_Int32 n2;
any >>= n2;
assert(n2 == n);
assert(3 == n2);

The extraction operator >>= carries out widening conversions when no loss of data can occur, but
data cannot be directed downward. If the extraction was successful, the operator returns
sal_True, otherwise sal_False.
Any any;
sal_Int16 n = 3;
any <<= n;

sal_Int8 aByte = 0;
sal_Int16 aShort = 0;
sal_Int32 aLong = 0;

// this will succeed, conversion from int16 to int32 is OK.
assert(any >>= aLong);
assert(3 == aLong);

// this will succeed, conversion from int16 to int16 is OK
assert(any >>= aShort);
assert(3 == aShort

// the following two assertions will FAIL, because conversion
// from int16 to int8 may involve loss of data..

// Even if a downcast is possible for a certain value, the operator refuses to work
assert(any >>= aByte);
assert(3 == aByte);

Instead of using the operator for extracting, you can also get a pointer to the data within the Any.
This may be faster, but it is more complicated to use. With the pointer, care has to be used during
casting and proper type handling, and the lifetime of the Any must exceed the pointer usage.
Any a = ...;
if(a.getTypeClass() == TypeClass_LONG && 3 == *(sal_Int32 *)a.getValue())
{
}

You can also construct an Any from a pointer to a C++ UNO type that can be useful. For instance:
Any foo()
{
 sal_Int32 i = 3;
 if(...)
 i = ..;
 return Any(&i, getCppuType(&i));
}

Mapping of Interface

IDL type Size
[byte]

C++ type Description

Interface 4 com::sun::star::uno::Reference< interfacetype > Pointer to a
refcounted inter-
face

An IDL interface reference is mapped to the template class:
template< class t >

Chapter 3 Professional UNO 123

com::sun::star::uno::Reference< t >

The template is used to get a type safe interface reference, because only a correctly typed interface
pointer can be assigned to the reference. The example below assigns an instance of the desktop
service to the rDesktop reference:
// the xSMgr reference gets constructed somehow
{
 ...
 // construct a deskop object and acquire it
 Reference< XInterface > rDesktop = xSMgr->createInstance(
 OUString::createFromAscii("com.sun.star.frame.Desktop"”));
 ...
 // reference goes out of scope now, release is called on the interface
}

The constructor of Reference calls acquire() on the interface and the destructor calls release()
on the interface. These references are often called smart pointers. Always use the Reference
template consistently to avoid reference counting bugs.

The Reference class makes it simple to invoke queryInterface() for a certain type:
// construct a deskop object and acquire it
Reference< XInterface > rDesktop = xSMgr->createInstance(
 OUString::createFromAscii("com.sun.star.frame.Desktop"));

// query it for the XFrameLoader interface
Reference< XFrameLoader > rLoader(rDesktop , UNO_QUERY);
// check, if the frameloader interface is supported
if(rLoader.is())
{
 // now do something with the frame loader
 ...
}

The UNO_QUERY is a dummy parameter that tells the constructor to query the first constructor argu-
ment for the XFrameLoader interface. If the queryInterface() returns successfully, it is assigned
to the rLoader reference. You can check if querying was successful by calling is() on the new
reference.

Methods on interfaces can be invoked using the operator ->:
xSMgr->createInstance(...);

The operator()->() returns the interface pointer without acquiring it, that is, without incre-
menting the refcount.

If you need the direct pointer to an interface for some purpose, you can also call get() at the reference class.

You can explicitly release the interface reference by calling clear()at the reference or by assigning
a default constructed reference.

You can check if two interface references belong to the same object using the operator ==.

Mapping of Sequence
An IDL sequence is mapped to:
template< class t >
com::sun::star::uno::Sequence< t >

The sequence class is a reference to a reference counted handle that is allocated on the heap.

The sequence follows a copy-on-modify strategy. If a sequence is about to be modified, it is
checked if the reference count of the sequence is 1. If this is the case, it gets modified directly,
otherwise a copy of the sequence is created that has a reference count of 1.

124 OpenOffice.org 1.1 Developer's Guide • June 2003

A sequence can be created with an arbitrary UNO type as element type, but do not use a non-
UNO type. The full reflection data provided by the type library are needed for construction,
destruction and comparison.

You can construct a sequence with an initial number of elements. Each element is default
constructed.
{
 // create an integer sequence with 3 elements,
 // elements default to zero.
 Sequence< sal_Int32 > seqInt(3);
 // get a read/write array pointer (this method checks for
 // the refcount and does a copy on demand).
 sal_Int32 *pArray = seqInt.getArray();

 // if you know, that the refocunt is one
 // as in this case, where the sequence has just been
 // constructed, you could avoid the check,
 // which is a C-call overhead,
 // by writing sal_Int32 *pArray = (sal_Int32*) seqInt.getConstArray();

 // modify the members
 pArray[0] = 4;
 pArray[1] = 5;
 pArray[2] = 3;
}

You can also initialize a sequence from an array of the same type by using a different constructor.
The new sequence is allocated on the heap and all elements are copied from the source.
{
 sal_Int32 sourceArray[3] = {3,5,3};

 // result is the same as above, but we initialize from a buffer.
 Sequence< sal_Int32 > seqInt(sourceArray , 3);
}

Complex UNO types like structs can be stored within sequences, too:
{
 // construct a sequence of Property structs,
 // the structs are default constructed
 Sequence< Property > seqProperty(2);
 seqProperty[0].Name = OUString::createFromAscii("A");
 seqProperty[0].Handle = 0;
 seqProperty[1].Name = OUString::createFromAscii("B");
 seqProperty[1].Handle = 1;

 // copy construct the sequence (The refcount is raised)
 Sequence< Property > seqProperty2 = seqProperty;

 // access a sequence
 for(sal_Int32 i = 0 ; i < seqProperty.getLength() ; i ++)
 {
 // Please NOTE : seqProperty.getArray() would also work, but
 // it is more expensive, because a
 // unnessecary copy construction
 // of the sequence takes place.
 printf("%d\n" , seqProperty.getConstArray()[i].Handle);
 }
}

The size of sequences can be changed using the realloc() method, which takes the new number
of elements as a parameter. For instance:
// construct an empty sequence
Sequence < Any > anySequence;

// get your enumeration from somewhere
Reference< XEnumeration > rEnum = ...;

// iterate over the enumeration
while(rEnum->hasMoreElements())
{
 anySequence.realloc(anySequence.getLength() + 1);
 anySequence[anySequence.getLength()-1] = rEnum->nextElement();
}

Chapter 3 Professional UNO 125

The above code shows an enumeration is transformed into a sequence,using an inefficient method.
The realloc() default constructs a new element at the end of the sequence. If the sequence is
shrunk by realloc, the elements at the end are destroyed.

The sequence is meant as a transportation container only, therefore it lacks methods for efficient
insertion and removal of elements. Use a C++ Standard Template Library vector as an interme-
diate container to manipulate a list of elements and finally copy the elements into the sequence.

Sequences of a specific type are a fully supported UNO type. There can also be a sequence of
sequences. This is similar to a multidimensional array with the exception that each row may vary
in length. For instance:
{
 sal_Int32 a[] = { 1,2,3 }, b[] = {4,5,6}, c[] = {7,8,9,10};
 Sequence< Sequence< sal_Int32 > > aaSeq (3);
 aaSeq[0] = Sequence< sal_Int32 >(a , 3);
 aaSeq[1] = Sequence< sal_Int32 >(b , 3);
 aaSeq[2] = Sequence< sal_Int32 >(c , 4);
}

is a valid sequence of sequence< sal_Int32>.

Mapping of Type
A type is mapped to com::sun::star::uno::Type. It holds the name of a type and the
com.sun.star.uno.TypeClass. The type allows you to obtain a com::sun::star::uno::Type-
Description that contains all the information defined in the IDL. A UNO type object for a specific
type using the overloaded cppu::getCppuType() function can be constructed:
// get the type of sal_Int32
Type intType = getCppuType((sal_Int32 *) 0);

// get the type of a string
Type stringType = getCppuType((OUString *) 0);

// get the type of the XEnumeration interface
Type xenumerationType = getCppuType((Reference<XEnumeration>*) 0);

The above code is useful to write template functions. Some getCppuType() functions would be
ambiguous. There are specialized functions: getVoidCppuType(), getBooleanCppuType(),
getCharCppuType()to handle the ambiguous functions.

The functions are implemented inline and introduced by headers that have been generated from
the type library.

Using Weak References
The C++ binding offers a method to hold UNO objects weakly, that is, not holding a hard reference
to it. A hard reference prevents an object from being destroyed, whereas an object that is held
weakly can be deleted anytime. The advantage of weak references is used to avoid cyclic refer-
ences between objects.

An object must actively support weak references by supporting the com.sun.star.uno.XWeak
interface. The concept is explained in detail in chapter 3.3.7 Professional UNO - UNO Concepts -
Lifetime of UNO Objects.

Weak references are often used for caching. For instance, if you want to reuse an existing object,
but do not want to hold it forever to avoid cyclic references.

Weak references are implemented as a template class:
template< class t >
class com::sun::star::uno::WeakReference<t>

126 OpenOffice.org 1.1 Developer's Guide • June 2003

You can simply assign weak references to hard references and conversely. The following examples
stress this:
// forward declaration of a function that
Reference< XFoo > getFoo();

int main()
{
 // default construct a weak reference.
 // this reference is empty
 WeakReference < XFoo > weakFoo;
 {
 // obtain a hard reference to an XFoo object
 Reference< XFoo > hardFoo = getFoo();
 assert(hardFoo.is());

 // assign the hard reference to weak referencecount
 weakFoo = hardFoo;

 // the hardFoo reference goes out of scope. The object itself
 // is now destroyed, if no one else keeps a reference to it.
 // Nothing happens, if someone else still keeps a reference to it
 }

 // now make the reference hard again
 Reference< XFoo > hardFoo2 = weakFoo;

 // check, if this was successful
 if(hardFoo2.is())
 {
 // the object is still alive, you can invoke calls on it again
 hardFoo2->foo();
 }
 else
 {
 // the objects has died, you can't do anything with it anymore.
 }
}

A call on a weak reference can not be invoked directly. Make the weak reference hard and check
whether it succeeded or not. You never know if you will get the reference, therefore always handle
both cases properly.

It is more expensive to use weak references instead of hard references. When assigning a weak
reference to a hard reference, a mutex gets locked and some heap allocation may occur. When the
object is located in a different process, at least one remote call takes place, meaning an overhead of
approximately a millisecond.

The XWeak mechanism does not support notification at object destruction. For this purpose,
objects must export XComponent and add com.sun.star.lang.XEventListener.

Exception Handling in C++
For throwing and catching of UNO exceptions, use the normal C++ exception handling mecha-
nisms. Calls to UNO interfaces may only throw the com::sun::star::uno::Exception or
derived exceptions. The following example catches every possible exception:
try
{
 Reference< XInterface > rInitialObject =
 xUnoUrlResolver->resolve(OUString::createFromAsci(
 “uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager”));
}
catch(com::sun::star::uno::Exception &e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("An error occurred: %s\n", o.pData->buffer);
}

If you want to react differently for each possible exception type, look up the exceptions that may
be thrown by a certain method. For instance the resolve() method in

Chapter 3 Professional UNO 127

com.sun.star.bridge.XUnoUrlResolver is allowed to throw three kinds of exceptions. Catch
each exception type separately:
try
{
 Reference< XInterface > rInitialObject =
 xUnoUrlResolver->resolve(OUString::createFromAsci(
 “uno:socket,host=localhost,port=2002;urp;StarOffice.ServiceManager”));
}
catch(ConnectionSetupException &e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("%s\n", o.pData->buffer);
 printf("couldn't access local resource (possible security resons)\n");
}
catch(NoConnectException &e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("%s\n", o.pData->buffer);
 printf("no server listening on the resource\n");
}
catch(IllegalArgumentException &e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("%s\n", o.pData->buffer);
 printf("uno URL invalid\n");
}
catch(RuntimeException & e)
{
 OString o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
 printf("%s\n", o.pData->buffer);
 printf("an unknown error has occurred\n");
}

When implementing your own UNO objects (see 4.6 Writing UNO Components - C++ Component),
throw exceptions using the normal C++ throw statement:
void MyUnoObject::initialize(const Sequence< Any > & args.getLength()) throw(Exception)
{
 // we expect 2 elements in this sequence
 if(2 != args.getLength())
 {
 // create an error message
 OUStringBuffer buf;
 buf.appendAscii(“MyUnoObject::initialize, expected 2 args, got ”);
 buf.append(args.getLength());
 buf.append(“.”);

 // throw the exception
 throw Exception(buf.makeStringAndClear() , *this);
 }
 ...
}

Note that only exceptions derived from com::sun::star::uno::Exception may be thrown at
UNO interface methods. Other exceptions (for instance the C++ std::exception) cannot be bridged
by the UNO runtime if the caller and called object are not within the same UNO Runtime Environ-
ment. Moreover, most current Unix C++ compilers, for instance gcc 3.0.x, do not compile code.
During compilation, exception specifications are loosen in derived classes by throwing exceptions
other than the exceptions specified in the interface that it is derived. Throwing unspecified excep-
tions leads to a std::unexpected exception and causes the program to abort on Unix systems.

3.4.3 OpenOffice.org Basic
OpenOffice.org Basic provides access to the OpenOffice.org API from within the office applica-
tion. It hides the complexity of interfaces and simplifies the use of properties by making UNO
objects look like Basic objects. It offers convenient Runtime Library (RTL) functions and special
Basic properties for UNO. Furthermore, Basic procedures can be easily hooked up to GUI
elements, such as menus, toolbar icons and GUI event handlers.

This chapter describes how to access UNO using the OpenOffice.org Basic scripting language. In
the following sections, OpenOffice.org Basic is referred to as Basic.

128 OpenOffice.org 1.1 Developer's Guide • June 2003

Handling UNO Objects

Accessing UNO Services
UNO objects are used through their interface methods and properties. Basic simplifies this by
mapping UNO interfaces and properties to Basic object methods and properties.

First, in Basic it is not necessary to distinguish between the different interfaces an object supports
when calling a method. The following illustration shows an example of an UNO service that
supports three interfaces:

In Java and C++, it is necessary to obtain a reference to each interface before calling one of its
methods. In Basic, every method of every supported interface can be called directly at the object
without querying for the appropriate interface in advance. The '.' operator is used:
 ' Basic
 oExample = getExampleObjectFromSomewhere()
 oExample.doNothing() ' Calls method doNothing of XFoo1
 oExample.doSomething() ' Calls method doSomething of XFoo2
 oExample.doSomethingElse(42) ' Calls method doSomethingElse of XFoo2

Additionally, OpenOffice.org Basic interprets pairs of get and set methods at UNO objects as Basic
object properties if they follow this pattern:

SomeType getSomeProperty()
void setSomeProperty(SomeType aValue)

In this pattern, OpenOffice.org Basic offers a property of type SomeType named SomeProperty.
This functionality is based on the com.sun.star.beans.Introspection service. For additional
details, see 5.2.3 Advanced UNO - Language Bindings - UNO Reflection API.

The get and set methods can always be used directly. In our example service above, the methods
getIt() and setIt(), or read and write a Basic property It are used:
 Dim x as Integer
 x = oExample.getIt() ' Calls getIt method of XFoo3

 ' is the same as

 x = oExample.It ' Read property It represented by XFoo3

 oExample.setIt(x) ' Calls setIt method of XFoo3

 ' is the same as

 oExample.It = x ' Modify property It represented by XFoo3

If there is only a get method, but no associated set method, the property is considered to be read
only.

Chapter 3 Professional UNO 129

Illustration 27: Basic Hides Interfaces

 Dim x as Integer, y as Integer
 x = oExample.getMore() ' Calls getMore method of XFoo1
 y = oExample.getLess() ' Calls getLess method of XFoo1

 ' is the same as

 x = oExample.More ' Read property More represented by XFoo1
 y = oExample.Less ' Read property Less represented by XFoo1

 ' but

 oExample.More = x ' Runtime error “Property is read only”
 oExample.Less = y ' Runtime error “Property is read only”

Properties an object provides through com.sun.star.beans.XPropertySet are available through
the . operator. The methods of com.sun.star.beans.XPropertySet can be used also. The object
oExample2 in the following example has three integer properties Value1, Value2 and Value3 :
 Dim x as Integer, y as Integer, z as Integer
 x = oExample2.Value1
 y = oExample2.Value2
 z = oExample2.Value3

 ' is the same as

 x = oExample2.getPropertyValue(“Value1”)
 y = oExample2.getPropertyValue(“Value2”)
 z = oExample2.getPropertyValue(“Value3”)

 ' and

 oExample2.Value1 = x
 oExample2.Value2 = y
 oExample2.Value3 = z

 ' is the same as

 oExample2.setPropertyValue(“Value1”, x)
 oExample2.setPropertyValue(“Value2”, y)
 oExample2.setPropertyValue(“Value3”, z)

Basic uses com.sun.star.container.XNameAccess to provide named elements in a collection
through the . operator. However, XNameAccess only provides read access. If a collection offers
write access through com.sun.star.container.XNameReplace or
com.sun.star.container.XNameContainer, use the appropriate methods explicitly:
 ' oNameAccessible is an object that supports XNameAccess
 ' including the names “Value1”, “Value2”
 x = oNameAccessible.Value1
 y = oNameAccessible.Value2

 ' is the same as

 x = oNameAccessible.getByName(“Value1”)
 y = oNameAccessible.getByName(“Value2”)

 ' but

 oNameAccessible.Value1 = x ' Runtime Error, Value1 cannot be changed
 oNameAccessible.Value2 = y ' Runtime Error, Value2 cannot be changed

 ' oNameReplace is an object that supports XNameReplace
 ' replaceByName() sets the element Value1 to 42
 oNameReplace.replaceByName("Value1", 42)

Instantiating UNO Services
In Basic, instantiate services using the Basic Runtime Library (RTL) function createUnoService
(). This function expects a fully qualified service name and returns an object supporting this
service, if it is available:
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

This call instantiates the com.sun.star.ucb.SimpleFileAccess service. To ensure that the func-
tion was successful, the returned object can be checked with the IsNull function:

130 OpenOffice.org 1.1 Developer's Guide • June 2003

 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 bError = IsNull(oSimpleFileAccess) ' bError is set to False

 oNoService = CreateUnoService("com.sun.star.nowhere.ThisServiceDoesNotExist")
 bError = IsNull(oNoService) ' bError is set to True

Instead of using CreateUnoService() to instantiate a service, it is also possible to get the global
UNO com.sun.star.lang.ServiceManager of the OpenOffice.org process by calling
GetProcessServiceManager(). Once obtained, use createInstance() directly:
 oServiceMgr = GetProcessServiceManager()
 oSimpleFileAccess = oServiceMgr.createInstance("com.sun.star.ucb.SimpleFileAccess")

 ' is the same as

 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

The advantage of GetProcessServiceManager() is that additional information and pass in argu-
ments is received when services are instantiated using the service manager. For instance, to
initialize a service with arguments, the createInstanceWithArguments() method of
com.sun.star.lang.XMultiServiceFactory has to be used at the service manager, because
there is no appropriate Basic RTL function to do that. Example:
 Dim args(1)
 args(0) = "Important information"
 args(1) = "Even more important information"
 oService = oServiceMgr.createInstanceWithArguments _
 ("com.sun.star.nowhere.ServiceThatNeedsInitialization", args())

The object returned by GetProcessServiceManager() is a normal Basic UNO object supporting
com.sun.star.lang.ServiceManager. Its properties and methods are accessed as described
above.

In addition, the Basic RTL provides special properties as API entry points. They are described in
more detail in 11.3 Basic and Dialogs - Features of OpenOffice.org Basic:

OpenOffice.org Basic RTL Property Description
ThisComponent Only exists in Basic code which is embedded in a Writer,

Calc, Draw or Impress document. It contains the document
model the Basic code is embedded in.

StarDesktop The com.sun.star.frame.Desktop singleton of the
office application. It loads document components and
handles the document windows. For instance, the document
in the top window can be retrieved using
oDoc = StarDesktop.CurrentComponent

Getting Information about UNO Objects
The Basic RTL retrieves information about UNO objects. There are functions to evaluate objects
during runtime and object properties used to inspect objects during debugging.

Checking for interfaces during runtime
Although Basic does not support the queryInterface concept like C++ and Java, it can be
useful to know if a certain interface is supported by a UNO Basic object or not. The function
HasUnoInterfaces() detects this.

The first parameter HasUnoInterfaces() expects the object that should be tested. Parameter(s)
of one or more fully qualified interface names can be passed to the function next. The function
returns True if all these interfaces are supported by the object, otherwise False.

Sub Main
 Dim oSimpleFileAccess
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

 Dim bSuccess
 Dim IfaceName1$, IfaceName2$, IfaceName3$

Chapter 3 Professional UNO 131

 IfaceName1$ = "com.sun.star.uno.XInterface"
 IfaceName2$ = "com.sun.star.ucb.XSimpleFileAccess2"
 IfaceName3$ = "com.sun.star.container.XPropertySet"

 bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName1$)
 MsgBox bSuccess ' Displays True because XInterface is supported

 bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName1$, IfaceName2$)
 MsgBox bSuccess ' Displays True because XInterface
 ' and XSimpleFileAccess2 are supported

 bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName3$)
 MsgBox bSuccess ' Displays False because XPropertySet is NOT supported

 bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName1$, IfaceName2$, IfaceName3$)
 MsgBox bSuccess ' Displays False because XPropertySet is NOT supported
End Sub

Testing if an object is a struct during runtime
As described in the section 3.4.3 Professional UNO - UNO Language Bindings - OpenOffice.org
Basic - Type Mappings - Structs above, structs are handled differently from objects, because they
are treated as values. Use the IsUnoStruct () function to check it the UNO Basic object repre-
sents an object or a struct. This function expects one parameter and returns True if this
parameter is a UNO struct, otherwise False. Example:
Sub Main
 Dim bIsStruct
 ' Instantiate a service
 Dim oSimpleFileAccess
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 bIsStruct = IsUnoStruct(oSimpleFileAccess)
 MsgBox bIsStruct ' Displays False because oSimpleFileAccess is NO struct
 ' Instantiate a Property struct
 Dim aProperty As New com.sun.star.beans.Property
 bIsStruct = IsUnoStruct(aProperty)
 MsgBox bIsStruct ' Displays True because aProperty is a struct
 bIsStruct = IsUnoStruct(42)
 MsgBox bIsStruct ' Displays False because 42 is NO struct
End Sub

Testing objects for identity during runtime
To find out if two UNO OpenOffice.org Basic objects refer to the same UNO object instance,
use the function EqualUnoObjects(). Basic is not able to apply the comparison operator = to
arguments of type object, for example, If Obj1 = Obj2 Then which leads to a runtime error.

Sub Main
 Dim bIdentical
 Dim oSimpleFileAccess, oSimpleFileAccess2, oSimpleFileAccess3
 ' Instantiate a service
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 oSimpleFileAccess2 = oSimpleFileAccess ' Copy the object reference
 bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess2)
 MsgBox bIdentical ' Displays True because the objects are identical
 ' Instantiate the service a second time
 oSimpleFileAccess3 = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess3)
 MsgBox bIdentical ' Displays False, oSimpleFileAccess3 is another instance

 bIdentical = EqualUnoObjects(oSimpleFileAccess, 42)
 MsgBox bIdentical ' Displays False, 42 is not even an object
 ' Instantiate a Property struct
 Dim aProperty As New com.sun.star.beans.Property
 Dim aProperty2
 aProperty2 = aProperty ' Copy the struct
 bIdentical = EqualUnoObjects(aProperty, aProperty2)
 MsgBox bIdentical ' Displays False because structs are values
 ' and so aProperty2 is a copy of aProperty
End Sub

Basic hides interfaces behind OpenOffice.org Basic objects that could lead to problems when
developers are using API structures. It can be difficult to understand the API reference and find
the correct method of accessing an object to reach a certain goal.

To assist during development and debugging, every UNO object in OpenOffice.org Basic has
special properties that provide information about the object structure. These properties are all

132 OpenOffice.org 1.1 Developer's Guide • June 2003

prefixed with Dbg_ to emphasize their use for development and debugging purposes. The type of
these properties is String. To display the properties use the MsgBox function.

Inspecting interfaces during debugging
The Dbg_SupportedInterfaces lists all interfaces supported by the object. In the following
example, the object returned by the function GetProcessServiceManager() described in the
previous section is taken as an example object.
 oServiceManager = GetProcessServiceManager()
 MsgBox oServiceManager.Dbg_SupportedInterfaces

This call displays a message box:

The list contains all interfaces supported by the object. For interfaces that are derived from
other interfaces, the super interfaces are indented as shown above for
com.sun.star.container.XSet, which is derived from
com.sun.star.container.XEnumerationAccess based upon
com.sun.star.container.XElementAccess.

If the text “(ERROR: Not really supported!)” is printed behind an interface name, the implementation of the
object usually has a bug, because the object pretends to support this interface (per
com.sun.star.lang.XTypeProvider, but a query for it fails. For details, see 5.2.3 Advanced UNO -
Language Bindings - UNO Reflection API).

Inspecting properties during debugging
The Dbg_Properties lists all properties supported by the object through
com.sun.star.beans.XPropertySet and through get and set methods that could be mapped
to Basic object properties:
 oServiceManager = GetProcessServiceManager()
 MsgBox oServiceManager.Dbg_Properties

This code produces a message box like this:

Chapter 3 Professional UNO 133

Illustration 28: Dbg_SupportedInterfaces
Property

Inspecting Methods During Debugging
The Dbg_Methods lists all methods supported by an object. Example:
 oServiceManager = GetProcessServiceManager()
 MsgBox oServiceManager.Dbg_Methods

This code displays:

The notations used in Dbg_Properties and Dbg_Methods refer to internal implementation type
names in Basic. The Sbx prefix can be ignored. The remaining names correspond with the normal
Basic type notation. The SbxEMPTY is the same type as Variant. Additional information about
Basic types is available in the next chapter.

134 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 29: Dbg_Properties

Illustration 30: Dbg_Methods

Basic uses the com.sun.star.lang.XTypeProvider interface to detect which interfaces an object
supports. Therefore, it is important to support this interface when implementing a component that should be
accessible from Basic. For details, see 4 Writing UNO Components.

Mapping of UNO and Basic Types
Basic and UNO use different type systems. While OpenOffice.orgBasic is compatible to Visual
Basic and its type system, UNO types correspond to the IDL specification (see 3.2.1 Professional
UNO - API Concepts - Data Types), therefore it is necessary to map these two type systems. This
chapter describes which Basic types have to be used for the different UNO types.

Mapping of Simple Types
In general, the OpenOffice.orgBasic type system is not rigid. Unlike C++ and Java,
OpenOffice.orgBasic does not require the declaration of variables, unless the Option Explicit
command is used that forces the declaration. To declare variables, the Dim command is used. Also,
a OpenOffice.orgBasic type can be optionally specified through the Dim command. The general
syntax is:
 Dim VarName [As Type][, VarName [As Type]]...

All variables declared without a specific type have the type Variant. Variables of type Variant
can be assigned values of arbitrary Basic types. Undeclared variables are Variant unless type
postfixes are used with their names. Postfixes can be used in Dim commands as well. The
following table contains a complete list of types supported by Basic and their corresponding post-
fixes:

Type Postfix Range
Boolean True or False
Integer % -32768 to 32767
Long & -2147483648 to 2147483647
Single ! Floating point number

negative: -3.402823E38 to -1.401298E-45
positive: 1.401298E-45 to 3.402823E38

Double # Double precision floating point number
negative: -1.79769313486232E308 to -4.94065645841247E-324
positive: 4.94065645841247E-324 to 1.79769313486232E308

Currency @ Fixed point number with four decimal places
-922,337,203,685,477.5808 to 922,337,203,685,477.5807

Date 01/01/100 to 12/31/9999
Object Basic Object

String $ Character string

Any arbitrary Basic type

Consider the following Dim examples.
 Dim a, b ' Type of a and b is Variant
 Dim c as Variant ' Type of c is Variant

 Dim d as Integer ' Type of d is Integer (16 bit!)

 ' The type only refers to the preceding variable
 Dim e, f as Double ' ATTENTION! Type of e is Variant!
 ' Only the type of f is Double

Chapter 3 Professional UNO 135

 Dim g as String ' Type of g is String

 Dim i as Date ' Type of g is Date

 ' Usage of Postfixes
 Dim i% ' is the same as
 Dim i as Integer

 Dim d# ' is the same as
 Dim d as Double

 Dim s$ ' is the same as
 Dim s as String

The correlation below is used to map types from UNO to Basic and vice versa.

Uno type Basic type
long Long
hyper Not yet supported

short Integer
float Single
double Double
char Char (only used internally)

byte Integer
any Variant
string String
boolean Boolean
void Void (only used internally)

type com.sun.star.reflection.XIdlClass

The simple UNO type type is mapped to the com.sun.star.reflection.XIdlClass interface to
retrieve type specific information. For further details, refer to 5.2.3 Advanced UNO - Language Bind-
ings - UNO Reflection API.

When UNO methods or properties are accessed, and the target UNO type is known, Basic auto-
matically chooses the appropriate types:
 ' The UNO object oExample1 has a property “Count” of type short
 a% = 42
 oExample1.Count = a% ' a% has the right type (Integer)

 pi = 3,141593
 oExample1.Count = pi ' pi will be converted to short, so Count will become 3

 s$ = “111”
 oExample1.Count = s$ ' s$ will be converted to short, so Count will become 111

Occasionally, OpenOffice.orgBasic does not know the required target type, especially if a
parameter of an interface method or a property has the type any. In this situation,
OpenOffice.orgBasic mechanically converts the OpenOffice.orgBasic type into the UNO type
shown in the table above, although a different type may be expected. The only mechanism
provided by OpenOffice.orgBasic is an automatic downcast of numeric values:

Long and Integer values are always converted to the shortest possible integer type:

• to byte if -128 <= Value <= -127
• to short if -32768 <= Value <= 32767
The Single/Double values are converted to integers in the same manner if they have no decimal
places.

136 OpenOffice.org 1.1 Developer's Guide • June 2003

This mechanism is used, because some internal C++ tools used to implement UNO functionality in
OpenOffice.org provide an automatic upcast but no downcast. Therefore, it can be successful to
pass a byte value to an interface expecting a long value, but not vice versa.

In the following example, oNameCont is an object that supports
com.sun.star.container.XNameContainer and contains elements of type short. Assume
FirstValue is a valid entry.
 a% = 42
 oNameCount.replaceByName(“FirstValue”, a%) ' Ok, a% is downcasted to type byte

 b% = 123456
 oNameCount.replaceByName(“FirstValue”, b%) ' Fails, b% is outside the short range

The method call fails, therefore the implementation should throw the appropriate exception that is
converted to a OpenOffice.orgBasic error by the OpenOffice.orgBasic RTL. It may happen that an
implementation also accepts unsuitable types and does not throw an exception. Ensure that the
values used are suitable for their UNO target by using numeric values that do not exceed the
target range or converting them to the correct Basic type before applying them to UNO.

Always use the type Variant to declare variables for UNO Basic objects, not the type Object. The
OpenOffice.orgBasic type Object is tailored for pure OpenOffice.orgBasic objects and not for
UNO OpenOffice.orgBasic objects. The Variant variables are best for UNO Basic objects to avoid
problems that can result from the OpenOffice.orgBasic specific behavior of the type Object:
 Dim oService1 ' Ok
 oService1 = CreateUnoService("com.sun.star.anywhere.Something")

 Dim oService2 as Object ' NOT recommended
 oService2 = CreateUnoService("com.sun.star.anywhere.SomethingElse")

Mapping of Sequences and Arrays
Many UNO interfaces use sequences, as well as simple types. The OpenOffice.orgBasic counter-
part for sequences are arrays. Arrays are standard elements of the Basic language. The example
below shows how they are declared:
 Dim a1(100) ' Variant array, index range: 0-100 -> 101 elements

 Dim a2%(5) ' Integer array, index range: 0-5 -> 6 elements

 Dim a3$(0) ' String array, index range: 0-0 -> 1 element

 Dim a4&(9, 19) ' Long array, index range: (0-9) x (0-19) -> 200 elements

Basic does not have a special index operator like [] in C++ and Java. Array elements are accessed
using normal parentheses ():
 Dim i%, a%(10)
 for i% = 0 to 10 ' this loop initializes the array
 a%(i%) = i%
 next i%

 dim s$
 for i% = 0 to 10 ' this loop adds all array elements to a string
 s$ = s$ + " " + a%(i%)
 next i%
 msgbox s$ ' Displays the string containing all array elements

 Dim b(2, 3)
 b(2, 3) = 23
 b(0, 0) = 0
 b(2, 4) = 24 ' Error ”Subscript out of range”

As the examples show, the indices in Dim commands differ from C++ and Java array declarations.
They do not describe the number of elements, but the largest allowed index. There is one more
array element than the given index. This is important for the mapping of OpenOffice.orgBasic
arrays to UNO sequences, because UNO sequences follow the C++/Java array semantic.

Chapter 3 Professional UNO 137

When the UNO API requires a sequence, the Basic programmer uses an appropriate array. In the
following example, oSequenceContainer is an object that has a property TheSequence of type
sequence<short>. To assign a sequence of length 10 with the values 0, 1, 2, ... 9 to this property,
the following code can be used:
 Dim i%, a%(9) ' Maximum index 9 -> 10 elements
 for i% = 0 to 9 ' this loop initializes the array
 a%(i%) = i%
 next i%

 oSequenceContainer.TheSequence = a%()

 ' If “TheSequence” is based on XPropertySet alternatively
 oSequenceContainer.setPropertyValue(“TheSequence”, a%())

The Basic programmer must be aware of the different index semantics during programming. In
the following example, the programmer passed a sequence with one element, but actually passed
two elements:
 ' Pass a sequence of length 1 to the TheSequence property:
 Dim a%(1) ' WRONG: The array has 2 elements, not only 1!
 a%(0) = 3 ' Only Element 0 is initialized,
 ' Element 1 remains 0 as initialized by Dim

 ' Now a sequence with two values (3,0) is passed what
 ' may result in an error or an unexpected behavior!
 oSequenceContainer.setPropertyValue(“TheSequence”, a%())

When using Basic arrays as a whole for parameters or for property access, they should always be followed
by '()' in the Basic code, otherwise errors may occur in some situations.

It can be useful to use a OpenOffice.orgBasic RTL function called Array() to create, initialize and
assign it to a Variant variable in a single step, especially for small sequences:
 Dim a ' should be declared as Variant
 a = Array(1, 2, 3)

 ' is the same as

 Dim a(2)
 a(0) = 1
 a(1) = 2
 a(2) = 3

Sometimes it is necessary to pass an empty sequence to a UNO interface. In Basic, empty
sequences can be declared by omitting the index from the Dim command:
 Dim a%() ' empty array/sequence of type Integer

 Dim b$() ' empty array/sequence of String

Sequences returned by UNO are also represented in Basic as arrays, but these arrays do not have
to be declared as arrays beforehand. Variables used to accept a sequence should be declared as
Variant. To access an array returned by UNO, it is necessary to get information about the number
of elements it contains with the Basic RTL functions LBound() and UBound().

The function LBound() returns the lower index and UBound() returns the upper index. The
following code shows a loop going through all elements of a returned sequence:
 Dim aResultArray ' should be declared as Variant
 aResultArray = oSequenceContainer.TheSequence

 dim i%, iFrom%, iTo%
 iFrom% = LBound(aResultArray())
 iTo% = UBound(aResultArray())
 for i% = iFrom% to iTo% ' this loop displays all array elements
 msgbox aResultArray(i%)
 next i%

The function LBound() is a standard Basic function and is not specific in a UNO context. Basic
arrays do not necessarily start with index 0, because it is possible to write something similar to:
Dim a (3 to 5)

138 OpenOffice.org 1.1 Developer's Guide • June 2003

This causes the array to have a lower index of 3. However, sequences returned by UNO always
have the start index 0. Usually only UBound() is used and the example above can be simplified to:
 Dim aResultArray ' should be declared as Variant
 aResultArray = oSequenceContainer.TheSequence

 Dim i%, iTo%
 iTo% = UBound(aResultArray())
 For i% = 0 To iTo% ' this loop displays all array elements
 MsgBox aResultArray(i%)
 Next i%

The element count of a sequence/array can be calculated easily:
 u% = UBound(aResultArray())
 ElementCount% = u% + 1

For empty arrays /sequences UBound returns -1. This way the semantic of UBound stays consistent
as the element count is then calculated correctly as:
 ElementCount% = u% + 1 ' = -1 + 1 = 0

The mapping between UNO sequences and Basic arrays depends on the fact that both use a zero-based index
system. To avoid problems, the syntax
Dim a (IndexMin to IndexMin)
or the Basic command Option Base 1 should not be used. Both cause all Basic arrays to start with an
index other than 0.

UNO also supports sequences of sequences. In Basic, this corresponds with arrays of arrays. Do
not mix up sequences of sequences with multidimensional arrays. In multidimensional arrays, all
sub arrays always have the same number of elements, whereas in sequences of sequences every
element sequence can have a different size. Example:
 Dim aArrayOfArrays ' should be declared as Variant
 aArrayOfArrays = oExample.ShortSequences ' returns a sequence of sequences of short

 Dim i%, NumberOfSequences%
 Dim j%, NumberOfElements%
 Dim aElementArray

 NumberOfSequences% = UBound(aArrayOfArrays()) + 1
 For i% = 0 to NumberOfSequences% - 1 ' loop over all sequences
 aElementArray = aArrayOfArrays(i%)
 NumberOfElements% = UBound(aElementArray()) + 1

 For j% = 0 to NumberOfElements% - 1 ' loop over all elements
 MsgBox aElementArray(j%)
 Next j%
 Next i%

To create an array of arrays in Basic, sub arrays are used as elements of a master array:
 ' Declare master array
 Dim aArrayOfArrays(2)

 ' Declare sub arrays
 Dim aArray0(3)
 Dim aArray1(2)
 Dim aArray2(0)

 ' Initialise sub arrays
 aArray0(0) = 0
 aArray0(1) = 1
 aArray0(2) = 2
 aArray0(3) = 3

 aArray1(0) = 42
 aArray1(1) = 0
 aArray1(2) = -42

 aArray2(0) = 1

 ' Assign sub arrays to the master array
 aArrayOfArrays(0) = aArray0()
 aArrayOfArrays(1) = aArray1()
 aArrayOfArrays(2) = aArray2()

 ' Assign the master array to the array property
 oExample.ShortSequences = aArrayOfArrays()

Chapter 3 Professional UNO 139

In this situation, the runtime function Array() is useful. The example code can then be written
much shorter:
 ' Declare master array
 Dim aArrayOfArrays(2)

 ' Create and assign sub arrays
 aArrayOfArrays(0) = Array(0, 1, 2, 3)
 aArrayOfArrays(1) = Array(42, 0, -42)
 aArrayOfArrays(2) = Array(1)

 ' Assign the master array to the array property
 oExample.ShortSequences = aArrayOfArrays()

If you nest Array(), more compact code can be written, but it becomes difficult to understand the
resulting arrays:
 ' Declare master array variable as variant
 Dim aArrayOfArrays

 ' Create and assign master array and sub arrays
 aArrayOfArrays = Array(Array(0, 1, 2, 3), Array(42, 0, -42), Array(1))

 ' Assign the master array to the array property
 oExample.ShortSequences = aArrayOfArrays()

Sequences of higher order can be handled accordingly.

Mapping of Structs
UNO struct types can be instantiated with the Dim As New command as a single instance and
array.
 ' Instantiate a Property struct
 Dim aProperty As New com.sun.star.beans.Property

 ' Instantiate an array of Locale structs
 Dim Locales(10) As New com.sun.star.lang.Locale

UNO struct instances are handled like UNO objects. Struct members are accessed using the .
operator. The Dbg_Properties property is supported. The properties Dbg_SupportedInterfaces
and Dbg_Methods are not supported because they do not apply to structs.:
 ' Instantiate a Locale struct
 Dim aLocale As New com.sun.star.lang.Locale

 ' Display properties
 MsgBox aLocale.Dbg_Properties

 ' Access “Language” property
 aLocale.Language = "en"

Objects and structs are different. Objects are handled as references and structs as values. When
structs are assigned to variables, the structs are copied. This is important when modifying an
object property that is a struct, because a struct property has to be reassigned to the object after
reading and modifying it.

In the following example, oExample is an object that has the properties MyObject and MyStruct.

• The object provided by MyObject supports a string property ObjectName.

• The struct provided by MyStruct supports a string property StructName.

Both oExample.MyObject.ObjectName and oExample.MyStruct.StructName should be modi-
fied. The following code shows how this is done for an object:
 ' Accessing the object
 Dim oObject
 oObject = oExample.MyObject
 oObject.ObjectName = “Tim” ' Ok!

 ' or shorter

 oExample.MyObject.ObjectName = “Tim” ' Ok!

140 OpenOffice.org 1.1 Developer's Guide • June 2003

The following code shows how it is done correctly for the struct (and possible mistakes):
 ' Accessing the struct
 Dim aStruct
 aStruct = oExample.MyStruct ' aStruct is a copy of oExample.MyStruct!
 aStruct.StructName = “Tim” ' Affects only the property of the copy!

 ' If the code ended here, oExample.MyStruct wouldn't be modified!

 oExample.MyStruct = aStruct ' Copy back the complete struct! Now it's ok!

 ' Here the other variant does NOT work at all, because
 ' only a temporary copy of the struct is modified!
 oExample.MyStruct.StructName = “Tim” ' WRONG! oExample.MyStruct is not modified!

Mapping of Enums and Constant Groups
Use the fully qualified names to address the values of an enum type by their names. The following
examples assume that oExample and oExample2 support com.sun.star.beans.XPropertySet
with a property Status of the enum type com.sun.star.beans.PropertyState:
 Dim EnumValue
 EnumValue = com.sun.star.beans.PropertyState.DEFAULT_VALUE
 MsgBox EnumValue ' displays 1

 eExample.Status = com.sun.star.beans.PropertyState.DEFAULT_VALUE

Basic does not support Enum types. In Basic, enum values coming from UNO are converted to
Long values. As long as Basic knows if a property or an interface method parameter expects an
enum type, then the Long value is internally converted to the right enum type. Problems appear
with Basic when interface access methods expect an Any:
 Dim EnumValue
 EnumValue = oExample.Status ' EnumValue is of type Long

 ' Accessing the property implicitly
 oExample2.Status = EnumValue ' Ok! EnumValue is converted to the right enum type

 ' Accessing the property explicitly using XPropertySet methods
 oExample2.setPropertyValue(“Status”, EnumValue) ' WRONG! Will probably fail!

The explicit access could fail, because EnumValue is passed as parameter of type Any to setProp-
ertyValue(), therefore Basic does not know that a value of type PropertyState is expected. There
is still a problem, because the Basic type for com.sun.star.beans.PropertyState is Long. This
problem is solved in the implementation of the com.sun.star.beans.XPropertySet interface.
For enum types, the implicit property access using the Basic property syntax Object.Property is
preferred to calling generic methods using the type Any. In situations where only a generic inter-
face method that expects an enum for an Any, there is no solution for Basic.

Constant groups are used to specify a set of constant values in IDL. In Basic, these constants can be
accessed using their fully qualified names. The following code displays some constants from
com.sun.star.beans.PropertyConcept:
 MsgBox com.sun.star.beans.PropertyConcept.DANGEROUS ' Displays 1
 MsgBox com.sun.star.beans.PropertyConcept.PROPERTYSET ' Displays 2

A constant group or enum can be assigned to an object. This method is used to shorten code if
more than one enum or constant value has to be accessed:
 Dim oPropConcept
 oPropConcept = com.sun.star.beans.PropertyConcept
 msgbox oPropConcept.DANGEROUS ' Displays 1
 msgbox oPropConcept.PROPERTYSET ' Displays 2

Case Sensitivity
Generally Basic is case insensitive. However, this does not always apply to the communication
between UNO and Basic. To avoid problems with case sensitivity write the UNO related code as if

Chapter 3 Professional UNO 141

Basic was case sensitive. This facilitates the translation of a Basic program to another language,
and Basic code becomes easier to read and understand. The following discusses problems that
might occur.

Identifiers that differ in case are considered to be identical when they are used with UNO object
properties, methods and struct members.
 Dim ALocale As New com.sun.star.lang.Locale
 alocale.language = "en" ' Ok
 MsgBox aLocale.Language ' Ok

The exceptions to this is if a Basic property is obtained through
com.sun.star.container.XNameAccess as described above, its name has to be written exactly as
it is in the API reference. Basic uses the name as a string parameter that is not interpreted when
accessing com.sun.star.container.XNameAccess using its methods.

' oNameAccessible is an object that supports XNameAccess
 ' including the names “Value1”, “Value2”
 x = oNameAccessible.Value1 ' Ok
 y = oNameAccessible.VaLUe2 ' Runtime Error, Value2 is not written correctly

 ' is the same as

 x = oNameAccessible.getByName(“Value1”) ' Ok
 y = oNameAccessible.getByName(“VaLUe2”) ' Runtime Error, Value2 is not written correctly

Exception Handling
Unlike UNO, Basic does not support exceptions. All exceptions thrown by UNO are caught by the
Basic runtime system and transformed to a Basic error. Executing the following code results in a
Basic error that interrupts the code execution and displays an error message:
 Sub Main
 Dim oLib
 oLib = BasicLibraries.getByName("InvalidLibraryName")
 End Sub

The BasicLibraries object used in the example contains all the available Basic libraries in a
running office instance. The Basic libraries contained in BasicLibraries is accessed using
com.sun.star.container.XNameAccess. An exception was provoked by trying to obtain a non-
existing library. The BasicLibraries object is explained in more detail in 11.4 Basic and Dialogs -
Advanced Library Organization.

The call to getByName() results in this error box:

However, the Basic runtime system is not always able to recognize the Exception type. Sometimes
only the exception message can be displayed that has to be provided by the object implementation.

Exceptions transformed to Basic errors can be handled just like any Basic error using the On Error
GoTo command:
 Sub Main
 On Error Goto ErrorHandler ' Enables error handling

142 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 31: Unhandled UNO Exception

 Dim oLib
 oLib = BasicLibraries.getByName("InvalidLibraryName")
 MsgBox "After the Error"
 Exit Sub

 ' Label
 ErrorHandler:
 MsgBox "Error code: " + Err + Chr$(13) + Error$
 Resume Next ' Continues execution at the command following the error command
 End Sub

When the exception occurs, the execution continues at the ErrorHandler label. In the error
handler, some properties are used to get information about the error. The Err is the error code that
is 1 for UNO exceptions. The Error$ contains the text of the error message. Executing the program
results in the following output:

Another message box “After the Error” is displayed after the above dialog box, because Resume
Next goes to the code line below the line where the exception was thrown. The Exit Sub
command is required so that the error handler code would be executed again.

Listeners
Many interfaces in UNO are used to register listener objects implementing special listener inter-
faces, so that a listener gets feedback when its appropriate listener methods are called.
OpenOffice.org Basic does not support the concept of object implementation, therefore a special
RTL function named CreateUnoListener() has been introduced. It uses a prefix for method
names that can be called back from UNO. The CreateUnoListener() expects a method name
prefix and the type name of the desired listener interface. It returns an object that supports this
interface that can be used to register the listener.

The following example instantiates an com.sun.star.container.XContainerListener. Note the
prefix ContListener_:
 Dim oListener
 oListener = CreateUnoListener("ContListener_", "com.sun.star.container.XContainerListener")

The next step is to implement the listener methods. In this example, the listener interface has the
following methods:

Methods of com.sun.star.container.XContainerListener
disposing() Method of the listener base interface com.sun.star.lang.XEventListener,

contained in every listener interface, because all listener interfaces must be
derived from this base interface. Takes a com.sun.star.lang.EventObject

elementInserted() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

elementRemoved() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

elementReplaced() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

Chapter 3 Professional UNO 143

Illustration 32: Handled UNO Exception

In the example, ContListener_ is specified as a name prefix, therefore the following subs have to
be implemented in Basic.

• ContListener_disposing
• ContListener_elementInserted
• ContListener_elementRemoved
• ContListener_elementReplaced
Every listener type has a corresponding Event struct type that contains information about the
event. When a listener method is called, an instance of this Event type is passed as a parameter.
In the Basic listener methods these Event objects can be evaluated by adding an appropriate
Variant parameter to the procedure header. The following code shows how the listener methods
in the example could be implemented:
 Sub ContListener_disposing(oEvent)
 MsgBox "disposing"
 MsgBox oEvent.Dbg_Properties
 End Sub

 Sub ContListener_elementInserted(oEvent)
 MsgBox "elementInserted"
 MsgBox oEvent.Dbg_Properties
 End Sub

 Sub ContListener_elementRemoved(oEvent)
 MsgBox "elementRemoved"
 MsgBox oEvent.Dbg_Properties
 End Sub

 Sub ContListener_elementReplaced(oEvent)
 MsgBox "elementReplaced"
 MsgBox oEvent.Dbg_Properties
 End Sub

It is necessary to implement all listener methods, including the listener methods of the parent
interfaces of a listener. Basic runtime errors will occur whenever an event occurs and no corre-
sponding Basic sub is found, especially with disposing(), because the broadcaster might be
destroyed a long time after the Basic program was ran. In this situation, Basic shows a "Method
not found" message. There is no indication of which method cannot be found or why Basic is
looking for a method.

We are listening for events at the basic library container. Our simple implementation for events
triggered by user actions in the Tools - Macro - Organizer dialog displays a message box with the
corresponding listener method name and a message box with the Dbg_Properties of the event
struct. For the disposing() method, the type of the event object is
com.sun.star.lang.EventObject. All other methods belong to
com.sun.star.container.XContainerListener, therefore the type of the event object is
com.sun.star.container.ContainerEvent. This type is derived from
com.sun.star.lang.EventObject and contains additional container related information.

If the event object is not needed, the parameter could be left out of the implementation. For
example, the disposing() method could be:
 ' Minimal implementation of Sub disposing
 Sub ContListener_disposing
 End Sub

The event objects passed to the listener methods can be accessed like other struct objects. The
following code shows an enhanced implementation of the elementRemoved() method that evalu-
ates the com.sun.star.container.ContainerEvent to display the name of the module removed
from Library1 and the module source code:
 sub ContListener_ElementRemoved(oEvent)
 MsgBox "Element " + oEvent.Accessor + " removed"
 MsgBox "Source =" + Chr$(13) + Chr$(13) + oEvent.Element
 End Sub

144 OpenOffice.org 1.1 Developer's Guide • June 2003

When the user removes Module1, the following message boxes are displayed by
ContListener_ElementRemoved():

When all necessary listener methods are implemented, add the listener to the broadcaster object by
calling the appropriate add method. To register an XContainerListener, the corresponding regis-
tration method at our container is addContainerListener():
 Dim oLib
 oLib = BasicLibraries.Library1 ' Library1 must exist!
 oLib.addContainerListener(oListener) ' Register the listener

The naming scheme XSomeEventListener <> addSomeEventListener() is used throughout the
OpenOffice.org API.

The listener for container events is now registered permanently. When a container event occurs,
the container calls the appropriate method of the
com.sun.star.container.XContainerListener interface in our Basic code.

3.4.4 Automation Bridge

Introduction
The OpenOffice.org software supports Microsoft's Automation technology. This offers program-
mers the possibility to control the office from external programs. There is a range of efficient IDEs
and tools available for developers to choose from.

Automation is language independent. The respective compilers or interpreters must, however,
support Automation. The compilers transform the source code into Automation compatible
computing instructions. For example, the string and array types of your language can be used
without caring about their internal representation in Automation, which is BSTR and SAFEARRAY. A
client program that controls OpenOffice.org can be represented by an executable (Visual Basic,
C++) or a script (JScript , VB Script). The latter requires an additional program to run the scripts,
such as Windows Scripting Host (WSH) or Internet Explorer.

UNO was not designed to be compatible with Automation and COM, although there are similari-
ties. OpenOffice.org deploys a bridging mechanism provided by the Automation Bridge to make
UNO and Automation work together. The bridge consists of UNO services, however, it is not
necessary to have a special knowledge about them to write Automation clients for OpenOffice.org.
For additional information, refer to (see 3.4.4 Professional UNO - UNO Language Bindings - Automa-
tion Bridge - The Bridge Services).

Chapter 3 Professional UNO 145

Illustration 33: ContListener_ElementRemoved Event Callback

Different languages have different capabilities. There are differences in the manner that the same
task is handled, depending on the language used. Examples in Visual Basic, VB Script and JScript
are provided. They will show when a language requires special handling or has a quality to be
aware of. Although Automation is supposed to work across languages, there are subtleties that
require a particular treatment by the bridge or a style of coding. For example, JScript does not
know out parameters, therefore Array objects have to be used. Currently, the bridge has been
tested with C++, JScript, VBScript and Visual Basic, although other languages can be used as well.

The name Automation Bridge implies the use of the Automation technology. Automation is part of
the collection of technologies commonly referred to as ActiveX or OLE, therefore the term OLE
Bridge is misleading and should be avoided. Also, the bridge only supports the COM interfaces
IDispatch and IdispatchEX. Refer to 3.4.4 Professional UNO - UNO Language Bindings - Automa-
tion Bridge - Unsupported COM Features for the extent these interfaces are supported.

Requirements
The Automation technology can only be used with OpenOffice.org on a Windows platform
(Windows 95, 98, NT4, ME, 2000, XP). There are COM implementations on Macintosh OS and
UNIX, but there has been no effort to support Automation on these platforms.

Using Automation involves creating objects in a COM-like fashion, that is, using functions like
CreateObject() in VB or CoCreateInstance() in C. This requires the OpenOffice.org automa -
tion objects to be registered with the Windows system registry. This registration is carried out
whenever an office is installed on the system. If the registration did not take place, for example
because the binaries were just copied to a certain location, then Automation clients will not work
correctly or not at all. Refer to 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge
- The Service Manager Component for additional information.

A Quick Tour
The following example shows how to access OpenOffice.org functionality through Automation.
Note the inline comments. The only automation specific call is WScript.CreateObject() in the
first line, the remaining are OpenOffice.org API calls. The helper functions createStruct() and
insertIntoCell() are shown at the end of the listing
'This is a VBScript example
'The service manager is always the starting point
'If there is no office running then an office is started up
Set objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager")
'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection")

'Create the Desktop
Set objDesktop= objServiceManager.createInstance("com.sun.star.frame.Desktop")

'Open a new empty writer document
Dim args()
Set objDocument= objDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, args)

'Create a text object
Set objText= objDocument.getText

'Create a cursor object
Set objCursor= objText.createTextCursor

'Inserting some Text
objText.insertString objCursor, "The first line in the newly created text document." & vbLf, false

'Inserting a second line
objText.insertString objCursor, "Now we're in the second line", false

'Create instance of a text table with 4 columns and 4 rows
Set objTable= objDocument.createInstance("com.sun.star.text.TextTable")

146 OpenOffice.org 1.1 Developer's Guide • June 2003

objTable.initialize 4, 4

'Insert the table
objText.insertTextContent objCursor, objTable, false

'Get first row
Set objRows= objTable.getRows
Set objRow= objRows.getByIndex(0)

'Set the table background color
objTable.setPropertyValue "BackTransparent", false
objTable.setPropertyValue "BackColor", 13421823

'Set a different background color for the first row
objRow.setPropertyValue "BackTransparent", false
objRow.setPropertyValue "BackColor", 6710932

'Fill the first table row
insertIntoCell "A1","FirstColumn", objTable // insertIntoCell is a helper function, see below
insertIntoCell "B1","SecondColumn", objTable
insertIntoCell "C1","ThirdColumn", objTable
insertIntoCell "D1","SUM", objTable

objTable.getCellByName("A2").setValue 22.5
objTable.getCellByName("B2").setValue 5615.3
objTable.getCellByName("C2").setValue -2315.7
objTable.getCellByName("D2").setFormula"sum "

objTable.getCellByName("A3").setValue 21.5
objTable.getCellByName("B3").setValue 615.3
objTable.getCellByName("C3").setValue -315.7
objTable.getCellByName("D3").setFormula "sum "

objTable.getCellByName("A4").setValue 121.5
objTable.getCellByName("B4").setValue -615.3
objTable.getCellByName("C4").setValue 415.7
objTable.getCellByName("D4").setFormula "sum "

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 255
objCursor.setPropertyValue "CharShadowed", true

'Create a paragraph break
'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH_BREAK constant
objText.insertControlCharacter objCursor, 0 , false

'Inserting colored Text.
objText.insertString objCursor, " This is a colored Text - blue with shadow" & vbLf, false

'Create a paragraph break (ControlCharacter::PARAGRAPH_BREAK).
objText.insertControlCharacter objCursor, 0, false

'Create a TextFrame.
Set objTextFrame= objDocument.createInstance("com.sun.star.text.TextFrame")

'Create a Size struct.
Set objSize= createStruct("com.sun.star.awt.Size") // helper function, see below
objSize.Width= 15000
objSize.Height= 400
objTextFrame.setSize(objSize)

' TextContentAnchorType.AS_CHARACTER = 1
objTextFrame.setPropertyValue "AnchorType", 1

'insert the frame
objText.insertTextContent objCursor, objTextFrame, false

'Get the text object of the frame
Set objFrameText= objTextFrame.getText

'Create a cursor object
Set objFrameTextCursor= objFrameText.createTextCursor

'Inserting some Text
objFrameText.insertString objFrameTextCursor, "The first line in the newly created text frame.", _
false
objFrameText.insertString objFrameTextCursor, _
vbLf & "With this second line the height of the frame raises.", false

'Create a paragraph break
'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH_BREAK constant
objFrameText.insertControlCharacter objCursor, 0 , false

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 65536
objCursor.setPropertyValue "CharShadowed", false

Chapter 3 Professional UNO 147

'Insert another string
objText.insertString objCursor, " That's all for now !!", false

On Error Resume Next
 If Err Then
 MsgBox "An error occurred"
End If

Sub insertIntoCell(strCellName, strText, objTable)
 Set objCellText= objTable.getCellByName(strCellName)
 Set objCellCursor= objCellText.createTextCursor
 objCellCursor.setPropertyValue "CharColor",16777215
 objCellText.insertString objCellCursor, strText, false
End Sub

Function createStruct(strTypeName)
 Set classSize= objCoreReflection.forName(strTypeName)
 Dim aStruct
 classSize.createObject aStruct
 Set createStruct= aStruct
End Function

This script created a new document and started the office, if necessary. The script also wrote text,
created and populated a table, used different background and pen colors. Only one object is
created as an ActiveX component called com.sun.star.ServiceManager. The service manager is
then used to create additional objects which in turn provided other objects. All those objects
provide functionality that can be used by invoking the appropriate functions and properties. A
developer must learn which objects provide the desired functionality and how to obtain them. The
chapter 2 First Steps introduces the main OpenOffice.org objects available to the programmer.

The Service Manager Component

Instantiation
The service manager is the starting point for all Automation clients. The service manager requires
to be created before obtaining any UNO object. Since the service manager is a COM component, it
has a CLSID and a programmatic identifier which is com.sun.star.ServiceManager. It is instanti -
ated like any ActiveX component, depending on the language used:
//C++
IDispatch* pdispFactory= NULL;
CLSID clsFactory= {0x82154420,0x0FBF,0x11d4,{0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};
hr= CoCreateInstance(clsFactory, NULL, CLSCTX_ALL, __uuidof(IDispatch), (void**)&pdispFactory);

In Visual C++, use classes which facilitate the usage of COM pointers. If you use the Active
Template Library (ATL), then the following example looks like this:
CComPtr<IDispatch> spDisp;
if(SUCCEEDED(spDisp.CoCreateInstance("com.sun.star.ServiceManager")))
{
 // do something
}

JScript:
var objServiceManager= new ActiveXObject("com.sun.star.ServiceManager");

Visual Basic:
Dim objManager As Object
Set objManager= CreateObject("com.sun.star.ServiceManager")

VBScript with WSH:
Set objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager")

JScript with WSH:
var objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager");

148 OpenOffice.org 1.1 Developer's Guide • June 2003

The service manager can also be created remotely, that is. on a different machine, taking the secu-
rity aspects into account. For example, set up launch and access rights for the service manager in
the system registry (see “DCOM”).

The code for the service manager resides in the office executable soffice.exe. COM starts up the
executible whenever a client tries to obtain the class factory for the service manager, so that the
client can use it.

Registry Entries
For the instantiation to succeed, the service manager must be properly registered with the system
registry . The keys and values shown in the tables below are all written during setup. It is not
necessary to edit them to use the Automation capability of the office. Automation works immedi-
ately after installation. There are three different keys under HKEY_CLASSES_ROOT that have the
following values and subkeys:

Key Value
CLSID\{82154420-0FBF-11d4-8313-005004526AB4} "StarOffice Service Manager (Ver 1.0)"
Sub Keys
LocalServer32 "<OfficePath>\program\soffice.exe”
NotInsertable
ProgIDcom.sun.star.ServiceManager.1 "com.sun.star.ServiceManager.1"
Programmable
VersionIndependentProgID "com.sun.star.ServiceManager"

Key Value
com.sun.star.ServiceManager "StarOffice Service Manager"
Sub Keys
CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"
CurVer "com.sun.star.ServiceManager.1"

Key Value
com.sun.star.ServiceManager.1 "StarOffice Service Manager (Ver 1.0)"
Sub Keys
CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"

The value of the key CLSID\{82154420-0FBF-11d4-8313-005004526AB4}\LocalServer32
reflects the path of the office executable.

All keys have duplicates under HKEY_LOCAL_MACHINE\SOFTWARE\Classes\.

The service manager is an ActiveX component, but does not support self-registration. That is, the
office does not support the command line arguments -RegServer or -UnregServer.
The service manager, as well as all the objects that it creates and that originate from it indirectly as
return values of function calls are proper automation objects. They can also be accessed remotely
through DCOM.

Chapter 3 Professional UNO 149

From UNO Objects to Automation Objects
The service manager is based on the UNO service manager and similar to all other UNO compo-
nents, is not compatible with Automation. The service manager can be accessed through the COM
API, because the service manager is an Active X component contained in an executable that is the
OpenOffice.org. When a client creates the service manager , for example by calling CreateObject
(), and the office is not running, it is started up by the COM system. The office then creates a class
factory for the service manager and registers it with COM. At that point, COM uses the factory to
instantiate the service manager and return it to the client.

When the function IClassFactory::CreateInstance is called, the UNO service manager is
converted into an Automation object. The actual conversion is carried out by the UNO service
com.sun.star.bridge.OleBridgeSupplier2 (see 3.4.4 Professional UNO - UNO Language Bind-
ings - Automation Bridge - The Bridge Services). The resulting Automation object contains the UNO
object and translates calls to IDispatch::Invoke into calls to the respective UNO interface func-
tion. The supplied function arguments, as well as the return values of the UNO function are
converted according to the defined mappings (see 3.4.4 Professional UNO - UNO Language Bindings
- Automation Bridge - Type Mappings). Returned objects are converted into Automation objects, so
that all objects obtained are always proper Automation objects.

Using UNO from Automation
With the IDL descriptions and documentation, start writing code that uses an interface. This
requires knowledge about the programming language, especially how UNO interfaces can be
accessed in that language and how function calls work.

In some languages, such as C++, the use of interfaces and their functions is simple, because the
IDL descriptions map well with the respective C++ counterparts. For example, the syntax of func-
tions are similar, and interfaces and out parameters can also be realized. The C++ language is not
the best choice for Automation, because all interface calls have to use IDispatch, which is difficult
to use in C++. In other languages, such as VB and Jscript, the IDispatch interface is hidden
behind an object syntax that leads to shorter and more understandable code.

Different interfaces can have functions with the same name. There is no way to call a function
which belongs to a particular interface, because interfaces can not be requested in Automation . If
a UNO object provides two functions with the same name, it is undefined which function will be
called. A solution for this issue is planned for the future.

Not all languages treat method parameters in the same manner, especially when it comes to input
parameters that are reused as output parameters. From the perspective of a VB programmer an
out parameter does not look different from an in parameter . However, to realize out parameter s in
Jscript, use an Array or Value Object that is a special construct provided by the Automation
bridge. JScript does not support out parameter s through calls by reference.

Calling Functions and Accessing Properties
The essence of Automation objects is the IDispatch interface. All function calls, including the
access to properties, ultimately require a call to IDispatch::Invoke. When using C++, the use of
IDispatch is rather cumbersome. For example, the following code calls createInstance
("com.sun.star.reflection.CoreReflection"):
OLECHAR* funcName= L"createInstance";
DISPID id;
IDispatch* pdispFactory= NULL;
CLSID clsFactory= {0x82154420,0x0FBF,0x11d4,{0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};
HRESULT hr= CoCreateInstance(clsFactory, NULL, CLSCTX_ALL, __uuidof(IDispatch), (void**)&pdispFactory);

150 OpenOffice.org 1.1 Developer's Guide • June 2003

if(SUCCEEDED(pdispFactory->GetIDsOfNames(IID_NULL, &funcName, 1, LOCALE_USER_DEFAULT, &id)))
{
 VARIANT param1;
 VariantInit(¶m1);
 param1.vt= VT_BSTR;
 param1.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection");
 DISPPARAMS dispparams= { ¶m1, 0, 1, 0};
 VARIANT result;
 VariantInit(&result);
 hr= pdispFactory->Invoke(id, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, &result, NULL, 0);
}

First the COM ID for the method name createInstance() is retrieved from GetIdsOfNames, then
the ID is used to invoke() the method createInstance().
Before calling a certain function on the IDispatch interface, get the DISPID by calling GetIDsOf-
Names. The DISPIDs are generated by the bridge, as required. There is no fixed mapping from
member names to DISPIDs, that is, the DISPID for the same function of a second instance of an
object might be different. Once a DISPID is created for a function or property name, it remains the
same during the lifetime of this object.

Helper classes can make it easier. The next example shows the same call realized with helper
classes from the Active Template Library:

CComDispatchDriver spDisp(pdispFactory);
CComVariant param(L“com.sun.star.reflection.CoreReflection“);
CComVariant result;
hr= spUnk.Invoke1(L“createInstance“,param, result);

Some frameworks allow the inclusion of COM type libraries that is an easier interface to Automa-
tion objects during development. These helpers cannot be used with UNO, because the SDK does
not provide COM type libraries for UNO components. While COM offers various methods to
invoke functions on COM objects, UNO supports IDispatch only.

Programming of Automation objects is simpler with VB or JScript, because the IDispatch inter -
face is hidden and functions can be called directly. Also, there is no need to wrap the arguments
into VARIANTs.
//VB
Dim objRefl As Object
Set objRefl= dispFactory.createInstance(“com.sun.star.reflection.CoreReflection”)

//JScript
var objRefl= dispFactory.createInstance(“com.sun.star.reflection.CoreReflection”);

Pairs of get /set functions following the pattern
SomeType getSomeProperty()
void setSomeProperty(SomeType aValue)

are handled as COM object properties.

Accessing such a property in C++ is similar to calling a method. First, obtain a DISPID, then call
IDispatch::Invoke with the proper arguments.
 DISPID dwDispID;
 VARIANT value;
 VariantInit(&value);
 OLECHAR* name= L“AttrByte“;
 HRESULT hr = pDisp->GetIDsOfNames(IID_NULL, &name, 1, LOCALE_USER_DEFAULT, &dwDispID);
 if (SUCCEEDED(hr))
 {
 // Get the property
 DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};
 pDisp->Invoke(dwDispID, IID_NULL,LOCALE_USER_DEFAULT, DISPATCH_PROPERTYGET,
 &dispparamsNoArgs, &value, NULL, NULL);
 // The VARIANT value contains the value of the property

 // Sset the property
 VARIANT value2;
 VariantInit(value2);
 value2.vt= VT_UI1;
 value2.bval= 10;

Chapter 3 Professional UNO 151

 DISPPARAMS disparams;
 dispparams.rgvarg = &value2;
 DISPID dispidPut = DISPID_PROPERTYPUT;
 dispparams.rgdispidNamedArgs = &dispidPut;
 pDisp->Invoke(dwDispID, IID_NULL,LOCALE_USER_DEFAULT, DISPATCH_PROPERTYPUT,
 &dispparams, NULL, NULL, NULL);
 }

When the property is an IUnknown*,IDispatch*, or SAFEARRAY*, the flag DISPATCH_PROPERTYPU-
TREF must be used. This is also the case when a value is passed by reference (VARIANT.vt =
VT_BYREF | ...).

The following example shows using the ATL helper it looks simple:
CComVariant prop;
CComDispatchDriver spDisp(pDisp);
// get the property
spDisp.GetPropertyByName(L“AttrByte“,&prop);
//set the property
CComVariant newVal((BYTE) 10);
spDisp.PutPropertyByName(L“AttrByte“,&newVal);

The following example using VB and JScript it is simpler:
//VB
Dim prop As Byte
prop= obj.AttrByte

Dim newProp As Byte
newProp= 10
obj.AttrByte= newProp
'or
obj.AttrByte= 10

//JScript
var prop= obj.AttrByte;
obj.AttrByte= 10;

Service properties are not mapped to COM object properties. Use interfaces, such as
com.sun.star.beans.XPropertySet to work with service properties.

Return Values
There are three possible ways to return values in UNO:

• function return values

• inout parameters

• out parameters

Return values are commonplace in most languages, whereas inout and out parameters are not
necessarily supported. For example, in JScript.

To receive a return value in C++ provide a VARIANT argument to IDispatch::Invoke:
 //UNO IDL
long func();

//
 DISPPARAMS dispparams= { NULL, 0, 0, 0};
 VARIANT result;
 VariantInit(&result);
 hr= pdisp->Invoke(dispid, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, &result, NULL, 0);

The following example shows using VB and JScript this is simple:
//VB
Dim result As Long
result= obj.func

//JScript
var result= obj.func

152 OpenOffice.org 1.1 Developer's Guide • June 2003

When a function has inout parameter s then provide arguments by reference in C++:
//UNO IDL
void func([inout] long val);

//C++
long longOut= 10;
VARIANT var;
VariantInit(&var);
var.vt= VT_BYREF | VT_I4;
var.plVal= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, NULL, NULL, 0);

//The value of longOut will be modified by UNO function.

The above VB code is written like this, because VB uses call by reference by default. After the call
to func(), value contains the function output:
Dim value As Long
value= 10
obj.func value

The type of argument corresponds to the UNO type according to the default mapping, cf . 3.4.4
Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings. If in doubt, use
VARIANTs.
Dim value As Variant
value= 10;
obj.func value

However, there is one exception. If a function takes a character (char) as an argument and is called
from VB, use an Integer, because there is no character type in VB. For convenience, the COM
bridge also accepts a String as inout and out parameter :
//VB
Dim value As String
// string must contain only one character
value= "A"
Dim ret As String
obj.func value

JScript does not have inout or out parameters. As a workaround, the bridge accepts JScript Array
objects. Index 0 contains the value.
// Jscript
var inout= new Array();
inout[0]=123;
obj.func(inout);
var value= inout[0];

Out parameters are similar to inout parameters in that the argument does not need to be initial-
ized.
//C++
long longOut;
VARIANT var;
VariantInit(&var);
var.vt= VT_BYREF | VT_I4;
var.plVal= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, NULL, NULL, 0);

//VB
Dim value As Long
obj.func value

//JScript
var out= new Array();
obj.func(out);
var value= out[0];

Chapter 3 Professional UNO 153

Usage of Types

Interfaces

Many UNO interface functions take interfaces as arguments. If this is the case, there are three
possibilities to get an instance that supports the needed interface:

• Ask the service manager to create a service that implements that interface.

• Call a function on a UNO object that returns that particular interface.

• Provide an interface implementation if a listener object is required. Refer to 3.4.4 Professional
UNO - UNO Language Bindings - Automation Bridge - Automation Objects with UNO Interfaces for
additional information.

If createInstance() is called on the service manager or another UNO function that returns an
interface, the returned object is wrapped, so that it appears to be a COM dispatch object. When it is
passed into a call to a UNO function then the original UNO object is extracted from the wrapper
and the bridge makes sure that the proper interface is passed to the function. If UNO objects are
used, UNO interfaces do not have to be dealt with. Ensure that the object obtained from a call to a
UNO object implements the proper interface before it is passed back into another UNO call.

Structs

Automation does not know about structs as they exist in other languages, for example, in C++.
Instead, it uses Automation objects that contain a set of properties similar to the fields of a C++
struct. Setting or reading a member ultimately requires a call to IDispatch::Invoke. However in
languages, such as VB, VBScript, and JScript, the interface call is obscured by the programming
language. Accessing the properties is as easy as with C++ structs.
// VB. obj is an object that implements a UNO struct
obj.Width= 100
obj.Height= 100

Whenever a UNO function requires a struct as an argument, the struct must be obtained from the
UNO environment. It is not possible to declare a struct. For example, assume there is an office
function setSize() that takes a struct of type Size. The struct is declared as follows:
// UNO IDL
struct Size
{
 long Width;
 long Height;
}

// the interface function, that will be called from script
void XShape::setSize(Size aSize)

You cannot write code similar to the following example (VBScript):
Class Size
 Dim Width
 Dim Height
End Class

'obtain object that implements Xshape

'now set the size
call objXShape.setSize(new Size) // wrong

The com.sun.star.reflection.CoreReflection service or the Bridge_GetStruct function that
is called on any UNO object can be used to create the struct. The following example uses the Core-
Reflection service
'VBScript in Windows Scripting Host
Set objServiceManager= Wscript.CreateObject("com.sun.star.ServiceManager")

'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection")

154 OpenOffice.org 1.1 Developer's Guide • June 2003

'get a type description class for Size
Set classSize= objCoreReflection.forName("com.sun.star.awt.Size")
'create the actual object
Dim aSize
classSize.createObject aSize
'use aSize
aSize.Width= 100
aSize.Height= 12

'pass the struct into the function
objXShape.setSize aSize

The next example shows how Bridge_GetStruct is used.
Set objServiceManager= Wscript.CreateObject("com.sun.star.ServiceManager")
Set aSize= objServiceManager.Bridge_GetStruct("com.sun.star.awt.Size")
'use aSize
aSize.Width= 100
aSize.Height= 12

objXShape.setSize aSize

The Bridge_GetStruct function can be called on any UNO object, as well as the service manager.

The corresponding C++ examples look complicated, but ultimately the same steps are necessary.
The method forName() on the CoreReflection service is called and returns a
com.sun.star.reflection.XIdlClass which can be asked to create an instance using
createObject():
// create the service manager of OpenOffice
IDispatch* pdispFactory= NULL;
CLSID clsFactory= {0x82154420,0x0FBF,0x11d4,{0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};
hr= CoCreateInstance(clsFactory, NULL, CLSCTX_ALL, __uuidof(IDispatch), (void**)&pdispFactory);

// create the CoreReflection service
OLECHAR* funcName= L"createInstance";
DISPID id;
pdispFactory->GetIDsOfNames(IID_NULL, &funcName, 1, LOCALE_USER_DEFAULT, &id);

VARIANT param1;
VariantInit(¶m1);
param1.vt= VT_BSTR;
param1.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection");
DISPPARAMS dispparams= { ¶m1, 0, 1, 0};
VARIANT result;
VariantInit(&result);
hr= pdispFactory->Invoke(id, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, &result, NULL, 0);
IDispatch* pdispCoreReflection= result.pdispVal;
pdispCoreReflection->AddRef();
VariantClear(&result);

// create the struct's idl class object
OLECHAR* strforName= L"forName";
hr= pdispCoreReflection->GetIDsOfNames(IID_NULL, &strforName, 1, LOCALE_USER_DEFAULT, &id);
VariantClear(¶m1);
param1.vt= VT_BSTR;
param1.bstrVal= SysAllocString(L"com.sun.star.beans.PropertyValue");
hr= pdispCoreReflection->Invoke(id, IID_NULL, LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &dispparams, &result, NULL, 0);
IDispatch* pdispClass= result.pdispVal;
pdispClass->AddRef();
VariantClear(&result);

// create the struct
OLECHAR* strcreateObject= L"createObject";
hr= pdispClass->GetIDsOfNames(IID_NULL,&strcreateObject, 1, LOCALE_USER_DEFAULT, &id)
IDispatch* pdispPropertyValue= NULL;
VariantClear(¶m1);
param1.vt= VT_DISPATCH | VT_BYREF;
param1.ppdispVal= &pdispPropertyValue;
hr= pdispClass->Invoke(id, IID_NULL, LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &dispparams, NULL, NULL, 0);
// do something with the struct pdispPropertyValue contained in dispparams
// ...

pdispPropertyValue->Release();
pdispClass->Release();
pdispCoreReflection->Release();
pdispFactory->Release();

Chapter 3 Professional UNO 155

The Bridge_GetStruct example.
// object be some UNO object in a COM environment
OLECHAR* strstructFunc= L"Bridge_GetStruct";
hr= object->GetIDsOfNames(IID_NULL, &strstructFunc, 1, LOCALE_USER_DEFAULT, &id);
VariantClear(&result);
VariantClear(¶m1);
param1.vt= VT_BSTR;
param1.bstrVal= SysAllocString(
L"com.sun.star.beans.PropertyValue");
hr= object->Invoke(id, IID_NULL,LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, &result, NULL, 0);
IDispatch* pdispPropertyValue= result.pdispVal;
pdispPropertyValue->AddRef();
// do something with the struct pdispPropertyValue
...

JScript:
// struct creation via CoreReflection
var objServiceManager= new ActiveXObject("com.sun.star.ServiceManager");
var objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection");

var classSize= objCoreReflection.forName("com.sun.star.awt.Size");
var outParam= new Array();
classSize.createObject(outParam);
var size= outParam[0];
//use the struct
size.Width=111;
size.Height=112;
// --
// struct creation by bridge function
var objServiceManager= new ActiveXObject("com.sun.star.ServiceManager");
var size= objServiceManager.Bridge_GetStruct("com.sun.star.awt.Size");
size.Width=111;
size.Height=112;

Type Mappings

Mapping of Simple Types
Whenever a UNO interface function requires a value of a simple type, such as float, double,
byte, short, long or char, it is provided by declaring a variable of that type (or a constant or
temporary variable) in the programming language used and passes it as an argument. This is the
customary way of programming. UNO simple types are the same as Automation types and the
bridge has a method of converting them.

In some languages, the set of available types does not match those of UNO types. For instance, in
Visual Basic, a character can not be declared, and a string is used instead. This does not concern a
VB programmer, but if C++ is used, then you would typically provide a short value ('A') which is
totally different from the BSTR string that is used when you write "A" in VB.

Other examples for languages with a different set of simple types (compared to UNO) are the
scripting languages VBScript and JScript. They are considered to be type- less languages, because
they do not allow variables of specific types to be declared. At a basic level they use Automation
types as well. They may not use the whole range (this is an implementation detail and might differ
between scripting engines). For example, they use a double for every floating point value and a
signed long for all integer values. This does not pose a problem, because the bridge converts
those values into the expected floating point or integer types. The programmer has to be aware of
this fact to prevent unexpected results caused by providing a value that exceeds the range of the
expected UNO type. For example, if you pass an integer value of 65536 where the UNO type is a
byte (-128 to 127), the converted value is different then the one provided. Also the conversion of
double to float or vice versa often results in slightly different values.

156 OpenOffice.org 1.1 Developer's Guide • June 2003

Automatic Type Conversion
Every UNO object obtained directly or indirectly from the service manager is an Automation
object that contains the actual UNO object. The wrapper contains code that implements the IDis-
patch interface. During a call to IDispatch::Invoke, the wrapper- code converts the arguments to
UNO values, and the respective UNO function of the contained object is called with those values
as arguments.

The IDispatch interface reveals that all arguments and return values are actually VARIANTs. This
is similar to the XInvocation interface where arguments and return values are of the any type.
Both types carry values of a specific type. A VARIANT can contain all Automation types and an any
can contain all UNO types. Therefore, it would be suitable to say that VARIANT values are
converted into any values and vice versa. The contained values still have to be converted. When
working with VARIANTs and anys, extract the contained values for further processing. Before
calling those interfaces, put the values into VARIANTs or anys. This process is sometimes hidden by
the programming language you use. For example:
//UNO IDL
string func([in] long value);
//VB
Dim value As Long
value= 100
Dim ret As String
ret= obj.func(value)

Since VARIANT and any are helper types that allow writing code when the specific types are not yet
known, we need to focus on the mapping of the specific types. The VARIANTs or anys are only
mentioned if there is reason to look beyond the mapping of the contained types.

The bridge converts arguments according to well-defined mappings. The default mappings are
sufficient in most cases. The bridge also accepts arguments for flexibility whose types do not
exactly match the default mappings, but are similar enough to be converted (3.4.4 Professional
UNO - UNO Language Bindings - Automation Bridge - Type Mappings). In some situations, it may be
necessary for an Automation client to specify how an argument should be treated. This can be the
case in scripting languages, where the language does not provide specific types. Refer to 3.4.4
Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings. When Automation
objects are used from UNO, there is no construct as a Value Object. The bridge always uses the
default mappings.

Default Mappings from Automation Types to UNO
This mapping applies in two situations. First, whenever you call a UNO function from an Auto-
mation environment, for example, from VB, the arguments flagged as in or inout parameters in the
corresponding UNO IDL description are converted according to the following default mappings.
Second, when Automation objects are called from a UNO environment and return a value, the
return values are converted to the corresponding UNO types.

Automation IDL Types
(source)

UNO IDL Types
(target)

boolean boolean
unsigned char byte
double double
float float
short short
long long
BSTR string
short char

Chapter 3 Professional UNO 157

Automation IDL Types
(source)

UNO IDL Types
(target)

long enum
IDispatch* The IDispatch* is mapped to the expected interface if it is actually a UNO

object implementing that interface, or an Automation implementation of
that interface (see 3.4.4 Professional UNO - UNO Language Bindings - Automa-
tion Bridge - Usage of Types).
If the IDispatch* is a return value or out parameter, then it is mapped to
XInvocation.
If the Automation object is a struct, UNO receives a struct (see 3.4.4 Profes-
sional UNO - UNO Language Bindings - Automation Bridge - Usage of Types).

SAFEARRAY or
IDispatch* in JScript sequence< type >. A two-dimensional SAFEARRAY is converted to

sequence< sequence<type>>, a three-dimensional SAFEARRAY is
converted to sequence<sequence<sequence<type>>>, and so forth. In
JScript one would provide an Array object that contains other Array
objects.

Default Mappings from UNO Types to Automation
If an Automation client calls a function on a UNO object and the function returns values such as
out parameters or the return value, then the mapping from UNO to Automation types applies. For
example:
//UNO IDL
long func([out] long value);

//call from VB
Dim value As Long
Dim ret As Long
ret= obj.func(value)

The returned value is a UNO long that is converted into an Automation long, which fits the
declaration of the variable ret. When the UNO function returns, then the bridge converts the out
parameter according to the mapping and writes the value back into the variable value.

In some situations, the client code performs a conversion on its own (this behavior is covered in “Client-Side
Conversions”).

This mapping is also used when you pass arguments to functions on an Automation object from a
UNO environment.

UNO IDL Types
(source)

Automation IDL Types
(target)

boolean boolean
char short
byte unsigned byte
double double
float float
short, unsigned short short
long, unsigned long long
string BSTR
interface,struct IDispatch*
sequence SAFEARRAY(VARIANT)

If a UNO function returns interfaces or structs, they are converted into Automation objects. For
example:

158 OpenOffice.org 1.1 Developer's Guide • June 2003

//UNO IDL
void func([out]com.sun.star.lang.XEventListener aInterface, [out]com.sun.star.lang.EventObject aStruct);

//VB
Dim objEventListener As Object
Dim objStruct As Object
func objEventListener, objStruct

A sequence returned by a UNO function is converted into a SAFEARRAY that contains VARIANTs. If
a sequence contains nested sequences, the VARIANTs contain SAFEARRAYs. The OleObjectFactory
creates Automation objects and provides an com.sun.star.script.XInvocation interface which
can be used from the UNO environment. These objects might expect multi-dimensional SAFEAR-
RAYs as arguments. In this is the case, provide an appropriate sequence, for example
sequence<sequence<long>> for a two-dimensional array of longs. The contained sequences
should have the same length, otherwise the bridge uses the longest sequence to stipulate the size
of the respective dimension. If a sequence is shorter, then the remaining values are filled with null
values.

For example, assume a sequence with two elements that are sequences of ten elements. The
elements of the two sequences are long types and the first sequence could be mapped to an array,
which is expressed in C (for convenience):
long ar[2][10];

Further assume that the second of the two contained sequences only contains five elements. The C
array would still look the same. With the difference, that ar[0][0] through ar[0][4] contain the
elements of that sequence, and ar[0][4] through ar[0][9] contain null values.

Sequences are mapped to SAFEARRAYs and not C arrays.

Conversion Mappings
As shown in the previous section, Automation types have a UNO counterpart according to the
mapping tables. If a UNO function expects a particular type as an argument, then supply the
corresponding Automation type. This is not always necessary as the bridge also accepts similar
types. For example:
//UNO IDL
void func(long value);
// VB
Dim value As Byte
value = 2
obj.func valLong

The following table shows the various Automation types, and how they are converted to UNO
IDL types if the expected UNO IDL type has not been passed.

Automation IDL Types
(source)

UNO IDL
Types (target)

boolean (true, false)
unsigned char, short, long, float, double: 0 = false, > 0 = true
string: "true" = true, "false" = false

boolean

boolean, unsigned char, short, long, float, double, string byte
double, boolean, unsigned char, short, long, float, string double
float, boolean, unsigned char, short, string float
short, unsigned char, long, float, double, string short
long, unsigned char, long, float, double, string long
BSTR, boolean, unsigned char, short, long, float, double string
short, boolean, unsigned char, long, float, double, string (1 character
long)

char

long, boolean, unsigned char, short, float, double, string enum

Chapter 3 Professional UNO 159

When you use a string for a numeric value, it must contain an appropriate string representation of
that value.

Floating point values are rounded if they are used for integer values.

Be careful using types that have a greater value space than the UNO type. Do not provide an argu-
ment that exceeds the value space which would result in an error. For example:
// UNO IDL
void func([in] byte value);

// VB
Dim value as Integer
value= 1000
obj.func value 'causes an error

The conversion mappings only work with in parameters, that is, during calls from an Automation
environment to a UNO function, as far as the UNO function takes in parameters.

Client-Side Conversions
The UNO IDL description and the defined mappings indicate what to expect as a return value
when a particular UNO function is called. However, the language used might apply yet another
conversion after a value came over the bridge.
// UNO IDL
float func();

// VB
Dim ret As Single
ret= obj.func() 'no conversion by VB

Dim ret2 As String
ret2= obj.func() 'VB converts float to string

When the function returns, VB converts the float value into a string and assigns it to ret2. Such
a conversion comes in useful when functions return a character, and a string is preferred instead
of a VB Integer value.
// UNO IDL
char func();

// VB
Dim ret As String
ret= obj.func() 'VB converts the returned short into a string

Be aware of the different value spaces if taking advantage of these conversions. That is, if the
value space of a variable that receives a return value is smaller than the UNO type, a runtime error
might occur if the value does not fit into the provided variable. Refer to the documentation of your
language for client-side conversions.

Client-side conversions only work with return values and not with out or inout parameter s. The
current bridge implementation is unable to transport an out or inout parameter back to Automa-
tion if it does not have the expected type according to the default mapping.

Another kind of conversion is done implicitly. The user has no influence on the kind of conver-
sion. For example, the scripting engine used with the Windows Scripting Host or Internet Explorer
uses double values for all floating point values. Therefore, when a UNO function returns a float
value, then it is converted into a double which may cause a slightly different value. For example:
// UNO IDL
float func(); //returns 3.14

// JScript
var ret= obj.func(); // implicit conversion from float to double, ret= 3.14000010490417

160 OpenOffice.org 1.1 Developer's Guide • June 2003

Mapping of Any
The any type is similar to VARIANT in COM. That is, it can contain values of different types. Do not
put a value into a VARIANT if a function argument needs to be an any.
// UNO IDL
interface XSomething: XInterface
{
 void func([in] any value);
};

// Visual Basic
Dim param As Long
param= 10

// obj is the object that implements XSomething
obj.func param

In C++, set the value directly in the VARIANT that is put into the DISPPARAMS.rgvarg array. That
is, there is no need to provide a VARIANT with the type VT_VARIANT | VT_BYREF.

Although an any can contain all possible UNO types, an any argument must contain a certain
type. An example is the com.sun.star.beans.XPropertySet interface with its function:
// UNO IDL
void setPropertyValue([in] string aPropertyName,
 [in] any aValue) raises ...

As the name suggests, the function is used to set a value for a particular property. Usually the
properties have a distinct type and are not anys. Lets assume that there is a property PropA of type
float. Then a Single in VB or a float in C++ has to be provided. In JScript or VBScript, the
scripting engine will probably pass a double to the function which would not be converted by the
bridge. That is, setPropertyValue() would receive an any containing a double. If the
programmer of the XPropertySet implementation was not careful converting the any into the
type that is expected then the code will throw an exception. There is no rule about how tolerant
the implementation has to be. The bridge does not know that the property is a float and hence it
needs to be told. This it is done by providing a Value Object as argument. A Value Object is an
Automation object that is provided by the bridge. It carries a value and the name of the type that it
is supposed to be. For example:
// VBScript with Windows Scripting Host (WSH)
Set objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager")
Set aFloat= objServiceManager.Bridge_GetValueObject()
aFloat.Set "float", 3.14

// obj is the implementation of XSomething
obj.setPropertyValue "PropA", aFloat

Value Objects are covered in depth in chapter 3.4.4 Professional UNO - UNO Language Bindings -
Automation Bridge - Type Mappings.

In JScript, an any argument can cause problems when the client provides an array or object as a
parameter, because the Array object is used for arrays. The bridge receives an IDispatch pointer
in both cases, because it is an object. To make a decision about what conversion is applied, the
bridge obtains type information about the function that is to be called and proceeds accordingly:
// UNO IDL
void func(XSomething obj);
void func2(sequence<long> ar);

The bridge has to convert an IDispatch in both cases.,The type information says exactly what
IDispatch* supports: It must be an interface for func() , but a sequence for func2().
// UNO IDL
void func(any val);

// JScript
// obj is an automation object
func(obj);

Chapter 3 Professional UNO 161

The bridge obtains type information in the above example, but it only knows that the argument is
of type any. The bridge does not know whether to convert IDispatch into an interface or a
sequence. Since the conversions are different, a wrong decision will cause an error when the
converted object is accessed later. In this situation, the bridge assumes that the object is an array if
it has a property named 0. This will work, because an interface has a get0() or set0() function. If
not, use a Value Object for arrays and objects which could contain a 0 property.

Mapping of String
A string is a data structure that is common in programming languages. Although the idea of a
string is the same, the implementations and their creation can be quite different. For example, a
C++ programmer has a range of possibilities to choose from (for example, char*, char[],
wchar_t*, wchar_t[], std::string, CString, BSTR), where a JScript programmer only knows
one kind of string. To use Automation across languages, it is necessary to use a string type that is
common to all those languages that has the same binary representation. This particular string is
declared as BSTR in COM. The name can be different depending on the language. For example, in
C++ there is a BSTR type, in VB it is called String and in JScript every string defined is a BSTR.
Refer to the documentation covering the BSTR's equivalent if using an Automation capable
language not covered by this document.

Mapping of Sequence
The discussion about strings applies for arrays as well. The difference is the array type used by
Automation is named SAFEARRAY in COM. The SAFEARRAY array is to be used when a UNO func-
tion takes a sequence as an argument. To create a SAFEARRAY in C++, use Windows API functions.
The C++ name is also SAFEARRAY, but in other languages it might be named different. In VB for
example, the type does not even exist, because it is mapped to an ordinary VB array:
Dim myarr(9) as String

JScript is different. It does not have a method to create a SAFEARRAY. Instead, JScript features an
Array object that can be used as a common array in terms of indexing and accessing its values. It is
represented by a dispatch object internally. JScript offers a VBArray object that converts a
SAFEARRAY into an Array object. Therefore, it is possible to call functions on Automation objects
which return SAFEARRAYs.

When a SAFEARRY is provided and a function is expecting a UNO sequence, the bridge accepts
JScript Array objects and converts them into a UNO sequence.

If a SAFEARRAY is obtained in JScript as a result of a call to an ActiveX component or a VB Script function
(for example, the Internet Explorer allows JScript and VBS code on the same page), then it can also be used as
an argument of a UNO function without converting it to an Array object.

If a UNO function returns a sequence, a SAFEARRAY is returned in JScript. Use the VBArray object
to convert the SAFEARRAY into a JScript Array to process the array.

Value Objects
Since the Automation bridge supports JScript, it has to deal with ambiguities when it comes to the
conversion of arguments. Arguments, which are dispatch objects, can represent three different
kinds of values: objects, arrays or out / inout parameter s. To solve this problem, the bridge obtains
type information about the UNO function that receives the argument. The bridge must always get
type information if an argument is an object, because the bridge does not know the language that
is being used. In a remote environment, this causes additional network roundtrips and slows
down overall performance. With a Value Object, programmers can provide some type informa-
tion and save the bridge from obtaining it.

162 OpenOffice.org 1.1 Developer's Guide • June 2003

When a UNO interface function takes an any as an argument and the bridge receives an object,
then it be mistaken for a JScript array. This is described in paragraph 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge - Type Mappings. With a Value Object, the bridge knows
exactly what the object stands for and converts it correctly.

A Value Object is an Automation object. It offers functions for setting and getting a value, and
determines if it represents an inout or out parameter . The client can use Value Objects for every
possible argument of a UNO function.

A Value Object exposes four functions that can be accessed through IDispatch. These are:
void Set([in]VARIANT type, [in]VARIANT value);

Assigns a type and a value.
void Get([out,retval] VARIANT* val);

Returns the value contained in the object. Get is used when the Value Object was used as
inout or out parameter .

void InitOutParam();
Tells the object that it is used as out parameter .

void InitInOutParam([in]VARIANT type, [in]VARIANT value);
Tells the object that it is used as inout parameter and passes the value for the in parameter,
as well as the type.

When the Value Object is used as in or inout parameter then specify the type of the value. The
names of types correspond to the names used in UNO IDL, except for the “object” name. The
following table shows what types can be specified.

Name (used with Value Object) UNO IDL
char char
boolean boolean
byte byte
unsigned unsigned byte
short short
unsigned short unsigned short
long long
unsigned long unsigned long
string string
float float
double double
any any
object some UNO interface

To show that the value is a sequence, put brackets before the names, for example:
[]char - sequence<char>
[][]char - sequence < sequence <char > >
[][][]char - sequence < sequence < sequence < char > > >

The Value Objects are provided by the bridge and can be obtained from UNO objects. Call the
function Bridge_GetValueObject:
// object is some UNO wrapper object
var valueObject= object.Bridge_GetValueObject();

To use a Value Object as in parameter , specify the type and pass the value to the object:
// UNO IDL
void doSomething([in] sequence< short > ar);

Chapter 3 Professional UNO 163

// JScript
var value= object.Bridge_GetValueObject();
var array= new Array(1,2,3);
value.Set("[]short",array);
object.doSomething(value);

In the previous example, the Value Object was defined to be a sequence of short values. The
array could also contain Value Objects again:
var value1= object.Bridge_GetValueObject();
var value2= object.Bridge_GetValueObject();
value1.Set("short“, 100);
value2.Set("short", 111);
var array= new Array();
array[0]= value1;
array[1]= value2;
var allValue= object.Bridge_GetValueObject();
allValue.Set("[]short“, array);
object.doSomething(allValue);

If a function takes an out parameter , tell the Value Object like this:
// UNO IDL
void doSomething([out] long);

// JScript
var value= object.Bridge_GetValueObject();
value.InitOutParam();
object.doSomething(value);
var out= value.Get();

When the Value Object is an inout parameter, it needs to know the type and value as well:
//UNO IDL
void doSomething([inout] long);

//JScript
var value= object.Bridge_GetValueObject();
value.InitInOutParam("long", 123);
object.doSomething(value);
var out= value.Get();

Exceptions and Errorcodes
UNO interface functions may throw exceptions to communicate an error. Automation objects
provide a different error mechanism. First, the IDispatch interface describes a number of error
codes (HRESULTs) that are returned under certain conditions. Second, the Invoke function takes an
argument that can be used by the object to provide descriptive error information. The argument is
a structure of type EXCEPINFO and is used by the bridge to convey exceptions being thrown by the
called UNO interface function. In case of an exception, the bridge fills in the following values:

EXCEPINFO::wCode = 1001

EXCEPINFO::bstrSource = “any ONE component”

EXCEPINFO::bstrDescription = type name of the exceptions

If the caller does not provide an EXCEPINFO argument, then Invoke returns a DISP_E_EXCEPTION
as HRESULT.

As already stated, the functions of IDispatch return error codes. The reasons for those codes are
shown in the following tables.

Possible HRESULT return values of IDispatch::Invoke are:

164 OpenOffice.org 1.1 Developer's Guide • June 2003

HRESULT Reason
DISP_E_EXCEPTION • UNO interface function or property access function threw

an exception and the caller did not provide an EXCEPINFO
argument.

• Bridge error. A ValueObject could not be created when the
client called Bridge_GetValueObject.

• Bridge error. A struct could not be created when the client
called Bridge_GetStruct

• Bridge error. The automation object contains a UNO object
that does not support the XInvocation interface. Could
be a failure of com.sun.star.script.Invocation
service.

• In JScript was an Array object passed as inout param and
the bridge could not retrieve the property “0”.

• A conversion of a VARIANTARG (DISPPARAMS structure)
failed for some reason.

• Parameter count does not tally with the count provided by
UNO type information (only when one DISPPARAMS
contains VT_DISPATCH). This is a bug.
DISP_E_BADPARAMCOUNT should be returned.

DISP_E_NONAMEDARGS • The caller provided “named arguments” for a call to a
UNO function.

DISP_E_BADVARTYPE • Conversion of VARIANTARGs failed.

• Bridge error: Caller provided a ValueObject and the
attempt to retrieve the value failed. This is possibly a bug.
DISP_E_EXCEPTION should be returned.

• A member with the current name does not exist according
to type information. This is a bug. DISP_E_MEMBERNOT-
FOUND should be returned.

DISP_E_BADPARAMCOUNT • A property was assigned a value and the caller provided
null or more than one arguments.

• The caller did not provide the number of arguments as
required by the UNO interface function.

DISP_E_MEMBERNOTFOUND • Invoke was called with a DISPID that was not issued by
GetIDsOfName (OleBridgeSupplier2)

• There is no interface function (also property access func-
tion) with the name for which Invoke is currently being
called.

DISP_E_TYPEMISMATCH The called provided an argument of a false type.
DISP_E_OVERFLOW An argument could not be coerced to the expected type.

Internal call to XInvocation::invoke resulted in a
CannotConvertException being thrown. The field
reason has the value OUT_OF_RANGE which means that a
given value did not fit in the range of the destination type.

Chapter 3 Professional UNO 165

HRESULT Reason
E_UNEXPECTED [2]results from

com.sun.star.script.CannotConvertException of
XInvocation::invoke with FailReason::UNKNOWN.
Internal call to XInvocation::invoke resulted in a
com.sun.star.script.CannotConvertException
being thrown. The field reason has the value UNKNOWN, which
signifies some unknown error condition.

E_POINTER Bridge_GetValueObject or Bridge_GetStruct called
and no argument for return value provided.

S_OK Ok.

Return values of IDispatch::GetIDsOfNames:

HRESULT Reason
E_POINTER Caller provided no argument that receives the DISPID.
DISP_E_UNKNOWNNAME There is no function or property with the given name.

OleBridgeSupplierVar1: The name has been determined
not to exist by a previous call to IDispatch::Invoke

S_OK Ok.

The functions IDispatch::GetTypeInfo and GetTypeInfoCount return E_NOTIMPL.

When a call from UNO to an Automation object (OleObjectFactory) is performed, then the
following HRESULT values are converted to exceptions. Keep in mind that it is determined what
exceptions the functions of XInvocation are allowed to throw.

Exceptions thrown by XInvocation::invoke() and their HRESULT counterparts:

 HRESULT Exception
DISP_E_BADPARAMCOUNT com.sun.star.lang.IllegalArgumentException
DISP_E_BADVARTYPE com.sun.star.uno.RuntimeException
DISP_E_EXCEPTION com.sun.star.reflection.InvocationTargetExcept

ion
DISP_E_MEMBERNOTFOUND com.sun.star.lang.IllegalArgumentException
DISP_E_NONAMEDARGS com.sun.star.lang.IllegalArgumentException
DISP_E_OVERFLOW com.sun.star.script.CannotConvertException,

reason= FailReason::OUT_OF_RANGE
DISP_E_PARAMNOTFOUND com.sun.star.lang.IllegalArgumentException
DISP_E_TYPEMISMATCH com.sun.star.script.CannotConvertException,

reason= FailReason::UNKNOWN
DISP_E_UNKNOWNINTERFACE com.sun.star.uno.RuntimeException
DISP_E_UNKNOWNLCID com.sun.star.uno.RuntimeException
DISP_E_PARAMNOTOPTIONAL com.sun.star.script.CannotConvertException,

reason= FailReason::NO_DEFAULT_AVAILABLE

XInvocation::setValue() throws the same as invoke() except for:

166 OpenOffice.org 1.1 Developer's Guide • June 2003

HRESULT Exception
DISP_E_BADPARAMCOUNT com.sun.star.uno.RuntimeException
DISP_E_MEMBERNOTFOUND com.sun.star.beans.UnknownPropertyException
DISP_E_NONAMEDARGS com.sun.star.uno.RuntimeException

XInvocation::getValue() throws the same as invoke() except for:

HRESULT Exception
DISP_E_BADPARAMCOUNT com.sun.star.uno.RuntimeException
DISP_E_EXCEPTION com.sun.star.uno.RuntimeException
DISP_E_MEMBERNOTFOUND com.sun.star.beans.UnknownPropertyException
DISP_E_NONAMEDARGS com.sun.star.uno.RuntimeException
DISP_E_OVERFLOW com.sun.star.uno.RuntimeException
DISP_E_PARAMNOTFOUND com.sun.star.uno.RuntimeException
DISP_E_TYPEMISMATCH com.sun.star.uno.RuntimeException
DISP_E_PARAMNOTOPTIONAL com.sun.star.uno.RuntimeException

Automation Objects with UNO Interfaces
It is common that UNO functions take interfaces as arguments. As discussed in section 3.4.4
Professional UNO - UNO Language Bindings - Automation Bridge - Usage of Types, those objects are
usually obtained as return values of UNO functions. With the Automation bridge, it is possible to
implement those objects even as Automation objects and use them as arguments, just like UNO
objects.

Although Automation objects can act as UNO objects, they are still not fully functional UNO
components. That is, they cannot be created by means of the service manager.

However, that feature may be implemented in the future. The factories and how they map to COM class
factories will have to be considered. Also a loader is needed (components from different environments have
different loaders). The loader, however, could make use of the OleObjectFactory service.

One use case for such objects are listeners. For example, if a client wants to know when a writer
document is being closed, it can register the listener object with the document, so that it will be
notified when the document is closing.

Requirements
Automation objects implement the IDispatch interface, and all function calls and property opera-
tions go through this interface. We imply that all interface functions are accessed through the
dispatch interface when there is mention of an Automation object implementing UNO interfaces.
That is, the Automation object still implements IDispatch only.

Basically, all UNO interfaces can be implemented as long as the data types used with the functions
can be mapped to Automation types. The bridge needs to know what UNO interfaces are
supported by an Automation object, so that it can create a UNO object that implements all those
interfaces. This is done by requiring the Automation objects to support the property
Bridge_implementedInterfaces, which is an array of strings. Each of the strings is a fully quali-
fied name of an implemented interface. If an Automation object only implements one UNO inter-
face, then it does not need to support that property.

Chapter 3 Professional UNO 167

You never implement com.sun.star.script.XInvocation and com.sun.star.uno.XInterface.
XInvocation cannot be implemented, because the bridge already maps IDispatch to XInvocation
internally. Imagine a function that takes an XInvocation:

// UNO IDL
void func([in] com.sun.star.script.XInvocation obj);

In this case, use any Automation object as argument. When an interface has this function,

void func([in] com.sun.star.XSomething obj)

the automation object must implement the functions of XSomething, so that they can be called through
IDispatch::Invoke.

Examples
The following example shows how a UNO interface is implemented in VB. It is about a listener
that gets notified when a writer document is being closed.

To rebuild the project use the wizard for an ActiveX dll and put this code in the class module. The
component implements the com.sun.star.lang.XEventListener interface.
Option Explicit
Private interfaces(0) As String

Public Property Get Bridge_ImplementedInterfaces() As Variant
 Bridge_ImplementedInterfaces = interfaces
End Property

Private Sub Class_Initialize()
interfaces(0) = "com.sun.star.lang.XEventListener"
End Sub

Private Sub Class_Terminate()
 On Error Resume Next
 Debug.Print "Terminate VBEventListener"
End Sub

Public Sub disposing(ByVal source As Object)
 MsgBox "disposing called"
End Sub

You can use these components in VB like this:
Dim objServiceManager As Object
Dim objDesktop As Object
Dim objDocument As Object
Dim objEventListener As Object

Set objServiceManager= CreateObject("com.sun.star.ServiceManager")
Set objDesktop= objServiceManager.createInstance("com.sun.star.frame.Desktop")

'Open a new empty writer document
Dim args()
Set objDocument= objDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, args)
'create the event listener ActiveX component
Set objEventListener= CreateObject("VBasicEventListener.VBEventListener")

'register the listener with the document
objDocument.addEventListener objEventlistener

The next example shows a JScript implementation of a UNO interface and its usage from JScript.
To use JScript with UNO, a method had to be determined to realize arrays and out parameter s.
Presently, if a UNO object makes a call to a JScript object, the bridge must be aware that it has to
convert arguments according to the JScript requirements. Therefore, the bridge must know that
one calls a JScript component, but the bridge is not capable of finding out what language was
used. The programmer has to provide hints, by implementing a property with the name “_envi-
ronment”that has the value "JScript".
// UNO IDL: the interface to be implemented
interface XSimple : public com.sun.star.uno.XInterface
{
 void func1([in] long val, [out] long outVal);
 long func2([in] sequence< long > val, [out] sequence< long > outVal);
 void func3([inout]long);

168 OpenOffice.org 1.1 Developer's Guide • June 2003

};

// JScript: implementation of XSimple
function XSimplImpl()
{
 this._environment= "JScript";
 this.Bridge_implementedInterfaces= new Array("XSimple");

 // the interface functions
 this.func1= func1_impl;
 this.func2= func2_impl;
 this.func3= func3_impl;
}

function func1_impl(inval, outval)
{
 //outval is an array
 outval[0]= 10;
 ...
}

function func2_impl(inArray, outArray)
{
 outArray[0]= inArray;
 // or
 outArray[0]= new Array(1,2,3);

 return 10;
}

function func3_impl(inoutval)
{
 var val= inoutval[0];
 inoutval[0]= val+1;
}

Assume there is a UNO object that implements the following interface function:
//UNO IDL
void doSomething([in] XSimple);

Now, call this function in JScript and provide a JScript implementation of XSimple:
<script language="JScript">

var factory= new ActiveXObject("com.sun.star.ServiceManager");
// create the UNO component that implements an interface with the doSomething function
var oletest= factory.createInstance("oletest.OleTest");
oletest.doSomething(new XSimpleImpl());
...

To build a component with C++, write the component from scratch or use a kind of framework,
such as the Active Template Library (ATL). When a dual interface is used with ATL, the imple-
mentation of IDispatch is completely hidden and the functions must be implemented as if they
were an ordinary custom interface, that is, use specific types as arguments instead of VARIANTs. If
a UNO function has a return value, then it has to be specified as the first argument which is
flagged as “retval”.
</script>
// UNO IDL
interface XSimple : public com.sun.star.uno.XInterface
{
 void func1([in] long val, [out] long outVal);
 long func2([in] sequence< long > val, [out] sequence< long > outVal);
};

//IDL of ATL component
[
 object,
 uuid(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx),
 dual,
 helpstring("ISimple Interface"),
 pointer_default(unique)
]
interface ISimple : IDispatch
{
 [id(1), helpstring("method func1")]
 HRESULT func1([in] long val, [out] long* outVal);
 [id(2), helpstring("method func2")]
 HRESULT func2([out,retval] long ret, [in] SAFEARRAY(VARIANT) val,
 [out] SAFEARRAY(VARIANT) * outVal);

Chapter 3 Professional UNO 169

 [propget, id(4), helpstring("property_implementedInterfaces")]
 HRESULT Bridge_implementedInterfaces([out, retval] SAFEARRAY(BSTR) *pVal);
};

DCOM
The Automation bridge maps all UNO objects to automation objects. That is, all those objects
implement the IDispatch interface. To access a remote interface, the client and server must be
able to marshal that interface. The marshaling for IDispatch is already provided by Windows,
therefore all objects which originate from the bridge can be used remotely.

To make DCOM work, apply proper security settings for client and server. This can be done by
setting the appropriate registry entries or programmatically by calling functions of the security
API within the programs. The office does not deal with the security, hence the security settings can
only be determined by the registry settings which are not completely set by the office's setup. The
AppID key under which the security settings are recorded is not set. This poses no problem
because the dcomcnfg.exe configuration tools sets it automatically.

To access the service manager remotely, the client must have launch and access permission. Those
permissions appear as sub-keys of the AppID and have binary values. The values can be edited
with dcomcnfg. Also the identity of the service manager must be set to “Interactive User”. When
the office is started as a result of a remote activation of the service manager, it runs under the
account of the currently logged- on user (the interactive user).

In case of callbacks (office calls into the client), the client must adjust its security settings so that
incoming calls from the office are accepted. This happens when listener objects that are imple-
mented as Automation objects (not UNO components) are passed as parameters to UNO objects,
which in turn calls on those objects. Callbacks can also originate from the automation bridge, for
example, when JScript Array objects are used. Then, the bridge modifies the Array object by its
IDispatchEx interface. To get the interface, the bridge has to call QueryInterface with a call back
to the client.

To avoid these callbacks, VBArray objects and Value Objects could be used.

To set security properties on a client, use the security API within a client program or make use of
dcomcnfg again. The API can be difficult to use. Modifying the registry is the easiest method,
simplified by dcomcnfg. This also adds more flexibility, because administrators can easily change
the settings without editing source code and rebuilding the client. However, dcomcnfg only works
with COM servers and not with ordinary executables. To use dcomcnfg, put the client code into a
server that can be registered on the client machine. This not only works with exe servers, but also
with in-process servers, namely dlls. Those can have an AppID entry when they are remote, that is,
they have the DllSurrogate subkey set. To activate them an additional executable which instanti-
ates the in-process server is required. At the first call on an interface of the server DCOM initial-
izes security by using the values from the registry, but it only works if the executable has not
called CoInitializeSecurity beforehand.

To run JScript or VBScript programs, an additional program, a script controller that runs the script
is required, for example, the Windows Scripting Host (WSH). The problem with these controllers is
that they might impose their own security settings by calling CoInitializeSecurity on their
own behalf. In that case, the security settings that were previously set for the controller in the
registry are not being used. Also, the controller does not have to be configurable by dcomcnfg,
because it might not be a COM server. This is the case with WSH (not WSH remote).

To overcome these restrictions write a script controller that applies the security settings before a
scripting engine has been created. This is time consuming and requires some knowledge about the
engine, along with good programming skills. The Windows Script Components (WSC) is easier to
use. A WSC is made of a file that contains XML, and existing JScript and VBS scripts can be put

170 OpenOffice.org 1.1 Developer's Guide • June 2003

into the respective XML Element. A wizard generates it for you. The WSC must be registered,
which can be done with regsvr32.exe or directly through the context menu in the file explorer. To
have an AppID entry, declare the component as remotely accessible. This is done by inserting the
remotable attribute into the registration element in the wsc file:
<registration
 description="writerdemo script component"
 progid="dcomtest.writerdemo.WSC”
 version="1.00"
 classid="{90c5ca1a-5e38-4c6d-9634-b0c740c569ad}"
 remotable="true">

When the WSC is registered, there will be an appropriate AppID key in the registry. Use dcomcnfg
to apply the desired security settings on this component. To run the script. An executable is
required. For example:
Option Explicit
Sub main()
 Dim obj As Object
 Set obj = CreateObject("dcomtest.writerdemo.wsc”)
 obj.run
End Sub

In this example, the script code is contained in the run function. This is how the wsc file appears:
<?xml version="1.0"?>
<component>
<?component error="true" debug="true"?>
<registration
 description="writerdemo script component"
 progid="dcomtest.writerdemo.WSC”
 version="1.00"
 classid="{90c5ca1a-5e38-4c6d-9634-b0c740c569ad}"
 remotable="true">
</registration>
<public>
 <method name="run">
 </method>
</public>
<script language="JScript">
<![CDATA[
var description = new jscripttest;
function jscripttest()
{
 this.run = run;
}
function run()
{
var objServiceManager= new ActiveXObject("com.sun.star.ServiceManager”,"\\jl-1036");
var objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection");
var objDesktop= objServiceManager.createInstance("com.sun.star.frame.Desktop");
var objCoreReflection= objServiceManager.createInstance("com.sun.star.reflection.CoreReflection");
var args= new Array();
var objDocument= objDesktop.loadComponentFromURL("private:factory/swriter", "_blank", 0, args);
var objText= objDocument.getText();
var objCursor= objText.createTextCursor();
objText.insertString(objCursor, "The first line in the newly created text document.\n", false);
objText.insertString(objCursor, "Now we're in the second line", false);
var objTable= objDocument.createInstance("com.sun.star.text.TextTable");objTable.initialize(4, 4);
objText.insertTextContent(objCursor, objTable, false);
var objRows= objTable.getRows();
var objRow= objRows.getByIndex(0);
objTable.setPropertyValue("BackTransparent", false);
objTable.setPropertyValue("BackColor", 13421823);
objRow.setPropertyValue("BackTransparent", false);
objRow.setPropertyValue("BackColor", 6710932);
insertIntoCell("A1","FirstColumn", objTable);
insertIntoCell("B1","SecondColumn", objTable);
insertIntoCell("C1","ThirdColumn", objTable);
insertIntoCell("D1","SUM", objTable);
objTable.getCellByName("A2").setValue(22.5);
objTable.getCellByName("B2").setValue(5615.3);
objTable.getCellByName("C2").setValue(-2315.7);
objTable.getCellByName("D2").setFormula("sum <A2:C2>");objTable.getCellByName("A3").setValue(21.5);
objTable.getCellByName("B3").setValue(615.3);
objTable.getCellByName("C3").setValue(-315.7);
objTable.getCellByName("D3").setFormula("sum <A3:C3>");objTable.getCellByName("A4").setValue(121.5);
objTable.getCellByName("B4").setValue(-615.3);
objTable.getCellByName("C4").setValue(415.7);
objTable.getCellByName("D4").setFormula("sum <A4:C4>");
objCursor.setPropertyValue("CharColor", 255);
objCursor.setPropertyValue("CharShadowed", true);

Chapter 3 Professional UNO 171

objText.insertControlCharacter(objCursor, 0 , false);
objText.insertString(objCursor, " This is a colored Text - blue with shadow\n", false);
objText.insertControlCharacter(objCursor, 0, false);
var objTextFrame= objDocument.createInstance("com.sun.star.text.TextFrame”);
var objSize= createStruct("com.sun.star.awt.Size");
objSize.Width= 15000;
objSize.Height= 400;
objTextFrame.setSize(objSize);
objTextFrame.setPropertyValue("AnchorType", 1);
objText.insertTextContent(objCursor, objTextFrame, false);
var objFrameText= objTextFrame.getText();
var objFrameTextCursor= objFrameText.createTextCursor();
objFrameText.insertString(objFrameTextCursor, "The first line in the newly created text frame.",
 false);
objFrameText.insertString(objFrameTextCursor,
 "With this second line the height of the frame raises.", false);
objFrameText.insertControlCharacter(objCursor, 0 , false);
objCursor.setPropertyValue("CharColor", 65536);
objCursor.setPropertyValue("CharShadowed", false);
objText.insertString(objCursor, " That's all for now !!", false);

function insertIntoCell(strCellName, strText, objTable)
{
 var objCellText= objTable.getCellByName(strCellName);
 var objCellCursor= objCellText.createTextCursor();
 objCellCursor.setPropertyValue("CharColor",16777215);
 objCellText.insertString(objCellCursor, strText, false);
}
function createStruct(strTypeName)
{
 var classSize= objCoreReflection.forName(strTypeName);
 var aStruct= new Array();
 classSize.createObject(aStruct);
 return aStruct[0];
}
}
]]>
</script>
</component>

This WSC contains the WriterDemo example written in JScript.

The Bridge Services

Service: com.sun.star.bridge.OleBridgeSupplier2
The component implements the com.sun.star.bridge.XBridgeSupplier2 interface and
converts Automation values to UNO values. The mapping of types occurs according to the
mappings defined in 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Type
Mappings.

Usually you do not use this service unless you must convert a type manually.

A programmer uses the com.sun.star.ServiceManager ActiveX component to access the office.
The COM class factory for com.sun.star.ServiceManager uses OleBridgeSupplier2 internally
to convert the UNO service manager into an Automation object. Another use case for the OleB-
ridgeSupplier2 might be to use the SDK without an office installation. For example, if there is a
UNO component from COM, write code which converts the UNO component without the need of
an office. That code could be placed into an ActiveX object that offers a function, such as getUNO-
Component().

The interface is declared as follows:
module com { module sun { module star { module bridge {

interface XBridgeSupplier2: com::sun::star::uno::XInterface
{
 any createBridge([in] any aModelDepObject,
 [in] sequence< byte > aProcessId,
 [in] short nSourceModelType,
 [in] short nDestModelType)

172 OpenOffice.org 1.1 Developer's Guide • June 2003

 raises(com::sun::star::lang::IllegalArgumentException);

}; }; }; };

The value that is to be converted and the converted value itself are contained in anys. The any is
similar to the VARIANT type in that it can contain all possible types of its type system, but that type
system only comprises UNO types and not Automation types. However, it is necessary that the
function is able to receive as well as to return Automation values. In C++, void pointers could
have been used, but pointers are not used with UNO IDL. Therefore, the any can contain a pointer
to a VARIANT and that the type should be an unsigned long.

To provide the any, write this C++ code:
Any automObject;
// pVariant is a VARIANT* and contains the value that is going to be converted
automObject.setValue((void*) &pVariant, getCppuType((sal_uInt32*)0));

Whether the argument aModelDepObject or the return value carries a VARIANT depends on the
mode in which the function is used. The mode is determined by supplying constant values as the
nSourceModelType and nDestModelType arguments. Those constant are defined as follows:
module com { module sun { module star { module bridge {
constants ModelDependent
{
 const short UNO = 1;
 const short OLE = 2;
 const short JAVA = 3;
 const short CORBA = 4;
};
}; }; }; };

The table shows the two possible modes:

nSourceModelType nDestModelType aModelDepObject Return Value
UNO OLE contains UNO value contains VARIANT*

OLE UNO contains VARIANT* contains UNO value

When the function returns a VARIANT* , that is, a UNO value is converted to an Automation value,
then the caller has to free the memory of the VARIANT:
sal_uInt8 arId[16];
rtl_getGlobalProcessId(arId);
Sequence<sal_Int8> procId((sal_Int8*)arId, 16);
Any anyDisp= xSupplier->createBridge(anySource, procId, UNO, OLE);
IDispatch* pDisp;
if(anyDisp.getValueTypeClass() == TypeClass_UNSIGNED_LONG)
{
 VARIANT* pvar= *(VARIANT**)anyDisp.getValue();
 if(pvar->vt == VT_DISPATCH)
 {
 pDisp= pvar->pdispVal;
 pDisp->AddRef();
 }
 VariantClear(pvar);
 CoTaskMemFree(pvar);
}

The function also takes a process ID as an argument. The implementation compares the ID with
the ID of the process the component is running in. Only if the IDs are identical a conversion is
performed. Consider the following scenario:

There are two processes. One process, the server process, runs the OleBridgeSupplier2
service. The second, the client process, has obtained the XBridgeSupplier2 interface by means
of the UNO remote bridge. In the client process an Automation object is to be converted and
the function XBridgeSupplier2::createBridge is called. The interface is actually a UNO
interface proxy and the remote bridge will ensure that the arguments are marshaled, sent to the
server process and that the original interface is being called. The argument aModelDepObject
contains an IDispatch* and must be marshaled as COM interface, but the remote bridge only

Chapter 3 Professional UNO 173

sees an any that contains an unsigned long and marshals it accordingly. When it arrives in the
server process, the IDispatch* has become invalid and calls on it might crash the application.

Service: com.sun.star.bridge.OleBridgeSupplierVar1
This service is a variation of the OleBridgeSupplier2 service. The functionality is the same, but
the implementation is optimized for a deployment scenario where remote UNO objects are
converted into Automation objects. The UNO object is only a proxy and the actual object resides in
a different process or on a different machine. To get a proxy of a remote object, establish a connec-
tion to another process which can run on another machine by means of the respective UNO
mechanisms. Refer to 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections for
additional information. Calls on the proxy object result in an interprocess call that may take a long
time.

To call a function of an Automation object, a DISPID must be obtained first. The ID is obtained by
calling IDispatch::GetIDsOfNames. The GetIDsOfName takes a function or property name as an
argument and returns a DISPID that is used in the Invoke call. Automation objects created by
OleBridgeSupplier2 verify in their GetIDsOfName implementation if the function or property
with the specified name exists, involving one or two calls to the UNO object the first time the
object's GetIDsOfName function is called. OleBridgeSupplierVar1 handles that differently. The
first time an object is being asked for a DISPID, the ID is generated and returned without verifying
if there is a member of that name. When Invoke is called with that DISPID and the call fails, the
bridge repeats the call with a verified name. Also, Invoke is often called with a combination of the
flag DISPATCH_METHOD and one of the property flag, signifying that the DISPID represents a certain
function or property. In that case, the bridge first presumes that the ID represents a function and
performs the call accordingly. If that fails, it tries to access a property with that name. When the
call eventually succeeds, the acquired information (for example, the verified name of the member,
property or function) is cached in case the call is repeated.

The OleBridgeSupplier2 and OleBridgeSupplierVar1 services use the
com.sun.star.script.Invocation service to convert UNO objects to UNO objects that imple-
ment com.sun.star.script.Invocation. Then the XInvocation objects are converted into IDispatch
objects. OleBridgeSupplierVar1 can be passed a service manager as an argument during instan-
tiation (com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments()). It will
then use that service manager to create the invocation service. If the service manager happens to
be the remote service manager (provided by the server, for example, a remote office), the Invoca-
tion service is created on the server-side. Hence, all conversions of UNO objects to XInvocation
objects occur remotely on the server and do not cause excessive network traffic.

Service: com.sun.star.bridge.OleApplicationRegistration
This service registers a COM class factory when the service is being instantiated and deregisters it
when the service is being destroyed . The class factory creates a service manager as an Automation
object. All UNO objects created by the service manager are then automatically converted into
Automation objects.

Service: com.sun.star.bridge.OleObjectFactory
This service creates ActiveX components and makes them available as UNO objects which imple-
ment XInvocation. For the purpose of component instantiation, the OleClient implements the
com.sun.star.lang.XMultiServiceFactory interface. The COM component is specified by its
programmatic identifier (ProgId).

Although any ActiveX component with a ProgId can be created, a component can only be used if
it supports IDispatch and provides type information through IDispatch::GetTypeInfo.

174 OpenOffice.org 1.1 Developer's Guide • June 2003

Unsupported COM Features
The Automation objects provided by the bridge do not provide type information. That is, IDis-
patch::GetTypeInfoCount and IDispatch::GetTypeInfo return E_NOTIMPL. Also, there are no
COM type libraries available and the objects do not implement the IProvideClassInfo[2] inter -
face.

GetIDsOfName processes only one name at a time. If an array of names is passed, then a DISPID is
returned for the first name.

IDispatch::Invoke does not support named arguments and the pExcepInfo and puArgErr
parameter.

Chapter 3 Professional UNO 175

4 Writing UNO Components
OpenOffice.org can be extended by UNO components. UNO components are shared libraries or
jar files with the ability to instantiate objects that can integrate themselves into the UNO environ-
ment. A UNO component can access existing features of OpenOffice.org, and it can be used from
within OpenOffice.org through the object communication mechanisms provided by UNO.

OpenOffice.org provides many entry points for these extensions.

• Arbitrary objects written in Java or C++ can be called from the user interface, display their own
GUI, and work with the entire application.

• Calc Add- Ins can be used to create new formula sets that are presented in the formula
autopilot.

• Chart Add- Ins can insert new Chart types into the charting tool.

• New database drivers can be installed into the office to extend data access.

• Entire application modules are exchangeable, for instance the linguistics module.

• It is possible to create new document types and add them to the office. For instance, a personal
information manager could add message, calendar, task and journal document components, or
a project manager could support a new project document.

• Developers can leverage the OpenOffice.org XML file format to read and write new file formats
through components.

From OpenOffice.org 1.1 there is comprehensive support for component extensions. The entire
product cycle of a component is now covered:

The design and development of components has been made easier by adding wizards for compo-
nents to the NetBeans IDE. They are described in the directory docs /DevStudioWizard of the
SDK. There are wizards for general components, for Calc AddIns and for IDL files.

Components can integrate themselves into the user interface, using simple configuration files. You
can add new menus, toolbar items, and help items for a component simply by editing XML
configuration files.

Component deployment is performed by a package installer, which inserts new components and
their user interface extensions into networked and single installations of OpenOffice.org. During
the production phase the package installer makes it simple to maintain components, to introduce
bug fixes and new versions of a component. When a packaged component is no longer needed, it
can easily be removed. This way, OpenOffice.org keeps the promise of being open for modular
extensions.

Last but not least, this is not the only way to add features to the office. Learning how to write
components and how to use the OpenOffice.org API at the same time teaches you the techniques
used in the OpenOffice.org code base, thus enabling you to work with the existing OpenOffice.org
source code, extend it or introduce bug fixes.

177

Components are the basis for all of these extensions. This chapter teaches you how to write UNO
components. It assumes that you have at least read the chapter 2 First Steps and—depending on
your target language—the section about the Java or C++ language binding in 3 Professional UNO .

4.1 Required Files
OpenOffice.org Software Development Kit (SDK)

The SDK provides a build environment for your projects, separate from the OpenOffice.org
build environment. It contains the necessary tools for UNO development, C and C++ libraries
and include files, Java packages, UNO type definitions and example code. But most of the
necessary libraries and Java UNO packages are shared with an existing OpenOffice.org instal-
lation which is a prerequisite for a SDK.

The SDK development tools (executables) contained in the SDK are used in the following
chapter. Become familiar with the following table that lists the executables from the SDK. These
executables are found in the platform specific bin folder of the SDK installation. In Windows,
they are in the folder <SDK>\windows\bin , on Linux they are stored in <SDK>/linux/bin and on
Solaris in <SDK>/solaris/bin.

Executable Description
idlc The UNOIDL compiler that creates binary type description files with the extension .

urd for registry database files.

idlcpp The idlc preprocessor used by idlc.

cppumaker The C++ UNO maker that generates headers with UNO types mapped from binary
type descriptions to C++ from binary type descriptions.

javamaker Java maker that generates interface and class definitions for UNO types mapped
from binary type descriptions to Java from binary type descriptions.

xml2cmp XML to Component that can extract type names from XML object descriptions for use
with cppumaker and javamaker, creates functions.

regmerge The registry merge that merges binary type descriptions into registry files.

regcomp The register component that tells a registry database file that there is a new compo-
nent and where it can be found.

pkgchk The package check that installs components into an installed OpenOffice.org.

regview The registry view that outputs the content of a registry database file in readable
format.

autodoc The automatic documentation tool that evaluates Javadoc style comments in idl files
and generates documentation from them.

rdbmaker The registry database maker that creates registry files with selected types and their
dependencies.

uno The UNO executable. It is a standalone UNO environment which is able to run UNO
components supporting the com.sun.star.lang.XMain interface, one possible
use is:
$ uno -s ServiceName -r MyRegistry.rdb -- MyMainClass arg1

GNU Make
The makefiles in the SDK assume that the GNU make is used. Documentation for GNU make
command line options and syntax are available at www.gnu.org. In Windows, not every GNU
make seems stable, notably some versions of Cygwin make were reported to have problems
with the SDK makefiles. Other GNU make binaries, such as the one from

178 OpenOffice.org 1.1 Developer's Guide • June 2003

unixutils.sourceforge.net work well even on the Windows command line. The package UnxUtils
comes with a zsh shell and numerous utilities, such as find, sed. To install UnxUtils, download
and unpack the archive, and add <UnxUtils>\usr \local\wbin to the PATH environment vari-
able. Now launch sh.exe from <UnxUtils>\bin and issue the command make from within zsh or
use the Windows command line to run make. For further information about zsh, go to
zsh.sunsite.dk.

4.2 Using UNOIDL to Specify New Components
Component development does not necessarily start with the declaration of new interfaces or new
types. Try to use the interfaces and types already defined in the OpenOffice.org API. If existing
interfaces cover your requirements and you need to know how to implement them in your own
component, go to section 4.3 Writing UNO Components - Component Architecture. The following
describes how to declare your own interfaces and other types you might need.

UNO uses its own meta language UNOIDL (UNO Interface Definition Language) to specify types.
Using a meta language for this purpose enables you to generate language specific code, such as
header files and class definitions, to implement objects in any target language supported by UNO.
UNOIDL keeps the foundations of UNO language independent and takes the burden of mechanic
language adaptation from the developer's shoulders when implementing UNO objects.

To define a new interface, service or other compound type, write its specification in UNOIDL, then
compile it with the UNOIDL compiler idlc. After compilation, merge the resulting binary type
description into a registry database that is used by cppumaker and javamaker during the make
process to create necessary header and class files, and used by UNO during runtime to provide
runtime type information. The chapter 3 Professional UNO provides the various type mappings
used by cppumaker and javamaker in the language binding sections. Refer to the section 4.9.2
Writing UNO Components - Deployment Options for Components - Background: UNO Registries - UNO
Type Library for details about type information in the registry database..

When writing your own specifications, please consult the chapter A IDL Design Guide which treats design
principles and conventions used in API specifications. Follow the rules for universality, orthogonality,
inheritance and uniformity of the API as described in the Design Guide.

4.2.1 Writing the Specification
There are similarities between C++, CORBA IDL and UNOIDL, especially concerning the syntax
and the general usage of the compiler. If you are familiar with reading C++ or CORBA IDL, you
will be able to understand much of UNOIDL, as well.

As a first example, consider the IDL specification for the
com.sun.star.bridge.XUnoUrlResolver interface. An idl file usually starts with a number of
preprocessor directives, followed by module instructions and a type definition:
#ifndef __com_sun_star_bridge_XUnoUrlResolver_idl__
#define __com_sun_star_bridge_XUnoUrlResolver_idl__

#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/lang/IllegalArgumentException.idl>
#include <com/sun/star/connection/ConnectionSetupException.idl>
#include <com/sun/star/connection/NoConnectException.idl>

module com { module sun { module star { module bridge {

/** service <type scope="com::sun::star::bridge">UnoUrlResolver</type>

Chapter 4 Writing UNO Components 179

implements this interface.
 */
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
 // method com::sun::star::bridge::XUnoUrlResolver::resolve
 /** resolves an object, on the UNO URL.
 */
 com::sun::star::uno::XInterface resolve([in] string sUnoUrl)
 raises (com::sun::star::connection::NoConnectException,
 com::sun::star::connection::ConnectionSetupException,
 com::sun::star::lang::IllegalArgumentException);
};

}; }; }; };

#endif

We will discuss this idl file step by step below, and we will write our own UNOIDL specification
as soon as possible. The file specifying com.sun.star.bridge.XUnoUrlResolver is located in the
idl folder of your SDK installation, <SDK>/idl/com/sun/star/bridge/XUnoUrlResolver.idl.

UNOIDL definition file names have the extension .idl by convention. The descriptions must use
the US ASCII character set without special characters and separate symbols by whitespace, i.e.
blanks, tabs or linefeeds.

Preprocessing
Just like a C++ compiler, the UNOIDL compiler idlc can only use types it already knows. The idlc
knows 15 fundamental types such as boolean, int or string (they are summarized below). When-
ever a type other than a fundamental type is used in the idl file, its declaration has to be included
first. For instance, to derive an interface from the interface XInterface, include the corresponding
file XInterface.idl. Including means telling the preprocessor to read a given file and execute
the instructions found in it.
#include <com/sun/star/uno/XInterface.idl> // searched in include path given in -I parameter
#include "com/sun/star/uno/XInterface.idl" // searched in current path, then in include path

There are two ways to include idl files. A file name in angled brackets is searched on the include
path passed to idlc using its -I option . File names in double quotes are first searched on the current
path and then on the include path.

The XUnoUrlResolver definition above includes com.sun.star.uno.XInterface and the three
exceptions thrown by the method resolve(), com.sun.star.lang.IllegalArgumentException,
com.sun.star.connection.ConnectionSetupException and
com.sun.star.connection.NoConnectException.

Furthermore, to avoid warnings about redefinition of already included types, use #ifndef and
#define as shown above. Note how the entire definition for XUnoUrlResolver is enclosed
between #ifndef and #endif. The first thing the preprocessor does is to check if the flag
__com_sun_star_bridge_XUnoUrlResolver_idl__ has already been defined. If not, the flag is
defined and idlc continues with the definition of XUnoUrlResolver.

Adhere to the naming scheme for include flags used by the OpenOffice.org developers: Use the
file name of the IDL file that is to be included, add double underscores at the beginning and end of
the macro, and replace all slashes and dots by underscores.

For other preprocessing instructions supported by idlc refer to Bjarne Stroustrup: The C++
Programming Language.

180 OpenOffice.org 1.1 Developer's Guide • June 2003

Grouping Definitions in Modules
To avoid name clashes and allow for a better API structure, UNOIDL supports naming scopes.
The corresponding instruction is module:
module mymodule {
};

Instructions are only known inside the module mymodule for every type defined within the pair of
braces of this module {}. Within each module, the type identifiers are unique. This makes an
UNOIDL module similar to a Java package or a C++ namespace.

Modules may be nested. The following code shows the interface XUnoUrlResolver contained in
the module bridge that is contained in the module star, which is in turn contained in the module
sun of the module com.
module com { module sun { module star { module bridge {
 // interface XUnoUrlResolver in module com::sun::star::bridge
}; }; }; };

It is customary to write module names in lower case letters. Use your own module hierarchy for
your IDL types. To contribute code to OpenOffice.org, use the org::openoffice namespace or
com::sun::star. Discuss the name choice with the leader of the API project on www.openoffice.org
to add to the latter modules. The com::sun::star namespace mirrors the historical roots of
OpenOffice.org in StarOffice and will probably be kept for compatibility purposes.

Types defined in UNOIDL modules have to be referenced using full-type or scoped names, that is,
you must enter all modules your type is contained in and separate the modules by the scope
operator ::. For instance, to reference XUnoUrlResolver in another idl definition file, write
com::sun::star::bridge::XUnoUrlResolver.

Besides, modules have an advantage when it comes to generating language specific files. The
tools cppumaker and javamaker automatically create subdirectories for every referenced module, if
required. Headers and class definitions are kept in their own folders without any further effort.

Fundamental Types
Before we can go about defining our first interface, you need to know the fundamental types you
may use in your interface definition. You should already be familiar with the fundamental UNO
types from the chapters 2 First Steps and 3 Professional UNO . Since we have to use them in idl defi-
nition files, we repeat the type keywords and their meaning here.

Chapter 4 Writing UNO Components 181

Fundamental UNO type Type description
char 16-bit unicode character type

boolean boolean type; true and false

byte 8-bit ordinal integer type

short signed 16-bit ordinal integer type

unsigned short unsigned 16-bit ordinal integer type

long signed 32-bit ordinal integer type

unsigned long unsigned 32-bit integer type

hyper signed 64-bit ordinal integer type

unsigned hyper unsigned 64-bit ordinal integer type

float processor dependent float

double processor dependent double

string string of 16-bit unicode characters

any universal type, takes every fundamental or compound UNO type,
similar to Variant in other environments or Object in Java

void Indicates that a method does not provide a return value

Defining an Interface
Interfaces describe aspects of objects. To specify a new behavior for the component, start with an
interface definition that comprises the methods offering the new behavior. Define a pair of plain
get and set methods in a single step using the attribute instruction. Alternatively, choose to
define your own operations with arbitrary arguments and exceptions by writing the operation
signature, and the exceptions the operation throws. We will first write a small interface definition
with attribute instructions, then consider the resolve() operation in XUNoUrlResolver.

Let us assume we want to contribute an ImageShrink component to OpenOffice.org to create
thumbnail images for use in OpenOffice.org tables. There is already a
com.sun.star.document.XFilter Interface offering methods supporting file conversion. In addi-
tion, a method is required to get and set the source and target directories, and the size of the
thumbnails to create. It is common practice that a service and its prime interface have corre-
sponding names, so our component shall have an org::openoffice::test::XImageShrink inter -
face with methods to do so through get and set methods.

Attributes
The attribute instruction creates these methods for the experimental interface definition:

Look at the specification for our XImageShrink interface1:
(Components /Thumbs /org /o penoffice /test /XImageShrink.idl)
#ifndef __org_openoffice_test_XImageShrink_idl__
#define __org_openoffice_test_XImageShrink_idl__
#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/awt/Size.idl>

1 Perhaps in real life it would be better to define a more universal XBatchConverter interface for the source and target
directories and derive XImageShrink from it. There are other options as well, but we want to keep things simple.

182 OpenOffice.org 1.1 Developer's Guide • June 2003

module org { module openoffice { module test {

interface XImageShrink : com::sun::star::uno::XInterface
{
 [attribute] string SourceDirectory;
 [attribute] string DestinationDirectory;
 [attribute] com::sun::star::awt::Size Dimension;
};

}; }; };

#endif

OpenOffice.org API interfaces do not use attributes anymore, because it entices programmers into ignoring
exceptions. They are confusing, because attributes are mapped as prefixed get /set methods in an implemen-
tation language like Java or C++. It is sometimes difficult to match these methods with the original attribute
declaration. Also note, that attribute definitions in UNOIDL interfaces do not declare any data fields, just the
access methods.

We protect the interface from being redefined using #ifndef, then added #include
com.sun.star.uno.XInterface and the struct com.sun.star.awt.Size. These were found in the
API reference using its global index. Our interface will be known in the org::openoffice::test
module, so it is nested in the corresponding module instructions.

Define an interface using the interface instruction. It opens with the keyword interface, gives
an interface name and derives the new interface from a parent interface (also called super inter-
face). It then defines the interface body in braces. The interface instruction concludes with a
semicolon.

In this case, the introduced interface is XImageShrink. By convention, all interface identifiers start
with an X. Every interface must inherit from the base interface for all UNO interfaces XInterface
or from one of its derived interfaces. UNO supports single inheritance, so you may only inherit
from one interface. Inheritance is expressed by a colon : followed by the fully qualified name of the
parent type. The fully qualified name of a UNOIDL type is its identifier, including all containing
modules separated by the scope operator ::. Here we derive from
com::sun::star::uno::XInterface directly.

UNOIDL allows forward declaration of interfaces used as parameters, return values or struct members.
However, an interface you want to derive from must be a fully defined interface.

After the super interface the interface body begins. It may contain attribute instructions or opera-
tions. Consider the interface body of XImageShrink. It contains three attributes and no operation.
The operations are discussed below.

An attribute instruction opens with the keyword attribute in square brackets, then it gives a
known type and an identifier for the attribute, and concludes with a semicolon.

In our example, the string attributes named SourceDirectory and DestinationDirectory and
a com::sun::star::awt::Size attribute known as Dimension were defined:
 [attribute] string SourceDirectory;
 [attribute] string DestinationDirectory;
 [attribute] com::sun::star::awt::Size Dimension;

During code generation, the attribute instruction leads to pairs of get and set methods. For
instance, the Java interface generated by javamaker from this type description contains the
following six methods. Note that no exceptions can be specified for attribute methods:
 // from attribute SourceDir
 public String getSourceDirectory();
 public void setSourceDirectory(String _sourcedir);
 // from attribute DestinationDir
 public String getDestinationDirectory();
 public void setDestinationDirectory(String _destinationdir);
 // from attribute Dimension

Chapter 4 Writing UNO Components 183

 public com.sun.star.awt.Size getDimension();
 public void setDimension(com.sun.star.awt.Size _dimension);

As an option, define that an attribute cannot be changed from the outside using a readonly flag.
To set this flag, write [attribute, readonly]. The effect is that only a get() method is created
during code generation, but not a set() method.

Operations
When writing a real component, define the operations by providing their signature and the excep-
tions they throw in the idl file. Our XUnoUrlResolver example above features a resolve() opera -
tion taking a UNO URL and throwing three exceptions.
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
 com::sun::star::uno::XInterface resolve([in] string sUnoUrl)
 raises (com::sun::star::connection::NoConnectException,
 com::sun::star::connection::ConnectionSetupException,
 com::sun::star::lang::IllegalArgumentException);
};

The basic structure of an operation is similar to C++ functions or Java methods. The operation is
defined giving a known return type, the operation name, an argument list in brackets () and if
necessary, a list of the exceptions the operation may throw. The argument list, the exception clause
raises() and an optional [oneway] flag preceding the operation are special in UNOIDL.

• Each argument in the argument list must commence with one of the direction flags [in], [out]
or [inout] before a known type and identifier for the argument is given. The direction flag
specifies how the operation may use the argument:

Direction Flags
for Operations

Description

in Specifies that the operation shall evaluate the argument as input
parameter, but it cannot change it.

out Specifies that the argument does not parameterize the operation, instead
the operation uses the argument as output parameter.

inout Specifies that the operation is parameterized by the argument and that the
operation uses the argument as output parameter as well.

Avoid the [inout] and [out] qualifier. OpenOffice.org API interfaces do not use this qualifier.

• Exceptions are given through an optional raises() clause containing a comma- separated list
of known exceptions given by their full name. The presence of a raises() clause means that
only the listed exceptions, com.sun.star.uno.RuntimeException and their descendants may
be thrown by the implementation. By specifying exceptions for operations, the implementer of
your interface can return information to the caller, thus avoiding possible error conditions.

• If you prepend a [oneway] flag to an operation, the operation must perform its task asynchro-
nously, that is, it should spawn a thread and return immediately. The argument list may be
empty. Multiple arguments must be separated by commas. A oneway operation can not have a
return value, or out or inout parameters.

You may not override an attribute or an operation inherited from a parent interface, that would not make
sense in an abstract specification anyway. Furthermore, overloading is not possible. The qualified interface
identifier in conjunction with the name of the method creates a unique method name.

184 OpenOffice.org 1.1 Developer's Guide • June 2003

Defining a Service
UNOIDL Services combine interfaces and properties to specify a certain functionality. In addition,
services can include other services. For these purposes, the instructions interface, property and
service are used within service specifications. Usually services are the basis for an object imple-
mentation, although there are services in the OpenOffice.org API that only serve as foundation or
addition to other services, but are not meant to be implemented by themselves2.

We are ready to assemble our ImageShrink service. Our service will read image files from a
source directory and write shrinked versions of the found images to a destination directory. Our
XImageShrink interface offers the needed capabilities, together with the interface
com.sun.star.document.XFilter that supports two methods:

boolean filter([in] sequence< com::sun::star::beans::PropertyValue > aDescriptor)
void cancel()

The following code shows the ImageShrink service specification:
(Components /Thumbs /org /openoffice /test / ImageShrink.idl)
#ifndef __org_openoffice_test_ImageShrink_idl__
#define __org_openoffice_test_ImageShrink_idl__
#include <org/openoffice/test/XImageShrink.idl>

module org { module openoffice { module test {

service ImageShrink
{
 interface org::openoffice::test::XImageShrink;
 interface com::sun::star::document::XFilter;
};

}; }; };

#endif

Define a service using the service instruction. It opens with the keyword service, followed by a
service name and the service body in braces. The service instruction concludes with a semicolon.
Here we defined a service ImageShrink. The first letter of a service name should be an upper- case
letter. The body of a service can reference interfaces and services using interface and service
instructions, and it can identify properties supported by the service through [property] instruc -
tions.

• interface instructions followed by interface names in a service body indicates that the service
supports these interfaces. By default, the interface forces the developer to implement this
interface. To suggest an interface for a certain service, prepend an [optional] flag in front of
the keyword interface. This weakens the specification to a permission. An optional interface
can be implemented. Use one interface instruction for each supported interface or give a
comma- separated list of interfaces to be exported by a service. You must terminate the inter-
face instruction using a semicolon.

• service instructions in a service body include other services. The effect is that all interface and
property definitions of the other services become part of the current service. A service reference
can be optional using the [optional] flag in front of the service keyword. Use one instruc-
tion per service or a comma- separated list for the services to reference. The service instruction
ends with a semicolon.

2 The services com.sun.star.text.BaseFrame or com.sun.star.style.CharacterProperties are part of other
services, but are not implemented as such anywhere.

Chapter 4 Writing UNO Components 185

• [property] instructions describe qualities of a service that can be reached from the outside
under a particular name and type. As opposed to interface attributes, these qualities are not
considered to be a structural part of a service. Refer to the section 3.3.4 Professional UNO - UNO
Concepts - Properties in the chapter 3 Professional UNO to determine when to use interface attrib-
utes and when to introduce properties in a service . The property instruction must be enclosed
in square brackets, and continue with a known type and a property identifier. Just like a service
and an interface, make a property non-mandatory writing [property, optional]. Besides
optional,there is a number of other flags to use with properties. The following table shows all
flags that can be used with [property]:

Property Flags Description
optional Property is non-mandatory.

readonly The value of the property cannot be changed using the setter methods for prop-
erties, such as setPropertyValue(string name).

bound Changes of values are broadcast to
com.sun.star.beans.XPropertyChangeListeners registered with the
component.

constrained The component must broadcast an event before a value changes, listeners can
veto.

maybeambiguous The value cannot be determined in some cases, for example, in multiple selec-
tions.

maybedefault The value might come from a style or the application environment instead of
from the object itself.

maybevoid The property type determines the range of possible values, but sometimes there
may be situations where there is no information available. Instead of defining
special values for each type denoting that there are no meaningful values, the
UNO type void can be used. Its meaning is comparable to null in relational
databases.

removable The property is removable. If a property is made removable, you must check for
the existence of a property using hasPropertyByName() at the interface
com.sun.star.beans.XPropertySetInfo and consider providing the
capability to add or remove properties using
com.sun.star.beans.XPropertyContainer.

transient The property will not be stored if the object is serialized (made persistent).

Several properties of the same type can be listed in one property instruction. Remember to
add a semicolon at the end of the instruction. Implement the interface
com.sun.star.beans.XPropertySet when putting properties in your service, otherwise the
properties specified will not work for others using the component.

Some services, which specify no interfaces at all, only properties, are used as a sequence of
com.sun.star.beans.PropertyValue in OpenOffice.org, for example,
com.sun.star.document.MediaDescriptor.

The following UNOIDL snippet shows the service, the interfaces and the properties supported by
the service com.sun.star.text.TextDocument as defined in UNOIDL. Note the optional inter-
faces and the optional and read- only properties.
service TextDocument
{
 service com::sun::star::document::OfficeDocument;

 interface com::sun::star::text::XTextDocument;
 interface com::sun::star::util::XSearchable;
 interface com::sun::star::util::XRefreshable;
 interface com::sun::star::util::XNumberFormatsSupplier;

186 OpenOffice.org 1.1 Developer's Guide • June 2003

 [optional] interface com::sun::star::text::XFootnotesSupplier;
 [optional] interface com::sun::star::text::XEndnotesSupplier;
 [optional] interface com::sun::star::util::XReplaceable;
 [optional] interface com::sun::star::text::XPagePrintable;
 [optional] interface com::sun::star::text::XReferenceMarksSupplier;
 [optional] interface com::sun::star::text::XLineNumberingSupplier;
 [optional] interface com::sun::star::text::XChapterNumberingSupplier;
 [optional] interface com::sun::star::beans::XPropertySet;
 [optional] interface com::sun::star::text::XTextGraphicObjectsSupplier;
 [optional] interface com::sun::star::text::XTextEmbeddedObjectsSupplier;
 [optional] interface com::sun::star::text::XTextTablesSupplier;
 [optional] interface com::sun::star::style::XStyleFamiliesSupplier;

 [optional, property] com::sun::star::lang::Locale CharLocale;
 [optional, property] string WordSeparator;

 [optional, readonly, property] long CharacterCount;
 [optional, readonly, property] long ParagraphCount;
 [optional, readonly, property] long WordCount;

};

You might encounter two more instructions in service bodies. The instruction observes can stand in front
of interface references and means that the given interfaces must be "observed". Since the observes instruc-
tion is disapproved of, no further explanation is provided.
If a service references another service using the keyword needs in front of the reference, then this service
depends on the availability of the needed service at runtime. Newly specified services should not use needs
as it is considered too implementation specific.

Defining a Sequence
A sequence in UNOIDL is an array containing a variable number of elements of the same
UNOIDL type. The following is an example of a sequence term:
// this term could occur in a UNOIDL definition block somewhere
sequence< com::sun::star::uno::XInterface >

It starts with the keyword sequence and gives the element type enclosed in angle brackets <>. The
element type must be a known type. A sequence type can be used as parameter, return value,
property or struct member just like any other type. Sequences can also be nested, if necessary.
// this could be a nested sequence definition
sequence< sequence< long > >

// this could be an operation using sequences in some interface definition
sequence< string > getNamesOfIndex(sequence< long > indexes);

Defining a Struct
A struct is a compound type which puts together arbitrary UNOIDL types to form a new data
type. Its member data are not encapsulated, rather they are publicly available. Structs are
frequently used to handle related data easily, and the event structs broadcast to event listeners.

A struct instruction opens with the keyword struct, gives an identifier for the new struct type
and has a struct body in braces. It is terminated by a semicolon. The struct body contains a list of
struct member declarations that are defined by a known type and an identifier for the struct
member. The member declarations must end with a semicolon, as well.
#ifndef __com_sun_star_reflection_ParamInfo_idl__
#define __com_sun_star_reflection_ParamInfo_idl__

#include <com/sun/star/reflection/ParamMode.idl>

module com { module sun { module star { module reflection {

interface XIdlClass; // forward interface declaration

struct ParamInfo
{

Chapter 4 Writing UNO Components 187

 string aName;
 ParamMode aMode;
 XIdlClass aType;
};

}; }; }; };

#endif

UNOIDL supports inheritance of struct types. Inheritance is expressed by a colon : followed by
the full name of the parent type. A struct type recursively inherits all members of the parent struct
and their parents. For instance, derive from the struct com.sun.star.lang.EventObject to put
additional information about new events into customized event objects to send to event listeners.
// com.sun.star.beans.PropertyChangeEvent inherits from com.sun.star.lang.EventObject
// and adds property-related information to the event object
struct PropertyChangeEvent : com::sun::star::lang::EventObject
{
 string PropertyName;
 boolean Further;
 long PropertyHandle;
 any OldValue;
 any NewValue;
};

Defining an Exception
An exception type is a type that contains information about an error . If an operation detects an
error that halts the normal process flow, it must raise an exception and send information about the
error back to the caller through an exception object. This causes the caller to interrupt its normal
program flow as well and react according to the information received in the exception object. For
details about exceptions and their implementation, refer to the chapters 3.4 Professional UNO -
UNO Language Bindings and 3.3.6 Professional UNO - UNO Concepts - Exception Handling.

There are a number of exceptions to use. The exceptions should be sufficient in many cases,
because a message string can be sent back to the caller. When defining an exception, do it in such a
way that other developers could reuse it in their contexts.

An exception instruction opens with the keyword exception, gives an identifier for the new
exception type and has an exception body in braces. It is terminated by a semicolon. The exception
body contains a list of exception member declarations that are defined by a known type and an
identifier for the exception member. The member declarations must end with a semicolon, as well.

Exceptions must be based on com.sun.star.uno.Exception or
com.sun.star.uno.RuntimeException, directly or indirectly through derived exceptions of these
two exceptions. com.sun.star.uno.Exceptions can only be thrown in operations specified to
raise them while com.sun.star.uno.RuntimeExceptions can always occur. Inheritance is
expressed by a colon :, followed by the full name of the parent type.
// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {
 string Message;
 XInterface Context;
};

// com.sun.star.lang.IllegalArgumentException tells the caller which
// argument caused trouble
exception IllegalArgumentException: com::sun::star::uno::Exception
{
 /** identifies the position of the illegal argument.
 <p>This field is -1 if the position is not known.</p>
 */
 short ArgumentPosition;

};

// com.sun.star.uno.RuntimeException is the base exception for serious errors
// usually caused by programming errors or problems with the runtime environment
exception RuntimeException : com::sun::star::uno::Exception {
};

188 OpenOffice.org 1.1 Developer's Guide • June 2003

// com.sun.star.uno.SecurityException is a more specific RuntimeException
exception SecurityException : com::sun::star::uno::RuntimeException {
};

Predefining Values
Predefined values can be provided, so that implementers do not have to use cryptic numbers or
other literal values. There are two kinds of predefined values, constants and enums. Constants can
contain values of any fundamental UNOIDL type, except string. The enums are automatically
numbered long values.

Const and Constants
The constants type is a container for const types. A constants instruction opens with the
keyword constants, gives an identifier for the new group of const values and has the body in
braces. It terminates with a semicolon. The constants body contains a list of const definitions
that define the values of the members starting with the keyword const followed by a known type
name and the identifier for the const in uppercase letters. Each const definition must assign a
value to the const using an equals sign. The value must match the given type and can be an
integer or floating point number, or a character, or a suitable const value or an arithmetic term
based on the operators in the table below. The const definitions must end with a semicolon, as
well.
#ifndef __com_sun_star_awt_FontWeight_idl__
#define __com_sun_star_awt_FontWeight_idl__

module com { module sun { module star { module awt {

constants FontWeight
{
 const float DONTKNOW = 0.000000;
 const float THIN = 50.000000;
 const float ULTRALIGHT = 60.000000;
 const float LIGHT = 75.000000;
 const float SEMILIGHT = 90.000000;
 const float NORMAL = 100.000000;
 const float SEMIBOLD = 110.000000;
 const float BOLD = 150.000000;
 const float ULTRABOLD = 175.000000;
 const float BLACK = 200.000000;
};

}; }; }; };

Operators Allowed in const Meaning
+ addition

- subtraction

* multiplication

/ division

% modulo division

- negative sign

+ positive sign

| bitwise or

^ bitwise xor

& bitwise and

~ bitwise not

>> << bitwise shift right, shift left

Chapter 4 Writing UNO Components 189

Use constants to group const types. In the Java language, binding a constants group leads to one class
for all const members, whereas a single const is mapped to an entire class.

Enum
An enum type holds a group of predefined long values and maps them to meaningful symbols. It
is equivalent to the enumeration type in C++. An enum instruction opens with the keyword enum,
gives an identifier for the new group of enum values and has an enum body in braces. It terminates
with a semicolon. The enum body contains a comma- separated list of symbols in uppercase letters
that are automatically mapped to long values counting from zero, by default.
#ifndef __com_sun_star_style_ParagraphAdjust_idl__
#define __com_sun_star_style_ParagraphAdjust_idl__

module com { module sun { module star { module style {

enum ParagraphAdjust
{
 LEFT,
 RIGHT,
 BLOCK,
 CENTER,
 STRETCH
};

}; }; }; };
#endif

In this example, com.sun.star.style.ParagraphAdjust:LEFT corresponds to 0,
ParagraphAdjust.RIGHT corresponds to 1 and so forth.

An enum member can also be set to a long value using the equals sign. All the following enum
values are then incremented starting from this value. If there is another assignment later in the
code, the counting starts with that assignment:
enum Error {
 SYSTEM = 10, // value 10
 RUNTIME, // value 11
 FATAL, // value 12
 USER = 30, // value 30
 SOFT // value 31
};

The explicit use of enum values is deprecated and should not be used. It is a historical characteristic of the
enum type but it makes not really sense and makes, for example language bindings unnecessarily compli-
cated.

Using Comments
Comments are code sections ignored by idlc. In UNOIDL, use C++ style comments. A double slash
// marks the rest of the line as comment. Text enclosed between /* and */ is a comment that may
span over multiple lines.
service ImageShrink
{
 // the following lines define interfaces:
 interface org::openoffice::test::XImageShrink; // our home-grown interface
 interface com::sun::star::document::XFilter;

 /* we could reference other interfaces, services and properties here.
 However, the keywords uses and needs are deprecated
 */
};

Based on the above, there are documentation comments that are extracted when idl files are proc-
essed with autodoc, the UNOIDL documentation generator. Instead of writing /* or //to mark a
plain comment, write /** or /// to create a documentation comment.

190 OpenOffice.org 1.1 Developer's Guide • June 2003

/** Don't repeat asterisks within multiple line comments,
 * <- as shown here
 */

/// Don't write multiple line documentation comments using triple slashes,
/// since only this last line will make it into the documentation

Our XUnoUrlResolver sample idl file contains plain comments and documentation comments.
/** service <type scope="com::sun::star::bridge">UnoUrlResolver</type>
 implements this interface.
 */
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
 // method com::sun::star::bridge::XUnoUrlResolver::resolve
 /** resolves an object, on the UNO URL.
 */

 ...
}

Note the additional <type/> tag in the documentation comment pointing out that the service
UnoUrlResolver implements the interface XUnoUrlResolver. This tag becomes a hyperlink in
HTML documentation generated from this file. The chapter B IDL Documentation Guide provides a
comprehensive description for UNOIDL documentation comments.

Singleton
A singleton instruction defines a global name for a service instance and determines that there
can only be one instance of this service that must be reachable under this name. In the future,
there will be the capability of retrieving the singleton instance from the component context using
the name of the singleton. If the singleton has not been instantiated yet, the component context
creates it. A singleton instruction looks like this:
singleton theServiceManager {
 service com::sun::star::lang::ServiceManager;
};

Reserved Types
There are types in UNOIDL which are reserved for future use. The idlc will refuse to compile the
specifications if they are tried.

Array
The keyword array is reserved, but it cannot be used in UNOIDL. There will be sets containing a
fixed number of elements, as opposed to sequences, that can have an arbitrary number of
elements.

Union
There is also a reserved keyword for union types that cannot be used in UNOIDL. A union will
look at a variable value from more than one perspective. For instance, a union for a long value is
defined and this same value is accessed as a whole, or accessed by its high and low part separately
through a union.

Chapter 4 Writing UNO Components 191

4.2.2 Generating Source Code from UNOIDL Definitions
The type description provided in .idl files is used in the subsequent process to create type informa-
tion for the service manager and to generate header and class files. Processing the UNOIDL defini-
tions is a three-step process.

1. Compile the .idl files using idlc. The result are .urd files (UNO reflection data) containing binary
type descriptions.

2. Merge the .urd files into a registry database using regmerge. The registry database files have the
extension .rdb (registry database). They contain binary data describing types in a tree-like struc-
ture starting with / as the root. The default key for type descriptions is the /UCR key (UNO
core reflection).

3. Generate sources from registry files using javamaker or cppumaker. The tools javamaker and cppu-
maker map UNOIDL types to Java and C++ as described in the chapter 3.4 Professional UNO -
UNO Language Bindings. The registries used by these tools must contain all types to map to the
programming language used, including all types referenced in the type descriptions. Therefore,
javamaker and cppumaker need the registry that was merged, but the entire office registry as
well. OpenOffice.org comes with a complete registry database providing all types used by
UNO at runtime. The SDK uses the database (type library) of an existing OpenOffice.org instal-
lation.

The following shows the necessary commands to create Java class files and C++ headers from .idl
files in a simple setup under Linux. We assume the jars from <OFFICE_PROGRAM_PATH>/classes
have been added to your CLASSPATH, the SDK is installed in /home/sdk, and /home/sdk/linux/bin is
in the PATH environment variable, so that the UNO tools can be run directly. The project folder is
/home/sdk/Thumbs and it contains the above .idl file XImageShrink.idl.
make project folder the current directory
cd /home/sdk/Thumbs

compile XImageShrink.idl using idlc
usage: idlc [-options] file_1.idl ... file_n.idl
-C adds complete type information including services
-I includepath tells idlc where to look for include files
#
idlc writes the resulting urds to the current folder by default
idlc -C -I../idl XImageShrink.idl
create registry database (.rdb) file from UNO registry data (.urd) using regmerge
usage: regmerge mergefile.rdb mergeKey regfile_1.urd ... regfile_n.urd
mergeKey entry in the tree-like rdb structure where types from .urd should be recorded, the tree
starts with the root / and UCR is the default key for type descriptions
#
regmerge writes the rdb to the current folder by default
regmerge thumbs.rdb /UCR XImageShrink.urd
generate Java source files for new types from rdb
-B base node to look for types, in this case UCR
-T type to generate Java files for
-nD do not generate sources for dependent types, they are available in the Java UNO jar files
#
javamaker creates a directory tree for the output files according to
the modules the given types were placed in. The tree is created in the current folder by default
javamaker -BUCR -Torg.openoffice.test.XImageShrink -nD <OFFICE_PROGRAM_PATH>/applicat.rdb thumbs.rdb
generate C++ header files (hpp and hdl) for new types and their dependencies from rdb
-B base node to look for types, in this case UCR
-T type to generate Java files for
#
cppumaker creates a directory tree for the output files according to
the modules the given types were placed in. The tree is created in the current folder by default
cppumaker -BUCR -Torg.openoffice.test.XImageShrink <OFFICE_PROGRAM_PATH>/applicat.rdb thumbs.rdb
compile Java class for new type
javac -g org/openoffice/test/XImageShrink.java

192 OpenOffice.org 1.1 Developer's Guide • June 2003

After issuing these commands you have a registry database thumbs.rdb and a Java class file
XImageShrink.class. You can run regview against thumbs.rdb to see what regmerge has accom-
plished.

regview thumbs.rdb

The result for our interface XImageShrink looks like this:

Registry "file:///home/sdk/Thumbs/thumbs.rdb":

/
 / UCR
 / org
 / openoffice
 / test
 / XImageShrink
 Value: Type = RG_VALUETYPE_BINARY
 Size = 316
 Data = minor version: 0
 major version: 1
 type: 'interface'
 uik: { 0x00000000-0x0000-0x0000-0x00000000-0x00000000 }

 name: 'org/openoffice/test/XImageShrink'
 super name: 'com/sun/star/uno/XInterface'
 Doku: ""
 IDL source file: "/home/sdk/Thumbs/XImageShrink.idl"
 number of fields: 3
 field #0:
 name='SourceDirectory'
 type='string'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 field #1:
 name='DestinationDirectory'
 type='string'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 field #2:
 name='Dimension'
 type='com/sun/star/awt/Size'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 number of methods: 0
 number of references: 0

Source generation can be fully automated with makefiles. For details, see the sections 4.5.9 Writing
UNO Components - Simple Component in Java - Running and Debugging Java Components and 4.6.10
Writing UNO Components - C++ Component - Building and Testing C++ Components below. You are
now ready to implement your own types and interfaces in a UNO component. The next section
discusses the UNO core interfaces to implement in UNO components.

4.3 Component Architecture
UNO components are archive files or dynamic link libraries with the ability to instantiate objects
which can integrate themselves into the UNO environment. For this purpose, components must
contain certain static methods (Java) or export functions (C++) to be called by a UNO service
manager. In the following, these methods are called component operations.

There must be a method to supply single-service factories for each object implemented in the
component. Through this method, the service manager can get a single factory for a specific object
and ask the factory to create the object contained in the component. Furthermore, there has to be a
method which writes registration information about the component, which is used when a compo-

Chapter 4 Writing UNO Components 193

nent is registered with the service manager. In C++, an additional function is necessary that
informs the component loader about the compiler used to build the component.

The component operations are always necessary in components and they are language specific.
Later, when Java and C++ are discussed, we will show how to write them.

The illustration shows a component which contains three implemented objects. Two of them, srv1
and srv2 implement a single service specification (Service1 and Service2), whereas srv3_4 supports
two services at once (Service3 and Service4).

The objects implemented in a component must support a number of core UNO interfaces to be
fully usable from all parts of the OpenOffice.org application. These core interfaces are discussed in
the next section. The individual functionality of the objects is covered by the additional interfaces
they export. Usually these interfaces are enclosed in a service specification.

4.4 Core Interfaces to Implement
It is important to know where the interfaces to implement are located. The interfaces here are
located at the object implementations in the component. When writing UNO components, the
desired methods have to be implemented into the application and also, the core interfaces used to
enable communication with the UNO environment. Some of them are mandatory, but there are
others to choose from.

194 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 34: A Component implementing three UNO objects

Interface Required Should be
implemented

Optional Special Cases Helper class
available for
C++ and Java

XInterface ● ●

XTypeProvider ● ●

XServiceInfo ●

XWeak ● ●

XComponent ● ●

XInitialization ●

XMain ●

XAggregation ●

XUnoTunnel ●

The interfaces listed in the table above have been characterized here briefly. More descriptions of
each interface are provided later, as well as if helpers are available and which conditions apply.

com.sun.star.uno.XInterface
The component will not work without it. The base interface XInterface gives access to higher
interfaces of the service and allows other objects to tell the service when it is no longer needed,
so that it can destroy itself.

// com::sun::star::uno::XInterface

any queryInterface([in] type aType);
[oneway] void acquire(); // increase reference counter in your service implementation
[oneway] void release(); // decrease reference counter, delete object when counter becomes zero

Usually developers do not call acquire() explicitly, because it is called automatically by the
language bindings when a reference to a component is retrieved through
UnoRuntime.queryInterface() or Reference<destInterface>(sourceInterface,
UNO_QUERY) . The counterpart release() is called automatically when the reference goes out
of scope in C++ or when the Java garbage collector throws away the object holding the refer-
ence.

com.sun.star.lang.XTypeProvider
This interface is used by scripting languages such as OpenOffice.org Basic to get type informa-
tion. OpenOffice.org Basic cannot use the component without it.
// com::sun::star::lang::XTypeProvider

sequence<type> getTypes();
sequence<byte> getImplementationId();

com.sun.star.lang.XServiceInfo
This interface is used by other objects to get information about the service implementation.
// com::sun::star::lang::XServiceInfo

string getImplementationName();
boolean supportsService([in] string ServiceName);
sequence<string> getSupportedServiceNames();

com.sun.star.uno.XWeak
This interface allows clients to keep a weak reference to the object. A weak reference does not
prevent the object from being destroyed if another client keeps a hard reference to it, therefore
it allows a hard reference to be retrieved again. The technique is used to avoid cyclic refer-
ences. Even if the interface is not required by you, it could be implemented for a client that may
want to establish a weak reference to an instance of your object.
// com.sun.star.uno.XWeak

Chapter 4 Writing UNO Components 195

com::sun::star::uno::XAdapter queryAdapter(); // creates Adapter

com.sun.star.lang.XComponent
This interface is used if cyclic references can occur in the component holding another object
and the other object is holding a reference to that component. It can be specified in the service
description who shall destroy the object.

// com::sun::star::lang::XComponent

void dispose(); //an object owning your component may order it to delete itself using dispose()
void addEventListener(com::sun::star::lang::XEventListener xListener); // add dispose listeners
void removeEventListener (com::sun::star::lang::XEventListener aListener); // remove them

com.sun.star.lang.XInitialization
This interface is used to allow other objects to use createInstanceWithArguments() or
createInstanceWithArgumentsAndContext() with the component. It should be implemented
and the arguments processed in initialize():

// com::sun::star::lang::XInitialization

void initialize(sequence< any > aArguments) raises (com::sun::star::uno::Exception);

com.sun.star.lang.XMain
This interface is for use with the uno executable to instantiate the component independently
from the OpenOffice.org service manager.

// com.sun.star.lang.XMain

long run (sequence< string > aArguments);

com.sun.star.uno.XAggregation
This interfaces makes the implementation cooperate in an aggregation. If implemented, other
objects can aggregate to the implementation. Aggregated objects behave as if they were one. If
another object aggregates the component, it holds the component and delegates calls to it, so
that the component seems to be one with the aggregating object.

// com.sun.star.uno.XAggregation

void setDelegator(com.sun.star.uno.XInterface pDelegator);
any queryAggregation(type aType);

com.sun.star.lang.XUnoTunnel
This interface provides a pointer to the component to another component in the same process.
This can be achieved with XUnoTunnel. XUnoTunnel should not be used by new components,
because it is to be used for integration of existing implementations, if all else fails.

By now you should be able to decide which interfaces are interesting in your case. Sometimes the
decision for or against an interface depends on the necessary effort as well. The following section
discusses for each of the above interfaces how you can take advantage of pre-implemented helper
classes in Java or C++, and what must happen in a possible implementation, no matter which
language is used.

4.4.1 XInterface
All service implementations must implement com.sun.star.uno.XInterface. If a Java compo -
nent is derived from a Java helper class that comes with the SDK, it supports XInterface auto -
matically. Otherwise, it is sufficient to add XInterface or any other UNO interface to the imple-
ments list. The Java UNO runtime takes care of XInterface. In C++, there are helper classes to
inherit that already implement XInterface. However, if XInterface is to be implemented manu -
ally, consider the code below.

196 OpenOffice.org 1.1 Developer's Guide • June 2003

The IDL specification for com.sun.star.uno.XInterface looks like this:
// module com::sun::star::uno
interface XInterface
{
 any queryInterface([in] type aType);
 [oneway] void acquire();
 [oneway] void release();
};

Requirements for queryInterface()
When queryInterface() is called, the caller asks the implementation if it supports the interface
specified by the type argument. The UNOIDL base type stores the name of a type and its
com.sun.star.uno.TypeClass. The call must return an interface reference of the requested type
if it is available or a void any if it is not. There are certain conditions a queryInterface() imple-
mentation must meet:

Constant Behaviour
If queryInterface() on a specific object has once returned a valid interface reference for a
given type, it must always return a valid reference for any subsequent queryInterface() call
for the same type on this object. A query for XInterface must always return the same reference.

If queryInterface() on a specific object has once returned a void any for a given type, it must
always return a void any for the same type.

Symmetry
If queryInterface() for XBar on a reference xFoo returns a reference xBar, then queryInter-
face() on reference xBar for type XFoo must return xFoo or calls made on the returned refer-
ence must be equivalent to calls to xFoo.

Object Identity
In C++, two objects are the same if their XInterface are the same. The queryInterface() for
XInterface will have to be called on both. In Java, check for the identity by calling the runtime
function com.sun.star.uni.UnoRuntime.areSame().

The reason for this specifications is that a UNO runtime environment may choose to cache query-
Interface() calls. The rules are identical to the rules of the function QueryInterface() in MS
COM.

If you want to implement queryInterface() in Java, for example, you want to export less interfaces than
you implement, your class must implement the Java interface com.sun.star.uno.IQueryInterface.

Reference Counting
The methods acquire() and release() handle the lifetime of the UNO object. This is discussed
in detail in chapter 3.3.7 Professional UNO - UNO Concepts - Lifetime of UNO Objects. Acquire and
release must be implemented in a thread- safe fashion. This is demonstrated in C++ in the section
about C++ components below.

4.4.2 XTypeProvider
Every UNO object should implement the com.sun.star.lang.XTypeProvider interface.

Chapter 4 Writing UNO Components 197

Some applications need to know which interfaces an UNO object supports, for example, the
OpenOffice.org Basic engine or debugging tools, such as the InstanceInspector. The
com.sun.star.lang.XTypeProvider interface was introduced to avoid going through all known
interfaces calling queryInterface() repetitively. The XTypeProvider interface is implemented by
Java and C++ helper classes. If the XTypeProvider must be implemented manually, use the
following methods:
// module com::sun::star::lang
interface XTypeProvider: com::sun::star::uno::XInterface
{
 sequence<type> getTypes();
 sequence<byte> getImplementationId();
};

The sections about Java and C++ components below show examples of XTypeProvider implemen -
tations.

Provided Types
The com.sun.star.lang.XTypeProvider:getTypes() method must return a list of types for all
interfaces that queryInterface() provides. The OpenOffice.org Basic engine depends on this
information to establish a list of method signatures that can be used with an object.

ImplementationID
For caching purposes, the getImplementationId() method has been introduced. The method
must return a byte array containing an identifier for the implemented set of interfaces in this
implementation class. It is important that one ID maps to one set of interfaces, but one set of inter-
faces can be known under multiple IDs. Every implementation class should generate a static ID.

4.4.3 XServiceInfo
Every service implementation should export the com.sun.star.lang.XServiceInfo interface.
XServiceInfo must be implemented manually, because only the programmer knows what serv-
ices the implementation supports. The sections about Java and C++ components below show
examples for XServiceInfo implementations.

This is how the IDL specification for XServiceInfo looks like:
// module com::sun::star::lang
interface XServiceInfo: com::sun::star::uno::XInterface
{
 string getImplementationName();
 boolean supportsService([in] string ServiceName);
 sequence<string> getSupportedServiceNames();
};

Implementation Name
The method getImplementationName() provides access to the implementation name of a service
implementation. The implementation name uniquely identifies one implementation of service
specifications in a UNO object. The name can be chosen freely by the implementation alone,
because it does not appear in IDL. However, the implementation should adhere to the following
naming conventions:

198 OpenOffice.org 1.1 Developer's Guide • June 2003

company
prefix

dot "comp" dot modul
e
name

dot unique object
name in module

implemented service(s)

com.sun.star . comp . forms . ODataBaseForm com.sun.star.forms.DataBaseForm

org.openoffi
ce

. comp . test . OThumbs org.openoffice.test.ImageShrink
org.openoffice.test.ThumbnailInsert
...

If an object implements one single service, it can use the service name to derive an implementation
name. Implementations of several services should use a name that describes the entire object.

If a createInstance() is called at the service manager using an implementation name, an instance
of exactly that implementation is received. An implementation name is equivalent to a class name
in Java. A Java component simply returns the fully qualified class name in getImplementation-
Name().

It is good practice to program against the specification and not against the implementation, otherwise, your
application could break with future versions. OpenOffice.orgs API implementation is not supposed to be
compatible, only the specification is.

Supported Service Names
The methods getSupportedServiceNames() and supportsService() deal with the availability
of services in an implemented object. Note that the supported services are the services imple-
mented in one class that supports these services, not the services of all implementations contained
in the component file. If the illustration 34: A Component implementing three UNO objects,
XServiceInfo is exported by the implemented objects in a component, not by the component.
That means, srv3_4 must support XServiceInfo and return "Service3" and "Service4" as
supported service names.

The service name identifies a service as it was specified in IDL. If an object is instantiated at the
service manager using the service name, an object that complies to the service specification is
returned.

The single service factories returned by components that are used to create instances of an implementation
through their interfaces com.sun.star.lang.XSingleComponentFactory or
com.sun.star.lang.XSingleServiceFactory must support XServiceInfo. The single factories
support this interface to allow UNO to inspect the capabilities of a certain implementation before instanti-
ating it. You can take advantage of this feature through the
com.sun.star.container.XContentEnumerationAccess interface of a service manager.

4.4.4 XWeak
A component supporting XWeak offers other objects to hold a reference on itself without
preventing it from being destroyed when it is no longer needed. Thus, cyclic references can be
avoided easily. The chapter 3.3.7 Professional UNO - UNO Concepts - Lifetime of UNO Objects
discusses this in detail. In Java, derive from the Java helper class
com.sun.star.lib.uno.helper.WeakBase to support XWeak. If a C++ component is derived from
one of the ::cppu::Weak...ImplHelperNN template classes as proposed in the section 4.6 Writing
UNO Components - C++ Component, a XWeak support is obtained, virtually for free. For the sake of
completeness, this is the XWeak specification:
// module com::sun::star::uno::XWeak

Chapter 4 Writing UNO Components 199

interface XWeak: com::sun::star::uno::XInterface
{
 com::sun::star::uno::XAdapter queryAdapter();
};

4.4.5 XComponent
If the implementation holds a reference to another UNO object internally, there may be a problem
of cyclic references that might prevent your component and the other object from being destroyed
forever. If it is probable that the other object may hold a reference to your component, implement
com.sun.star.lang.XComponent that contains a method dispose(). Chapter 3.3.7 Professional
UNO - UNO Concepts - Lifetime of UNO Objects discusses the intricacies of this issue.

Supporting XComponent in a C++ or Java component is simple, because there are helper classes to
derive from that implement XComponent. The following code is an example if you must implement
XComponent manually.

The interface XComponent specifies these operations:
// module com::sun::star::lang

interface XComponent: com::sun::star::uno::XInterface
{
 void dispose();
 void addEventListener([in] XEventListener xListener);
 void removeEventListener([in] XEventListener aListener);
};

XComponent uses the interface com.sun.star.lang.XEventListener:
// module com::sun::star::lang
interface XEventListener: com::sun::star::uno::XInterface
{
 void disposing([in] com::sun::star::lang::EventObject Source);
};

Disposing of an XComponent
The idea behind XComponent is that the object is instantiated by a third object that makes the third
object the owner of first object. The owner is allowed to call dispose(). When the owner calls
dispose() at your object, it must do three things:

• Release all references it holds.

• Inform registered XEventListeners that it is being disposed of by calling their method
disposing().

• Behave as passive as possible afterwards. If the implementation is called after being disposed,
throw a com.sun.star.lang.DisposedException if you cannot fulfill the method specifica-
tion.

That way the owner of XComponent objects can dissolve a possible cyclic reference.

4.4.6 XInitialization
The interface com.sun.star.lang.XInitialization is usually implemented manually, because
only the programmer knows how to initialize the object with arguments received from the service
manager through createInstanceWithArguments() or createInstanceWithArgumentsAndCon-
text(). In Java, XInitialization is used as well, but know that the Java factory helper provides
a shortcut that uses arguments without implementing XInitialization directly. The Java factory

200 OpenOffice.org 1.1 Developer's Guide • June 2003

helper can pass arguments to the class constructor under certain conditions. Refer to the section
4.5.7 Writing UNO Components - Simple Component in Java - Create Instance With Arguments for more
information.

The specification for XInitialization looks like this:
// module com::sun::star::lang

interface XInitialization : com::sun::star::uno::XInterface
{
 void initialize(sequence< any > aArguments) raises (com::sun::star::uno::Exception);
};

Specify in the idl service specification which arguments and in which order are expected within
the any sequence.

4.4.7 XMain
The implementation of com.sun.star.lang.XMain is used for special cases. Its run() operation is
called by the uno executable. The section 4.10 Writing UNO Components - The UNO Executable
below discusses the use of XMain and the uno executable in detail.
// module com::sun::star::lang

interface XMain: com::sun::star::uno::XInterface
{
 long run([in] sequence< string > aArguments);
};

4.4.8 XAggregation
A concept called aggregation is commonly used to plug multiple objects together to form one single
object at runtime. The main interface in this context is com.sun.star.uno.XAggregation. After
plugging the objects together, the reference count and the queryInterface() method is delegated
from multiple slave objects to one master object.

It is a precondition that at the moment of aggregation, the slave object has a reference count of
exactly one, which is the reference count of the master. Additionally, it does not work on proxy
objects, because in Java, multiple proxy objects of the same interface of the same slave object might
exist.

While aggregation allows more code reuse than implementation inheritance, the facts mentioned
above, coupled with the implementation of independent objects makes programming prone to
errors. Therefore the use of this concept is discourage and not explained here. For further informa-
tion visit http://udk.openoffice.org/common/man/concept/unointro.html#aggregation.

4.4.9 XUnoTunnel
The com.sun.star.lang.XUnoTunnel interface allows access to the this pointer of an object. This
interface is used to cast a UNO interface that is coming back to its implementation class through a
UNO method. Using this interface is a result of an unsatisfactory interface design, because it indi-
cates that some functionality only works when non-UNO functions are used. In general, these
objects cannot be replaced by a different implementation, because they undermine the general
UNO interface concept. This interface can be understood as admittance to an already existing code
that cannot be split into UNO components easily. If designing new services, do not use this inter-
face.

Chapter 4 Writing UNO Components 201

interface XUnoTunnel: com::sun::star::uno::XInterface
{
 hyper getSomething([in] sequence< byte > aIdentifier);
};

The byte sequence contains an identifier that both the caller and implementer must know. The
implementer returns the this pointer of the object if the byte sequence is equal to the byte
sequence previously stored in a static variable. The byte sequence is usually generated once per
process per implementation.

Note that the previously mentioned 'per process' is important because the this pointer of a class you know
is useless, if the instance lives in a different process.

4.5 Simple Component in Java
This section shows how to write Java components. The examples in this chapter are in the samples
folder that was provided with the programmer's manual.

A Java component is a library of Java classes (a jar) containing objects that implement arbitrary
UNO services. For a service implementation in Java, implement the necessary UNO core interfaces
and the interfaces needed for your purpose. These could be existing interfaces or interfaces defined
by using UNOIDL.

Besides these service implementations, Java components need two methods to instantiate the serv-
ices they implement in a UNO environment: one to get single factories for each service implemen-
tation in the jar, and another one to write registration information into a registry database. These
methods are called static component operations in the following:

The method that provides single factories for the service implementations in a component is
__getServiceFactory():

public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 XRegistryKey regKey)

In theory, a client obtains a single factory from a component by calling __getServiceFactory()
on the component implementation directly. This is rarely done because in most cases service
manager is used to get an instance of the service implementation. The service manager uses
__getServiceFactory() at the component to get a factory for the requested service from the
component, then asks this factory to create an instance of the one object the factory supports.

To find a requested service implementation, the service manager searches its registry database for
the location of the component jar that contains this implementation. For this purpose, the compo-
nent must have been registered beforehand. UNO components are able to write the necessary
information on their own through a function that performs the registration and which can be
called by the registration tool regcomp. The function has this signature:

public static boolean __writeRegistryServiceInfo(XRegistryKey regKey)

These two methods work together to make the implementations in a component available to a
service manager. The method __writeRegistryServiceInfo() tells the service manager where
to find an implementation while __getServiceFactory() enables the service manager to instan -
tiate a service implementation, once found.

The necessary steps to write a component are:

1. Define service implementation classes.

2. Implement UNO core interfaces.

202 OpenOffice.org 1.1 Developer's Guide • June 2003

3. Implement your own interfaces.

4. Provide static component operations to make your component available to a service manager.

4.5.1 Class Definition with Helper Classes

XInterface, XTypeProvider and XWeak
The OpenOffice.org Java UNO environment contains Java helper classes that implement the
majority of the core interfaces that are implemented by UNO components. There are two helper
classes:

• The helper com.sun.star.lib.uno.helper.WeakBase is the minimal base class and implements
XInterface, XTypeProvider and Xweak.

• The helper com.sun.star.lib.uno.helper.ComponentBase that extends WeakBase and implements
XComponent.

The com.sun.star.lang.XServiceInfo is the only interface that should be implemented, but it is
not part of the helpers.

Use the naming conventions described in section 4.4.3 Writing UNO Components - Core Interfaces to
Implement - XServiceInfo for the service implementation. Following the rules, a service
org.openoffice.test.ImageShrink should be implemented in
org.openoffice.comp.test.ImageShrink.

A possible class definition that uses ComponentBase could look like this:
(Components /Thumbs /org /openoffice /comp / test / ImageShrink.java)
package org.openoffice.comp.test;

public class ImageShrink extends com.sun.star.lib.uno.helper.ComponentBase
 implements com.sun.star.lang.XServiceInfo,
 org.openoffice.test.XImageShrink,
 com.sun.star.document.XFilter {

 com.sun.star.uno.XComponentContext xComponentContext = null;

 /** Creates a new instance of ImageShrink */
 public ImageShrink(com.sun.star.uno.XComponentContext XComponentContext xContext) {
 this.xComponentContext = xContext;
 }
 ...

}

XServiceInfo
If the implementation only supports one service, use the following code to implement XServ-
iceInfo: (Components /Thumbs /org /openoffice /comp / test / ImageShrink.java)
 ...

 //XServiceInfo implementation

 // hold the service name in a private static member variable of the class
 protected static final String __serviceName = "org.openoffice.test.ImageShrink";

 public String getImplementationName() {
 return getClass().getName();
 }

 public boolean supportsService(String serviceName) {
 if (serviceName.equals(__serviceName))
 return true;

Chapter 4 Writing UNO Components 203

 return false;
 }

 public String[] getSupportedServiceNames() {
 String[] retValue= new String[0];
 retValue[0]= __serviceName;
 return retValue;
 }

 ...

An implementation of more than one service in one UNO object is more complex. It has to return
all supported service names in getSupportedServiceNames(), furthermore it must check all
supported service names in supportsService(). Note that several services packaged in one
component file are not discussed here, but objects supporting more than one service. Refer to 34: A
Component implementing three UNO objects for the implementation of srv3_4.

4.5.2 Implementing your own Interfaces
The functionality of a component is accessible only by its interfaces. When writing a component,
choose one of the available API interfaces or define an interface. IDL types are used as method
arguments to other UNO objects. Java does not support unsigned data types, so their use is
discouraged. In the chapter 4.2 Writing UNO Components - Using UNOIDL to Specify new Compo-
nents, the org.openoffice.test.XImageShrink interface specification was written and an inter-
face class file was created. Its implementation is straightforward, you create a class that imple-
ments your interfaces: (Components /Thumbs /org /o penoffice /comp / test / ImageShrink.java)
package org.openoffice.comp.test;

public class ImageShrink extends com.sun.star.lib.uno.helper.ComponentBase
 implements com.sun.star.lang.XServiceInfo,
 org.openoffice.test.XImageShrink,
 com.sun.star.document.XFilter {
 ...

 String destDir = "";
 String sourceDir = "";
 boolean cancel = false;
 com.sun.star.awt.Size dimension = new com.sun.star.awt.Size();

 // XFilter implementation
 public void cancel() {
 cancel = true;
 }

 public boolean filter(com.sun.star.beans.PropertyValue[] propertyValue) {
 // while cancel = false,
 // scale images found in sourceDir according to dimension and
 // write them to destDir, using the image file format given in
 // []propertyValue

// (implementation omitted)
 cancel = false;
 return true;
 }

 // XIMageShrink implementation
 public String getDestinationDirectory() {
 return destDir;
 }

 public com.sun.star.awt.Size getDimension() {
 return dimension;
 }

 public String getSourceDirectory() {
 return sourceDir;
 }

 public void setDestinationDirectory(String str) {
 destDir = str;
 }

204 OpenOffice.org 1.1 Developer's Guide • June 2003

 public void setDimension(com.sun.star.awt.Size size) {
 dimension = size;
 }

 public void setSourceDirectory(String str) {
 sourceDir = str;
 }

 ...
}

For the component to run, the new interface class file must be accessible to the Java Virtual
Machine. That is, it has to be in its CLASSPATH. All commonly used interfaces are contained in
ridl.jar and unoil.jar that are always in the CLASSPATH because of the OpenOffice.org setup
program.

The recommended method is to deliver the interface together with the component in the same jar
file, or to have the interface in a separate jar or class file. In both cases, put the corresponding class
with the interface into the CLASSPATH. This is achieved by editing the file java(.ini |rc) in <office-
path>\user\config or through the options dialog. The java(.ini |rc) contains a SystemClasspath
entry that you append the path pointing to the class or jar file. In the Options dialog, expand the
OpenOffice.org node in the tree on the left-hand side and choose Security. One the right-hand
side, there is a field User Classpath to add the jar or class file containing the interface.

It is also important that the binary type library of the new interfaces are provided together with the compo-
nent, otherwise the component is not accessible from OpenOffice.org Basic. Basic uses the UNO core reflec-
tion service to get type information at runtime. The core reflection is based on the binary type library.

4.5.3 Providing a Single Factory Using Helper Method
The component must be able to create single factories for each service implementation it contains
and return them in the static component operation __getServiceFactory(). The OpenOffice.org
Java UNO environment provides a Java class com.sun.star.comp.loader.FactoryHelper that
creates a default implementation of a single factory through its method getServiceFactory().
The following example could be written:
(Components /Thumbs /org /openoffice /comp / test / ImageShrink.java)
package org.openoffice.comp.test;

import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.registry.XRegistryKey;
import com.sun.star.comp.loader.FactoryHelper;

public class ImageShrink ... {

 ...

 // static __getServiceFactory() implementation
 // static member __serviceName was introduced above for XServiceInfo implementation
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 com.sun.star.registry.XRegistryKey regKey) {

 com.sun.star.lang.XSingleServiceFactory xSingleServiceFactory = null;
 if (implName.equals(ImageShrink.class.getName()))
 xSingleServiceFactory = FactoryHelper.getServiceFactory(ImageShrink.class,
 ImageShrink.__serviceName, multiFactory, regKey);
 return xSingleServiceFactory;
 }

 ...

}

The FactoryHelper is contained in the jurt jar file. The getServiceFactory() method takes as a
first argument a Class object. When createInstance() is called on the default factory, it creates

Chapter 4 Writing UNO Components 205

an instance of that Class using newInstance() on it and retrieves the implementation name
through getName(). The second argument is the service name. The multiFactory and regKey
arguments were received in __getServiceFactory() and are passed to the FactoryHelper.

In this case, the implementation name, which the default factory finds through Class.getName() is
org.openoffice.comp.test.ImageShrink and the service name is
org.openoffice.test.ImageShrink. The implementation name and the service name are used for the
separate XServiceInfo implementation within the default factory. Not only do you support the XServiceInfo
interface in your service implementation, but the single factory must implement this interface as well.

The default factory created by the FactoryHelper expects a public constructor in the implementa-
tion class of the service and calls it when it instantiates the service implementation. The
constructor can be a default constructor, or it can take a com.sun.star.uno.XComponentContext
or a com.sun.star.lang.XMultiServiceFactory as an argument. Refer to 4.5.7 Writing UNO
Components - Simple Component in Java - Create Instance With Arguments for other arguments that are
possible.

Java components are housed in jar files. When a component has been registered, the registry
contains the name of the jar file, so that the service manager can find it. However, because a jar file
can contain several class files, the service manager must be told which one contains the
__getServiceFactory() method. That information has to be put into the jar's Manifest file, for
example:
RegistrationClassName: org.openoffice.comp.test.ImageShrink

4.5.4 Write Registration Info Using Helper Method
UNO components have to be registered with the registry database of a service manager. In an
office installation, this is the file applicat.rdb for all predefined services. A service manager can use
this database to find the implementations for a service. For instance, if an instance of your compo-
nent is created using the following call.
Object imageShrink = xRemoteServiceManager.createInstance("org.openoffice.test.ImageShrink");

Using the given service or implementation name, the service manager looks up the location of the
corresponding jar file in the registry and instantiates the component.

If you want to use the service manager of the Java UNO runtime,
com.sun.star.comp.servicemanager.ServiceManager (jurt.jar), to instantiate your service implementation,
then you would have to create the service manager and add the factory for “org.openoffice.test.ImageShrink”
programmatically, because the Java service manager does not use the registry.

Alternatively, you can use com.sun.star.comp.helper.RegistryServiceFactory from juh.jar which is registry-
based. Its drawback is that it delegates to a C++ implementation of the service manager through the java-
bridge.

During the registration, a component writes the necessary information into the registry. The
process to write the information is triggered externally when a client calls the __writeRegistry-
ServiceInfo() method at the component.
public static boolean __writeRegistryServiceInfo(XRegistryKey regKey)

The caller passes an com.sun.star.registry.XRegistryKey interface that is used by the method
to write the registry entries. Again, the FactoryHelper class offers a way to implement the method:
(Components /Thumbs /org /o penoffice /comp / test / ImageShrink.java)
 ...

 // static __writeRegistryServiceInfo implementation
 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey) {

206 OpenOffice.org 1.1 Developer's Guide • June 2003

 return FactoryHelper.writeRegistryServiceInfo(ImageShrink.class.getName(),
 __serviceName, regKey);
 }

The writeRegistryServiceInfo method takes three arguments:

• implementation name

• service name

• XRegistryKey

Use tools, such as regcomp or the Java application com.sun.star.tools.uno.RegComp to register a
component. These tools take the path to the jar file containing the component as an argument.
Since the jar can contain several classes, the class that implements the __writeRegistryServ-
iceInfo() method must be pointed out by means of the manifest. Again, the Registration-
ClassName entry determines the correct class. For example:
RegistrationClassName: org.openoffice.comp.test.ImageShrink

The above entry is also necessary to locate the class that provides __getServiceFactory(),
therefore the functions __writeRegistryServiceInfo() and __getServiceFactory() have to be
in the same class.

4.5.5 Implementing without Helpers

XInterface
As soon as the component implements any UNO interface, com.sun.star.uno.XInterface is
included automatically. The Java interface definition generated by javamaker for
com.sun.star.uno.XInterface contains a TypeInfo member used by Java UNO internally to
store certain IDL type information (Refer to 3.4.1 Professional UNO - UNO Language Bindings - Java
Language Binding):
// source file com/sun/star/uno/XInterface.java generated by javamaker

package com.sun.star.uno;

public interface XInterface
{
 // static Member
 public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = null;
}

Note that XInterface does not have any methods, in contrast to its IDL description. That means,
if implements com.sun.star.uno.XInterface is added to a class definition, there is nothing to
implement.

The method queryInterface() is unnecessary in a service implementation, because the Java
UNO runtime environment obtains interface references without being helped by the components.
Within Java, the method UnoRuntime.queryInterface() is used to obtain interfaces instead of
calling com.sun.star.uno.XInterface:queryInterface(), and the Java UNO language binding
hands out interfaces for services to other processes on its own as well.

The methods acquire() and release() are used for reference counting and control the lifetime of
an object, because the Java garbage collector does this, there is no reference counting in Java
components.

Chapter 4 Writing UNO Components 207

XTypeProvider
Helper classes with default com.sun.star.lang.XTypeProvider implementations are still under
development for Java. Meanwhile, every Java UNO object implementation can implement the
XTypeProvider interface as shown in the following code. In your implementation, adjust
getTypes(): (Components /Thumbs /org /o penoffice /comp / test / ImageShrink.java)
 ...

 // XTypeProvider implementation

 // maintain a static implementation id for all instances of ImageShrink
 // initialized by the first call to getImplementationId()
 protected static byte[] _implementationId;

 public com.sun.star.uno.Type[] getTypes() {
com.sun.star.uno.Type[] retValue = new com.sun.star.uno.Type[4];

// instantiate Type instances for each interface you support and add them to Type[] array

// this object implements XServiceInfo, XTypeProvider and XImageShrink
retValue[0]= new com.sun.star.uno.Type(com.sun.star.lang.XServiceInfo.class);
retValue[1]= new com.sun.star.uno.Type(com.sun.star.lang.XTypeProvider.class);
retValue[3]= new com.sun.star.uno.Type(com.sun.star.document.XFilter);
retValue[2]= new com.sun.star.uno.Type(org.openoffice.test.XImageShrink.class);
// inherited interfaces, like XInterface, are recognized implicitely

return retValue;
 }

 synchronized public byte[] getImplementationId() {
 if (_implementationId == null) {
 _implementationId= new byte[16];
 int hash = hashCode(); // hashCode of this object
 _implementationId[0] = (byte)(hash & 0xff);
 _implementationId[1] = (byte)((hash >>> 8) & 0xff);
 _implementationId[2] = (byte)((hash >>> 16) & 0xff);
 _implementationId[3] = (byte)((hash >>>24) & 0xff);

}
 return _implementationId;
 }

 ...

The suggested implementation of the getImplementationId() method is not optimal, it uses the
hashCode() of the first instance that initializes the static field. The future UNO helper class will
improve this.

XComponent
XComponent is an optional interface that is useful when other objects hold references to the
component. The notification mechanism of XComponent enables listener objects to learn when the
component stops to provide its services, so that the objects drop their references to the component.
This enables the component to delete itself when its reference count drops to zero. From section
4.4 Writing UNO Components - Core Interfaces to Implement, there must be three things done when
dispose() is called at an XComponent:

• Inform registered XEventListeners that the object is being disposed of by calling their method
disposing().

• Release all references the object holds, including all XEvenListener objects.

• On further calls to the component, throw an com.sun.star.lang.DisposedException in case
the required task can not be fulfilled anymore, because the component was disposed.

In Java, the object cannot be deleted, but the garbage collector will do this. It is sufficient to release
all references that are currently being held to break the cyclic reference, and to call disposing()
on all com.sun.star.lang.XEventListeners.

208 OpenOffice.org 1.1 Developer's Guide • June 2003

The registration and removal of listener interfaces is a standard procedure in Java. Some IDEs
even create the necessary methods automatically. The following example could be written:
(Components /Thumbs /org /openoffice /comp / test / ImageShrink.java)
 ...

 //XComponent implementation

 // hold a Vector of eventListeners in the class
 private transient Vector eventListeners;

 void dispose {
 fireDisposing(new com.sun.star.lang.EventObject(this))
 releaseReferences();
 }

 public synchronized void addEventListener(XEventListener listener) {

 if (eventListeners == 0)
 eventListeners = new Vector(2);
 if (!eventListeners.contains(listener))
 eventListeners.addElement(listener);
 }

 public synchronized void removeEventListener(XEventListener listener) {

 if (eventListeners != 0)
 eventListeners.removeElement(listener);
 }

 protected void fireDisposing(com.sun.star.lang.EventObject e) {
 if (eventListeners != null) {
 Vector listeners = eventListeners ;
 int count = listeners.size();
 for (int i = 0; i < count; i++) {
 ((XEventListener) listeners.elementAt(i)).disposing(e);
 }
 }
 }

 protected void releaseReferences() {
 xComponentContext = null;
 // ...
 }

 ...

4.5.6 Storing the Service Manager for Further Use
A component usually runs in the office process. There is no need to create an interprocess channel
explicitly. A component does not have to create a service manager, because it is provided to the
single factory of an implementation by the service manager during a call to createInstance() or
createInstanceWithContext(). The single factory receives an XComponentContext or an
XMultiServiceFactory, and passes it to the corresponding constructor of the service implemen-
tation. From the component context, the implementation gets the service manager using getServ-
iceManager() at the com.sun.star.uno.XComponentContext interface.

4.5.7 Create Instance with Arguments
A factory can create an instance of components and pass additional arguments. To do that, a client
calls the createInstanceWithArguments() function of the
com.sun.star.lang.XSingleServiceFactory interface or the createInstanceWithArgument-
sAndContext() of the com.sun.star.lang.XSingleComponentFactory interface.
//javamaker generated interface
//XSingleServiceFactory interface
public java.lang.Object createInstanceWithArguments(java.lang.Object[] aArguments)
 throws com.sun.star.uno.Exception;

Chapter 4 Writing UNO Components 209

//XSingleComponentFactory
public java.lang.Object createInstanceWithArgumentsAndContext(java.lang.Object[] Arguments,
 com.sun.star.uno.XComponentContext Context)
 throws com.sun.star.uno.Exception;

Both functions take an array of values as an argument. A component implements the
com.sun.star.lang.XInitialization interface to receive the values. A factory passes the array
on to the single method initialize() supported by XInitialization .
public void initialize(java.lang.Object[] aArguments) throws com.sun.star.uno.Exception;

Alternatively, a component may also receive these arguments in its constructor. If a factory is
written, determine exactly which arguments are provided by the factory when it instantiates the
component. When using the FactoryHelper, implement the constructors with the following argu-
ments:

First Argument Second Argument Third Argument
com.sun.star.uno.XComponentContext com.sun.star.registry.XRegistryKey java.lang.Object[]

com.sun.star.uno.XComponentContext com.sun.star.registry.XRegistryKey

com.sun.star.uno.XComponentContext java.lang.Object[]

com.sun.star.uno.XComponentContext

java.lang.Object[]

The FactoryHelper automatically passes the array of arguments it received from the createIn-
stanceWithArguments[AndContext]() call to the appropriate constructor. Therefore, it is not
always necessary to implement XInitialization to use arguments.

4.5.8 Possible Structures for Java Components
The implementation of a component depends on the needs of the implementer. The following
examples show some possible ways to assemble a component. There can be one implemented
object or several implemented objects per component file.

One Implementation per Component File
There are additional options if implementing one service per component file:

• Use a flat structure with the static component operations added to the service implementation
class directly.

• Reserve the class with the implementation name for the static component operation and use an
inner class to implement the service.

Implementation Class with Component Operations
An implementation class contains the static component operations. The following sample imple-
ments an interface com.sun.star.test.XSomething in an implementation class
JavaComp.TestComponent:
// UNOIDL: interface example specification
module com { module sun { module star { module test {

interface XSomething: com::sun::star::uno::XInterface
{
 string methodOne([in]string val);
};
}; }; }; };

210 OpenOffice.org 1.1 Developer's Guide • June 2003

A component that implements only one service supporting XSomething can be assembled in one
class as follows:
package JavaComp;

...

public class TestComponent implements XSomething, XTypeProvider, XServiceInfo {

 public static final String __serviceName="com.sun.star.test.JavaTestComponent";
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory, XRegistryKey regKey) {
 XSingleServiceFactory xSingleServiceFactory = null;

 if (implName.equals(TestComponent.class.getName()))
 xSingleServiceFactory = FactoryHelper.getServiceFactory(TestComponent.class,
 TestComponent.__serviceName, multiFactory, regKey);
 return xSingleServiceFactory;
 }

 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey){
 return FactoryHelper.writeRegistryServiceInfo(TestComponent.class.getName(),
 TestComponent.__serviceName, regKey);
 }

 // XSomething
 string methodOne(String val) {
 return val;
 }
 //XTypeProvider
 public com.sun.star.uno.Type[] getTypes() {
 ...
 }
 // XTypeProvider
 public byte[] getImplementationId() {
 ...
 }
 //XServiceInfo
 public String getImplementationName() {
 ...
 }
 // XServiceInfo
 public boolean supportsService(/*IN*/String serviceName) {
 ...
 }
 //XServiceInfo
 public String[] getSupportedServiceNames() {
 ...
 }
}

The class implements the XSomething interface. The IDL description and documentation provides
information about its functionality. The class also contains the functions for factory creation and
registration, therefore the manifest entry must read as follows:
RegistrationClassName: JavaComp.TestComponent

Implementation Class with Component Operations and Inner Implementation Class
To implement the component as inner class of the one that provides the service factory through
__getServiceFactory(), it must be a static inner class, otherwise the factory provided by the
FactoryHelper cannot create the component. An example for an inner implementation class is
located in the sample com.sun.star.comp.demo.DemoComponent.java provided with the SDK.
The implementation of __getServiceFactory() and __writeRegistryServiceInfo() is omitted
here, because they act the same as in the implementation class with component operations above.
package com.sun.star.comp.demo;

public class DemoComponent {
 ...
 // static inner class implements service com.sun.star.demo.DemoComponent
 static public class _Implementation implements XTypeProvider,
 XServiceInfo, XInitialization, XWindowListener,
 XActionListener, XTopWindowListener {
 static private final String __serviceName = "com.sun.star.demo.DemoComponent";

Chapter 4 Writing UNO Components 211

 private XMultiServiceFactory _xMultiServiceFactory;

 // Constructor
 public _Implementation(XMultiServiceFactory xMultiServiceFactory) {
 }
 }

 // static method to get a single factory creating the given service from the factory helper
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 XRegistryKey regKey) {
 ...
 }

 // static method to write the service information into the given registry key
 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey) {
 ...
 }

}

The manifest entry for this implementation structure again has to point to the class with the static
component operations:
RegistrationClassName: com.sun.star.comp.demo.DemoComponent

Multiple Implementations per Component File
To assemble several service implementations in one component file, implement each service in its
own class and add a separate class containing the static component operations. The following code
sample features two services: TestComponentA and TestComponentB implementing the interfaces
XSomethingA and XSomethingB with a separate static class TestServiceProvider containing the
component operations.

The following are the UNOIDL specifications for XSomethingA and XSomethingB:
module com { module sun { module star { module test {
interface XSomethingA: com::sun::star::uno::XInterface
{
 string methodOne([in]string value);
};
}; }; }; };

module com { module sun { module star { module test {
interface XSomethingB: com::sun::star::uno::XInterface
{
 string methodTwo([in]string value);
};
}; }; }; };

TestComponentA implements XSomethingA:
(Components /JavaComponent /TestComponentA.java):
package JavaComp;

public class TestComponentA implements XTypeProvider, XServiceInfo, XSomethingA {
 static final String __serviceName= "JavaTestComponentA";
 static byte[] _implementationId;

 public TestComponentA() {
 }

 // XSomethingA
 public String methodOne(String val) {
 return val;
 }

 //XTypeProvider
 public com.sun.star.uno.Type[] getTypes() {
 Type[] retValue= new Type[3];
 retValue[0]= new Type(XServiceInfo.class);
 retValue[1]= new Type(XTypeProvider.class);
 retValue[2]= new Type(XSomethingA.class);
 return retValue;
 }

 //XTypeProvider

212 OpenOffice.org 1.1 Developer's Guide • June 2003

 synchronized public byte[] getImplementationId() {
 if (_implementationId == null) {
 _implementationId= new byte[16];
 int hash = hashCode();
 _implementationId[0] = (byte)(hash & 0xff);
 _implementationId[1] = (byte)((hash >>> 8) & 0xff);
 _implementationId[2] = (byte)((hash >>> 16) & 0xff);
 _implementationId[3] = (byte)((hash >>>24) & 0xff);
 }
 return _implementationId;
 }

 //XServiceInfo
 public String getImplementationName() {
 return getClass().getName();
 }
 // XServiceInfo
 public boolean supportsService(/*IN*/String serviceName) {
 if (serviceName.equals(__serviceName))
 return true;
 return false;
 }

 //XServiceInfo
 public String[] getSupportedServiceNames() {
 String[] retValue= new String[0];
 retValue[0]= __serviceName;
 return retValue;
 }
}

TestComponentB implements XSomethingB. Note that it receives the component context and
initialization arguments in its constructor. (Components /JavaComponent /TestComponentB.java)
package JavaComp;

public class TestComponentB implements XTypeProvider, XServiceInfo, XSomethingB {
 static final String __serviceName= "JavaTestComponentB";
 static byte[] _implementationId;
 private XComponentContext context;
 private Object[] args;
 public TestComponentB(XComponentContext context, Object[] args) {
 this.context= context;
 this.args= args;
 }

 // XSomethingB
 public String methodTwo(String val) {
 if (args.length > 0 && args[0] instanceof String)
 return (String) args[0];
 return val;
 }

 //XTypeProvider
 public com.sun.star.uno.Type[] getTypes() {
 Type[] retValue= new Type[3];
 retValue[0]= new Type(XServiceInfo.class);
 retValue[1]= new Type(XTypeProvider.class);
 retValue[2]= new Type(XSomethingB.class);
 return retValue;
 }

 //XTypeProvider
 synchronized public byte[] getImplementationId() {
 if (_implementationId == null) {
 _implementationId= new byte[16];
 int hash = hashCode();
 _implementationId[0] = (byte)(hash & 0xff);
 _implementationId[1] = (byte)((hash >>> 8) & 0xff);
 _implementationId[2] = (byte)((hash >>> 16) & 0xff);
 _implementationId[3] = (byte)((hash >>>24) & 0xff);
 }
 return _implementationId;
 }

 //XServiceInfo
 public String getImplementationName() {
 return getClass().getName();
 }

 // XServiceInfo
 public boolean supportsService(/*IN*/String serviceName) {

Chapter 4 Writing UNO Components 213

 if (serviceName.equals(__serviceName))
 return true;
 return false;
 }

 //XServiceInfo
 public String[] getSupportedServiceNames() {
 String[] retValue= new String[0];
 retValue[0]= __serviceName;
 return retValue;
 }
}

TestServiceProvider implements __getServiceFactory() and __writeRegistryServiceInfo
(): (Components /JavaComponent /TestServiceProvider.java)
package JavaComp;
...
public class TestServiceProvider
{
 public static XSingleServiceFactory __getServiceFactory(String implName,
 XMultiServiceFactory multiFactory,
 XRegistryKey regKey) {
 XSingleServiceFactory xSingleServiceFactory = null;

 if (implName.equals(TestComponentA.class.getName()))
 xSingleServiceFactory = FactoryHelper.getServiceFactory(TestComponentA.class,
 TestComponentA.__serviceName, multiFactory, regKey);
 else if (implName.equals(TestComponentB.class.getName()))
 xSingleServiceFactory= FactoryHelper.getServiceFactory(TestComponentB.class,
 TestComponentB.__serviceName, multiFactory, regKey);
 return xSingleServiceFactory;
 }

 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey){
 boolean bregA= FactoryHelper.writeRegistryServiceInfo(TestComponentA.class.getName(),
 TestComponentA.__serviceName, regKey);
 boolean bregB= FactoryHelper.writeRegistryServiceInfo(TestComponentB.class.getName(),
 TestComponentB.__serviceName, regKey);
 return bregA && bregB;
 }
}

The corresponding manifest entry must point to the static class with the component operations, in
this case JavaComp.TestServiceProvider:
RegistrationClassName: JavaComp.TestServiceProvider

4.5.9 Running and Debugging Java Components

Registration
The service manager with a registry database containing information about the location of the
component file and the types used must be provided to test the component with the office. There
are several ways to accomplish the registration. The following is a possibility.

A .rdb file is created with all the necessary information and the service manager is told to use it in
addition to the standard applicat.rdb. The advantage of proceeding this way is that the applicat.rdb
does not become cluttered with the production office installation with test registrations and aban-
doned type information. Follow the steps below:

Note, it errors are encountered, refer to the troubleshooting section at the end of this chapter.

Register Component File
This step creates a registry file that contains the location of the component file and all the
necessary type information. To register, place a few files to the proper locations:

• Copy the regcomp tool from the SDK distribution to <OfficePath>/program.

214 OpenOffice.org 1.1 Developer's Guide • June 2003

• Copy the component jar to <OfficePath>/program/classes.

• Copy the .rdb file containing the new types created to <OfficePath>/program. If new types
were not defined, dismiss this step. In this case, regcomp automatically creates a new rdb file
with registration information.

On the command prompt, change to <OfficePath>/program, then run regcomp with the following
options. Line breaks were applied to improve readability, but the command must be entered in
a single line:

$ regcomp -register -r <your_registry>.rdb
 -br applicat.rdb
 -l com.sun.star.loader.Java2
 -c file:///<OfficePath>/program/classes/<your_component>.jar

For the org.openoffice.test.ImageShrink service whose type description was merged into
thumbs.rdb , which is implemented in thumbs.jar, the corresponding command would be:

$ regcomp -register -r thumbs.rdb
 -br applicat.rdb
 -l com.sun.star.loader.Java2
 -c file:///i:/StarOffice6.0/program/classes/thumbs.jar

Instead of regcomp, there is also a Java tool to register components, however, it can only write
to the same registry it reads from. It cannot be used to create a separate registry database. For
details, see the section 4.9 Writing UNO Components - Deployment Options for Components.

Make Registration available to OpenOffice.org
OpenOffice.org must be told to use the registry. Close all OpenOffice.org parts, including the
Quickstarter that runs in the Windows task bar. Edit the file uno(.ini |rc) in
<OfficePath>/program as follows:
[Bootstrap]
UNO_TYPES=$SYSBINDIR/applicat.rdb $SYSBINDIR/<your_registry>.rdb
UNO_SERVICES=$SYSBINDIR/applicat.rdb $SYSBINDIR/<your_registry>.rdb
For details about the syntax of uno(.ini |rc) and alternative registration procedures, refer to the
section 4.9 Writing UNO Components - Deployment Options for Components. If OpenOffice.org is
restarted, the component should be available.

Test the Registration
A short OpenOffice.org Basic program indicates if the program runs went smoothly, by
selecting Tools – Macro and entering a new macro name on the left, such as TestImageShrink
and click New to create a new procedure. In the procedure, enter the appropriate code of the
component. The test routine for ImageShrink would be:

Sub TestImageShrink
 oTestComp = createUnoService("org.openoffice.test.ImageShrink")
 MsgBox oTestComp.dbg_methods
 MsgBox oTestComp.dbg_properties
 MsgBox oTestComp.dbg_supportedInterfaces
end sub
The result should be three dialogs showing the methods, properties and interfaces supported
by the implementation. Note that the interface attributes do not appear as get /set methods, but
as properties in Basic. If the dialogs do not show what is expected, refer to the section 4.5.9
Writing UNO Components - Simple Component in Java - Testing and Debugging Java Components -
Troubleshooting.

Debugging
To increase turnaround cycles and source level debugging, configure the IDE to use GNU make-
files for code generation and prepare OpenOffice.org for Java debugging. If NetBeans are used,
the following steps are necessary:

Chapter 4 Writing UNO Components 215

Support for GNU make
A NetBeans extension, available on makefile.netbeans.org, that adds basic support for GNU
makefiles. When it is enabled, edit the makefile in the IDE and use the makefile to build. To
install and enable this module, select Tools – Setup Wizard and click Next to go to the Module
installation page. Find the module Makefiles and change the corresponding entry to True in
the Enabled column. Finish using the setup wizard. If the module is not available in the instal-
lation, use Tools – Update Center to get the module from www.netbeans.org. A new entry,
Makefile Support, appears in the online help when Help – Contents is selected . Makefile
Support provides further configuration options. The settings Run a Makefile and Test a
Makefile can be found in Tools – Options – Uncategorized – Compiler Types and – Execu-
tion Types .

Put the makefile into the project source folder that was mounted when the project was created.
To build the project using the makefile, highlight the makefile in the Explorer and press F11.

Documentation for GNU make command- line options and syntax are available at
www.gnu.org. The sample Thumbs in the samples folder along with this manual contains a
makefile that with a few adjustments is useful for Java components.

Component Debugging
If NetBeans or Forte for Java is used, the Java Virtual Machine (JVM) that is launched by
OpenOffice.org can be attached. Configure the JVM used by OpenOffice.org to listen for
debugger connections. First close any open OpenOffice.org windows including the Quick-
starter, then edit the section [JAVA] of the file java(.ini |rc) in <OfficePath>/user/config by adding:

-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,address=8000,suspend=n
The last line causes the JVM to listen for a debugger on port 8000. The JVM starts listening as
soon as it runs and does not wait until a debugger connects to the JVM. Launch the office and
instantiate the Java component, so that the office invokes the JVM in listening mode.

Once a Java component is instantiated, the JVM keeps listening even if the component goes out
of scope. Open the appropriate source file in the NetBeans editor and set breakpoints as
needed. Choose Debug - Attach, select Java Platform Debugger Architecture (JPDA) as
debugger type and SocketAttach (Attaches by socket to other VMs) as the connector. The
Host should be localhost and the Port must be 8000. Click OK to connect the Java Debugger to
the JVM the office has started previously step.

Once the debugger connects to the running JVM, NetBeans switches to debug mode, the output
windows shows a message that a connection on port 8000 is established and threads are visible,
as if the debugging was local. If necessary, start your component once again. As soon as the
component reaches a breakpoint in the source code, the source editor window opens with the
breakpoint highlighted by a green arrow.

The Java Environment in OpenOffice.org
When UNO components written in Java are to be used within the office, it has to be configured
appropriately. During OpenOffice.org installation, the Java setup is run. It gives the user the
opportunity to choose a Java installation. The setup only offers Java versions which are certain to
work with the office. The user can also choose to have an appropriate Java Runtime Environment
installed. When the office has been installed, a user can still change the used Java installation by
running the jvmsetup program that is located in the program directory of the installation directory.
For example:

d:\program files\<office-installation-dir>\program\jvmsetup.exe

216 OpenOffice.org 1.1 Developer's Guide • June 2003

When the office starts Java, it uses configuration data that are kept in the java(.ini |rc) file, as well
as in dedicated configuration files. The java(.ini |rc) is located in the <officepath>\user\config direc-
tory. A client can use that file to pass additional properties to the Java Virtual Machine, which are
then available as system properties. For example, to pass the property MyAge, invoke Java like
this:

java -DMyAge=30 RunClass
If you want to have that system property accessible by your Java component you can put that
property into java(.ini |rc) within the [Java] section. For example:
[Java]
Home=d:\development\jdk1.3.1

VMType=jdk
Version=1.3.1
RuntimeLib=d:\development\jdk1.3.1\jre\bin\hotspot\jvm.dll
SystemClasspath=d:\development\jdk1.3.1\jre\lib\rt.jar; ...
Java=1
JavaScript=1
Applets=1
MyAge=27

To debug a Java component, it is necessary to start the JVM with additional parameters. The
parameters can be put in the java.ini the same way as they would appear on the command- line.
For example , add those lines to the [Java] section:
-Xdebug
-Xrunjdwp:transport=dt_socket,server=y,address=8000

More about debugging can be found in the JDK documentation and in the OpenOffice.org Soft-
ware Development Kit.

Java components are also affected by the following configuration settings. They can be changed in
the Tools - Options dialog. In the dialog, expand the OpenOffice.org node on the left-hand side
and choose Security . This brings up a new pane on the right-hand side that allows Java specific
settings:

Java Setting Description
Enable If checked, Java is used with the office. This affects Java components, as well as

applets.

Security checks If checked, the security manager restricts resource access of applets.

Net access Determines where an applet can connect.

ClassPath Additional jar files and directories where the JVM should search for classes. Also
known as user classpath.

Applets If checked, applets are executed.

Troubleshooting
If the component encounters problems, review the following checklist to check if the component is
configured correctly.

Check Registry Keys
To check if the registry database is correctly set up, run regview against the three keys that
make up a registration in the /UCR, /SERVICES and /IMPLEMENTATIONS branch of a
registry database. The following examples show how to read the appropriate keys and how a
proper configuration should look. In our example, service ImageShrink, and the key /
UCR/org /openoffice /test /XImageShrink contain the type information specified in UNOIDL:

dump XImageShrink type information

Chapter 4 Writing UNO Components 217

$ regview thumbs.rdb /UCR/org/openoffice/test/XImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/UCR/org/openoffice/test/XImageShrink
 Value: Type = RG_VALUETYPE_BINARY
 Size = 364
 Data = minor version: 0
 major version: 1
 type: 'interface'
 uik: { 0x00000000-0x0000-0x0000-0x00000000-0x00000000 }
 name: 'org/openoffice/test/XImageShrink'
 super name: 'com/sun/star/uno/XInterface'
 Doku: ""
 IDL source file: "X:\SO\sdk\examples\java\Thumbs\org\openoffice\test\XImageShrink.idl"
 number of fields: 3
 field #0:
 name='SourceDirectory'
 type='string'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 field #1:
 name='DestinationDirectory'
 type='string'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 field #2:
 name='Dimension'
 type='com/sun/star/awt/Size'
 access=READWRITE
 Doku: ""
 IDL source file: ""
 number of methods: 0
 number of references: 0
The /SERVICES/org.openoffice.test.ImageShrink key must point to the implementation name
org.openoffice.comp.test.ImageShrink that was chosen for this service:

dump service name registration

$ regview thumbs.rdb /SERVICES/org.openoffice.test.ImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/SERVICES/org.openoffice.test.ImageShrink
 Value: Type = RG_VALUETYPE_STRINGLIST
 Size = 45
 Len = 1
 Data = 0 = "org.openoffice.comp.test.ImageShrink"
Finally, the /IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink key must contain
the loader and the location of the component jar:

dump implementation name registration

$ regview thumbs.rdb /IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink
 / UNO
 / ACTIVATOR
 Value: Type = RG_VALUETYPE_STRING
 Size = 26
 Data = "com.sun.star.loader.Java2"

 / SERVICES
 / org.openoffice.test.ImageShrink
 / LOCATION
 Value: Type = RG_VALUETYPE_STRING
 Size = 50
 Data = "file:///X:/office60eng/program/classes/thumbs.jar"

If the UCR key is missing, the problem is with regmerge. The most probable cause are missing .
urd files. Be careful when writing the makefile. If .urd files are missing when regmerge is
launched by the makefile, regmerge continues and creates a barebone .rdb file, sometimes
without any type info.

218 OpenOffice.org 1.1 Developer's Guide • June 2003

If regview can not find the /SERVICES and /IMPLEMENTATIONS keys or they have the
wrong content, the problem occurred when regcomp was run. This can be caused by wrong
path names in the regcomp arguments.

Also, a wrong SystemClasspath setup in java(.ini |rc) could be the cause of regcomp error
messages about missing classes. Check what the SystemClasspath entry in java(.ini |rc) speci-
fies for the Java UNO runtime jars.

Ensure that regcomp is being run from the current directory when registering Java components.
In addition, ensure <OfficePath>/program is the current folder when regcomp is run. Verify that
regcomp is in the current folder.

Check the Java VM settings
Whenever the VM service is instantiated by OpenOffice.org, it uses the Java configuration
settings in OpenOffice.org. This happens during the registration of Java components, therefore
make sure that Java is enabled. Choose Tools-Options in OpenOffice.org, so that the dialog
appears. Expand the OpenOffice.org node and select Security . Select the Enable checkbox in
the Java section and click OK.

Check the Manifest
Make sure the manifest file contains the correct entry for the registration class name. The file
must contain the following line:
RegistrationClassName: <full name of package and class>
The registration class name must be the one that implements the __writeRegistryServ-
iceInfo() and __getServiceFactory() methods. The RegistrationClassName to be entered
in the manifest for our example is org.openoffice.comp.test.ImageShrink.

Adjust CLASSPATH for Additional Classes
OpenOffice.org maintains its own system classpath and a user classpath when it starts the Java
VM for Java components. The jar file that contains the service implementation is not required
in the system or user classpath. If other jar files or classes are depended on and they are not part
of the Java UNO runtime jars, they must be in the classpath. To correct the problem, edit the
java(.ini |rc) file in <OfficePath>/user/config and add the jars or directories to the SystemClass-
path entry or use Tools – Options – OpenOffice.org - Security to add them to the user class-
path.

Disable Debug Options
If the debug options (-Xdebug, -Xrunjdwp) are in the java(.ini |rc) file, disable them by putting
semicolons at the beginning of the respective lines. The regcomp may hang, because the JVM is
waiting for a debugger to be attached.

4.6 C++ Component
In this section, a sample component containing two service implementations with helpers and
without helpers implemented are presented. The complete source code and the gnu makefile are
in samples/simple_cpp_component.

The first step for the C++ component is to define a language- independent interface, so that the
UNO object can communicate with others. The IDL specification for the component defines one
interface my_module.XSomething and two services implementing this interface. In addition, the
second service called my_module.MyService2 implements the
com.sun.star.lang.XInitialization interface, so that MyService2 can be instantiated with
arguments passed to it during runtime.
#include <com/sun/star/uno/XInterface.idl>

Chapter 4 Writing UNO Components 219

#include <com/sun/star/lang/XInitialization.idl>

module my_module
{

interface XSomething : com::sun::star::uno::XInterface
{
 string methodOne([in] string val);
};

service MyService1
{
 interface XSomething;
};

service MyService2
{
 interface XSomething;
 interface com::sun::star::lang::XInitialization;
};

};

This IDL is compiled to produce a binary type library file (.urd file), by executing the following
commands. The types are compiled and merged into a registry simple_component.rdb, that will be
linked into the OpenOffice.org installation later.
$ idlc -I<SDK>/idl some.idl
$ regmerge simple_component.rdb /UCR some.urd

The cppumaker tool must be used to map IDL to C++:
$ cppumaker -BUCR -Tmy_module.XSomething <SDK>/bin/applicat.rdb simple_component_rdb

For each given type, a pair of header files is generated, a .hdl and a .hpp file. To avoid conflicts, all
C++ declarations of the type are in the .hdl and all definitions, such as constructors, are in the .hpp
file. The .hpp is the one to include for any type used in C++.

The next step is to implement the core interfaces, and the implementation of the component opera-
tions component_getFactory(), component_writeInfo() and component_getImplementa-
tionEnvironment()with or without helper methods.

4.6.1 Class Definition with Helper Template Classes

XInterface, XTypeProvider and XWeak
The SDK offers helpers for ease of developing. There are implementation helper template classes
that deal with the implementation of com.sun.star.uno.XInterface and
com.sun.star.lang.XTypeProvider, as well as com.sun.star.uno.XWeak. These classes let you
focus on the interfaces you want to implement.

The implementation of my_module.MyService2 uses the ::cppu::WeakImplHelper3<> helper.
The “3” stands for the number of interfaces to implement. The class declaration inherits from this
template class which takes the interfaces to implement as template parameters.
(Components /CppComponent / service2_impl.cxx)
#include <cppuhelper/implbase3.hxx> // "3" implementing three interfaces
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implementationentry.hxx>

#include <com/sun/star/lang/XServiceInfo.hpp>
#include <com/sun/star/lang/XInitialization.hpp>
#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <my_module/XSomething.hpp>

using namespace ::rtl; // for OUString
using namespace ::com::sun::star; // for sdk interfaces
using namespace ::com::sun::star::uno; // for basic types

220 OpenOffice.org 1.1 Developer's Guide • June 2003

namespace my_sc_impl {

class MyService2Impl : public ::cppu::WeakImplHelper3< ::my_module::XSomething,
 lang::XServiceInfo,
 lang::XInitialization >
{
 ...
};
}

The next section focusses on coding com.sun.star.lang.XServiceInfo,
com.sun.star.lang.XInitialization and the sample interface my_module.XSomething.

The cppuhelper shared library provides additional implementation helper classes, for example,
supporting com.sun.star.lang.XComponent. Browse the ::cppu namespace in the C++ reference
of the SDK or on udk.openoffice.org.

XServiceInfo
An UNO service implementation supports com.sun.star.lang.XServiceInfo providing infor-
mation about its implementation name and supported services. The implementation name is a
unique name referencing the specific implementation. In this case,
my_module.my_sc_impl.MyService1 and my_module.my_sc_impl.MyService2 respectively. The
implementation name is used later when registering the implementation into the
simple_component.rdb registry used for OpenOffice.org. It links a service name entry to one imple-
mentation, because there may be more than one implementation. Multiple implementations of the
same service may have different characteristics, such as runtime behavior and memory footprint.

Our service instance has to support the com.sun.star.lang.XServiceInfo interface. This inter-
face has three methods, and can be coded for one supported service as follows:
(Components /CppComponent / service2_impl.cxx)
// XServiceInfo implementation
OUString MyService2Impl::getImplementationName()
 throw (RuntimeException)
{
 // unique implementation name
 return OUString(RTL_CONSTASCII_USTRINGPARAM("my_module.my_sc_impl.MyService2"));
}
sal_Bool MyService2Impl::supportsService(OUString const & serviceName)
 throw (RuntimeException)
{
 // this object only supports one service, so the test is simple
 return serviceName.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("my_module.MyService2"));
}
Sequence< OUString > MyService2Impl::getSupportedServiceNames()
 throw (RuntimeException)
{
 return getSupportedServiceNames_MyService2Impl();
}

4.6.2 Implementing your own Interfaces
For the my_module.XSomething interface, add a string to be returned that informs the caller when
methodOne() was called successfully . (Components /CppComponent / service2_impl.cxx)
OUString MyService2Impl::methodOne(OUString const & str)
 throw (RuntimeException)
{
 return OUString(RTL_CONSTASCII_USTRINGPARAM(
 "called methodOne() of MyService2 implementation: ")) + str;
}

Chapter 4 Writing UNO Components 221

4.6.3 Providing a Single Factory Using a Helper Method
C++ component libraries must export an external "C" function called component_getFactory()
that supplies a factory object for the given implementation. Use ::cppu::component_getFacto-
ryHelper() to create this function. The declarations for it are included through
cppuhelper / implementationentry.hxx.

The component_getFactory() method appears at the end of the following listing. This method
assumes that the component includes a static ::cppu::ImplementationEntry array s_compo-
nent_entries[], which contains a number of function pointers. The listing shows how to write
the component, so that the function pointers for all services of a multi-service component are
correctly initialized. (Components /CppComponent /service2_impl.cxx)
#include <cppuhelper/implbase3.hxx> // "3" implementing three interfaces
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implementationentry.hxx>

#include <com/sun/star/lang/XServiceInfo.hpp>
#include <com/sun/star/lang/XInitialization.hpp>
#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <my_module/XSomething.hpp>

using namespace ::rtl; // for OUString
using namespace ::com::sun::star; // for sdk interfaces
using namespace ::com::sun::star::uno; // for basic types

namespace my_sc_impl
{

class MyService2Impl : public ::cppu::WeakImplHelper3<
 ::my_module::XSomething, lang::XServiceInfo, lang::XInitialization >
{
 OUString m_arg;
public:
 // focus on three given interfaces,
 // no need to implement XInterface, XTypeProvider, XWeak

 // XInitialization will be called upon createInstanceWithArguments[AndContext]()
 virtual void SAL_CALL initialize(Sequence< Any > const & args)
 throw (Exception);
 // XSomething
 virtual OUString SAL_CALL methodOne(OUString const & str)
 throw (RuntimeException);
 // XServiceInfo
 virtual OUString SAL_CALL getImplementationName()
 throw (RuntimeException);
 virtual sal_Bool SAL_CALL supportsService(OUString const & serviceName)
 throw (RuntimeException);
 virtual Sequence< OUString > SAL_CALL getSupportedServiceNames()
 throw (RuntimeException);
};

// Implementation of XSomething, XServiceInfo and XInitilization omitted here:
...

// component operations from service1_impl.cxx
extern Sequence< OUString > SAL_CALL getSupportedServiceNames_MyService1Impl();
extern OUString SAL_CALL getImplementationName_MyService1Impl();
extern Reference< XInterface > SAL_CALL create_MyService1Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(());
// component operations for MyService2Impl
static Sequence< OUString > getSupportedServiceNames_MyService2Impl()
{
 static Sequence < OUString > *pNames = 0;
 if(! pNames)
 {
 if(!pNames)
 {
 static Sequence< OUString > seqNames(1);
 seqNames.getArray()[0] = OUString(RTL_CONSTASCII_USTRINGPARAM("my_module.MyService2"));
 pNames = &seqNames;
 }
 }
 return *pNames;
}

static OUString getImplementationName_MyService2Impl()

222 OpenOffice.org 1.1 Developer's Guide • June 2003

{
 static OUString *pImplName = 0;
 if(! pImplName)
 {
 if(! pImplName)
 {
 static OUString implName(
 RTL_CONSTASCII_USTRINGPARAM("my_module.my_sc_implementation.MyService2"));
 pImplName = &implName;
 }
 }
 return *pImplName;
}

Reference< XInterface > SAL_CALL create_MyService2Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(())
{
 return static_cast< lang::XTypeProvider * >(new MyService2Impl());
}

/* shared lib exports implemented with helpers */
static struct ::cppu::ImplementationEntry s_component_entries [] =
{
 {
 create_MyService1Impl, getImplementationName_MyService1Impl,
 getSupportedServiceNames_MyService1Impl, ::cppu::createSingleComponentFactory,
 0, 0
 },
 {
 create_MyService2Impl, getImplementationName_MyService2Impl,
 getSupportedServiceNames_MyService2Impl, ::cppu::createSingleComponentFactory,
 0, 0
 },
 { 0, 0, 0, 0, 0, 0 }
};
}

extern "C"
{
void * SAL_CALL component_getFactory(
 sal_Char const * implName, lang::XMultiServiceFactory * xMgr,
 registry::XRegistryKey * xRegistry)
{
 return ::cppu::component_getFactoryHelper(
 implName, xMgr, xRegistry, ::my_sc_impl::s_component_entries);
}

// getImplementationEnvironment and component_writeInfo are described later, we omit them here
...
}

The static variable s_component_entries defines a null-terminated array of entries concerning
the service implementations of the shared library. A service implementation entry consists of func-
tion pointers for

• object creation: create_MyServiceXImpl()
• implementation name: getImplementationName_MyServiceXImpl()
• supported service names: getSupportedServiceNames_MyServiceXImpl()
• factory helper to be used: ::cppu::createComponentFactory()
The last two values are reserved for future use and therefore can be 0.

4.6.4 Write Registration Info Using Helper Method
Use ::cppu::component_writeInfoHelper() to implement component_writeInfo(): This func-
tion is called by regcomp during the registration process.
[ScOURCE:Components /simple_cpp_component / service2_impl.cxx]

Chapter 4 Writing UNO Components 223

extern "C" sal_Bool SAL_CALL component_writeInfo(
 lang::XMultiServiceFactory * xMgr, registry::XRegistryKey * xRegistry)
{
 return ::cppu::component_writeInfoHelper(
 xMgr, xRegistry, ::my_sc_impl::s_component_entries);
}

Note that component_writeInfoHelper() uses the same array of ::cppu::Implementa-
tionEntry structs as component_getFactory(),that is, s_component_entries.

4.6.5 Provide Implementation Environment
The function called component_getImplementationEnvironment() tells the shared library
component loader which compiler was used to build the library. This information is required if
different components have been compiled with different compilers. A specific C++-compiler is
called an environment. If different compilers were used, the loader has to bridge interfaces from
one compiler environment to another, building the infrastructure of communication between those
objects. It is mandatory to have the appropriate C++ bridges installed into the UNO runtime. In
most cases, the function mentioned above can be implemented this way: (Components /CppCom-
ponent /service2_impl.cxx)
extern "C" void SAL_CALL component_getImplementationEnvironment(
 sal_Char const ** ppEnvTypeName, uno_Environment ** ppEnv)
{
 *ppEnvTypeName = CPPU_CURRENT_LANGUAGE_BINDING_NAME;
}

The macro CPPU_CURRENT_LANGUAGE_BINDING_NAME is a C string defined by the compiling envi-
ronment, if you use the SDK compiling environment. For example, when compiling with the
Microsoft Visual C++ compiler, it defines to "msci", but when compiling with the GNU gcc 3, it
defines to "gcc3".

4.6.6 Implementing without Helpers
In the following section, possible implementations without helpers are presented. This is useful if
more interfaces are to be implemented than planned by the helper templates. The helper templates
only allow up to ten interfaces. Also included in this section is how the core interfaces work.

XInterface Implementation
Object lifetime is controlled through the common base interface com.sun.star.uno.XInterface
methods acquire() and release(). These are implemented using reference-counting, that is,
upon each acquire(), the counter is incremented and upon each release(), it is decreased. On
last decrement, the object dies. Programming in a thread- safe manner, the modification of this
counter member variable is commonly performed by a pair of sal library functions called
osl_incrementInterlockedcount() and osl_decrementInterlockedcount() (include
osl/interlck.h). (Components /CppComponent /service1_impl.cxx)

Be aware of symbol conflicts when writing code. It is common practice to wrap code into a separate
namespace, such as "my_sc_impl". The problem is that symbols may clash during runtime on Unix when
your shared library is loaded.

namespace my_sc_impl
{
class MyService1Impl
 ...
{

224 OpenOffice.org 1.1 Developer's Guide • June 2003

 oslInterlockedCount m_refcount;
public:
 inline MyService1Impl() throw ()
 : m_refcount(0)
 {}

 // XInterface
 virtual Any SAL_CALL queryInterface(Type const & type)
 throw (RuntimeException);
 virtual void SAL_CALL acquire()
 throw ();
 virtual void SAL_CALL release()
 throw ();
 ...
};
void MyService1Impl::acquire()
 throw ()
{
 // thread-safe incrementation of reference count
 ::osl_incrementInterlockedCount(&m_refcount);
}
void MyService1Impl::release()
 throw ()
{
 // thread-safe decrementation of reference count
 if (0 == ::osl_decrementInterlockedCount(&m_refcount))
 {
 delete this; // shutdown this object
 }
}

In the queryInterface() method, interface pointers have to be provided to the interfaces of the
object. That means, cast this to the respective pure virtual C++ class generated by the cppumaker
tool for the interfaces. All supported interfaces must be returned, including inherited interfaces
like XInterface. (Components /CppComponent /service1_impl.cxx)
Any MyService1Impl::queryInterface(Type const & type)
 throw (RuntimeException)
{
 if (type.equals(::getCppuType((Reference< XInterface > const *)0)))
 {
 // return XInterface interface (resolve ambiguity caused by multiple inheritance from
 // XInterface subclasses by casting to lang::XTypeProvider)
 Reference< XInterface > x(static_cast< lang::XTypeProvider * >(this));
 return makeAny(x);
 }
 if (type.equals(::getCppuType((Reference< lang::XTypeProvider > const *)0)))
 {
 // return XInterface interface
 Reference< XInterface > x(static_cast< lang::XTypeProvider * >(this));
 return makeAny(x);
 }
 if (type.equals(::getCppuType((Reference< lang::XServiceInfo > const *)0)))
 {
 // return XServiceInfo interface
 Reference< lang::XServiceInfo > x(static_cast< lang::XServiceInfo * >(this));
 return makeAny(x);
 }
 if (type.equals(::getCppuType((Reference< ::my_module::XSomething > const *)0)))
 {
 // return sample interface
 Reference< ::my_module::XSomething > x(static_cast< ::my_module::XSomething * >(this));
 return makeAny(x);
 }
 // querying for unsupported type
 return Any();
}

XTypeProvider Implementation
When implementing the com.sun.star.lang.XTypeProvider interface, two methods have to be
coded. The first one, getTypes() provides all implemented types of the implementation,
excluding base types, such as com.sun.star.uno.XInterface. The second one, getImplementa-
tionId() provides a unique ID for this set of interfaces. A thread- safe implementation of the
above mentioned looks like the following example:
(Components /CppComponent / service1_impl.cxx)
Sequence< Type > MyService1Impl::getTypes()

Chapter 4 Writing UNO Components 225

 throw (RuntimeException)
{
 Sequence< Type > seq(3);
 seq[0] = ::getCppuType((Reference< lang::XTypeProvider > const *)0);
 seq[1] = ::getCppuType((Reference< lang::XServiceInfo > const *)0);
 seq[2] = ::getCppuType((Reference< ::my_module::XSomething > const *)0);
 return seq;
}
Sequence< sal_Int8 > MyService1Impl::getImplementationId()
 throw (RuntimeException)
{
 static Sequence< sal_Int8 > * s_pId = 0;
 if (! s_pId)
 {
 // create unique id
 Sequence< sal_Int8 > id(16);

::rtl_createUuid((sal_uInt8 *)id.getArray(), 0, sal_True);
 // guard initialization with some mutex
 ::osl::MutexGuard guard(::osl::Mutex::getGlobalMutex());
 if (! s_pId)
 {
 static Sequence< sal_Int8 > s_id(id);
 s_pId = &s_id;
 }
 }
 return *s_pId;
}

Take a look at the thread- safe initialization of the implementation ID. A common pattern is to test a static
pointer that is modified by one atom write. Using the same pattern, you can do a static initialization of the
types sequence. This has been omitted for simplicity.
In general, do not acquire() mutexes when calling alien code if you do not know what the called code is
doing. You never know what mutexes the alien code is acquiring which can lead to deadlocks. This is the
reason, why the latter value (uuid) is created before the initialization mutex is acquired. After the mutex is
successfully acquired, the value of s_pID is checked again and assigned if it has not been assigned before.
This is the design pattern double check lock.

Providing a Single Factory
The function component_getFactory() provides a single object factory for the requested imple-
mentation, that is, it provides a factory that creates object instances of one of the service implemen-
tations. Using a helper from cppuhelper/factory.hxx, this is implemented quickly in the following
code: (Components /CppComponent /service1_impl.cxx)
#include <cppuhelper/factory.hxx>

namespace my_sc_impl
{
...
static Reference< XInterface > SAL_CALL create_MyService1Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(())
{
 return static_cast< lang::XTypeProvider * >(new MyService1Impl());
}
static Reference< XInterface > SAL_CALL create_MyService2Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(())
{
 return static_cast< lang::XTypeProvider * >(new MyService2Impl());
}
}

extern "C" void * SAL_CALL component_getFactory(
 sal_Char const * implName, lang::XMultiServiceFactory * xMgr, void *)
{
 Reference< lang::XSingleComponentFactory > xFactory;
 if (0 == ::rtl_str_compare(implName, "my_module.my_sc_impl.MyService1"))
 {
 // create component factory for MyService1 implementation
 OUString serviceName(RTL_CONSTASCII_USTRINGPARAM("my_module.MyService1"));
 xFactory = ::cppu::createSingleComponentFactory(
 ::my_sc_impl::create_MyService1Impl,
 OUString(RTL_CONSTASCII_USTRINGPARAM("my_module.my_sc_impl.MyService1")),

226 OpenOffice.org 1.1 Developer's Guide • June 2003

 Sequence< OUString >(&serviceName, 1));
 }
 else if (0 == ::rtl_str_compare(implName, "my_module.my_sc_impl.MyService2"))
 {
 // create component factory for MyService12 implementation
 OUString serviceName(RTL_CONSTASCII_USTRINGPARAM("my_module.MyService2"));
 xFactory = ::cppu::createSingleComponentFactory(
 ::my_sc_impl::create_MyService2Impl,
 OUString(RTL_CONSTASCII_USTRINGPARAM("my_module.my_sc_impl.MyService2")),
 Sequence< OUString >(&serviceName, 1));
 }
 if (xFactory.is())
 xFactory->acquire();
 return xFactory.get(); // return acquired interface pointer or null
}

In the example above, note the function ::my_sc_impl::create_MyService1Impl() that is called
by the factory object when it needs to instantiate the class. A component context
com.sun.star.uno.XComponentContext is provided to the function, which may be passed to the
constructor of MyService1Impl.

Write Registration Info
The function component_writeInfo() is called by the shared library component loader upon
registering the component into a registry database file (.rdb). The component writes information
about objects it can instantiate into the registry when it is called by regcomp.
(Components /CppComponent / service1_impl.cxx)
extern "C" sal_Bool SAL_CALL component_writeInfo(
 lang::XMultiServiceFactory * xMgr, registry::XRegistryKey * xRegistry)
{
 if (xRegistry)
 {
 try
 {
 // implementation of MyService1A
 Reference< registry::XRegistryKey > xKey(
 xRegistry->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.my_sc_impl.MyService1/UNO/SERVICES"))));
 // subkeys denote implemented services of implementation
 xKey->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.MyService1")));
 // implementation of MyService1B
 xKey = xRegistry->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.my_sc_impl.MyService2/UNO/SERVICES")));
 // subkeys denote implemented services of implementation
 xKey->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM(
 "my_module.MyService2")));
 return sal_True; // success
 }
 catch (registry::InvalidRegistryException &)
 {
 // function fails if exception caught
 }
 }
 return sal_False;
}

4.6.7 Storing the Service Manager for Further Use
The single factories expect a static create_<ImplementationClass>() function. For instance,
create_MyService1Impl()takes a reference to the component context and instantiates the imple-
mentation class using new ImplementationClass(). A constructor can be written for <Implemen-
tationClass> that expects a reference to an com.sun.star.uno.XComponentContext and stores
the reference in the instance for further use.
static Reference< XInterface > SAL_CALL create_MyService2Impl(
 Reference< XComponentContext > const & xContext)
 SAL_THROW(())
{
 // passing the component context to the constructor of MyService2Impl

Chapter 4 Writing UNO Components 227

 return static_cast< lang::XTypeProvider * >(new MyService2Impl(xContext));
}

4.6.8 Create Instance with Arguments
If the service should be raised passing arguments through
com.sun.star.lang.XMultiComponentFactory:createInstanceWithArgumentsAndContext()
and com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments(), it has to
implement the interface com.sun.star.lang.XInitialization. The second service
my_module.MyService2 implements it, expecting a single string as an argument.
(Components /CppComponent / service2_impl.cxx)
// XInitialization implementation
void MyService2Impl::initialize(Sequence< Any > const & args)
 throw (Exception)
{
 if (1 != args.getLength())
 {
 throw lang::IllegalArgumentException(
 OUString(RTL_CONSTASCII_USTRINGPARAM("give a string instanciating this component!")),
 (::cppu::OWeakObject *)this, // resolve to XInterface reference
 0); // argument pos
 }
 if (! (args[0] >>= m_arg))
 {
 throw lang::IllegalArgumentException(
 OUString(RTL_CONSTASCII_USTRINGPARAM("no string given as argument!")),
 (::cppu::OWeakObject *)this, // resolve to XInterface reference
 0); // argument pos
 }
}

4.6.9 Multiple Components in One Dynamic Link Library
The construction of C++ components allows putting as many service implementations into a
component file as desired. Ensure that the component operations are implemented in such a way
that component_writeInfo() and component_getFactory() handle all services correctly. Refer
to the sample component simple_component to see an example on how to implement two services
in one link library.

4.6.10 Building and Testing C++ Components

Build Process
For details about building component code, see the gnu makefile. It uses a number of platform
dependent variables used in the SDK that are included from <SDK>/settings/settings.mk. For
simplicity, details are omitted here, and the build process is just sketched in eight steps:

1. The UNOIDL compiler compiles the .idl file some.idl into an urd file.

2. The resulting binary .urd files are merged into a new simple_component.rdb.

3. The tool xml2cmp parses the xml component description simple_component.xml for types needed
for compiling. This file describes the service implementation(s) for deployment, such as the
purpose of the implementation(s) and used types. Visit
http: / / u dk.openoffice.org /common / man / module_description.html for details about the
syntax of these XML files.

228 OpenOffice.org 1.1 Developer's Guide • June 2003

4. The types parsed in step 3 are passed to cppumaker, which generates the appropriate header
pairs into the output include directory using simple_component.rdb and the OpenOffice.org type
library applicat.rdb that is stored in the program directory of your OpenOffice.org installation.

For your own component you can simplify step 3 and 4, and pass the types used by your component to
cppumaker using the -T option.

5. The source files service1_impl.cxx and service2_impl.cxx are compiled.

6. The shared library is linked out of object files, linking dynamically to the UNO base libraries
sal, cppu and cppuhelper. The shared library's name is libsimple_component.so on Unix and
simple_component.dll on Windows.

In general, the shared library component should limit its exports to only the above mentioned functions
(prefixed with component_) to avoid symbol clashes on Unix. In addition, for the gnu gcc3 C++ compiler, it
is necessary to export the RTTI symbols of exceptions, too.

7. The shared library component is registered into simple_component.rdb. This can also be done
manually running

$ regcomp -register -r simple_component.rdb -c simple_component.dll

Test Registration and Use
The component's registry simple_component.rdb has entries for the registered service implementa-
tions. If the library is registered successfully, run:
$ regview simple_component.rdb

The result should look similar to the following:
/
 / UCR
 / my_module
 / XSomething

 ... interface information ...

 / IMPLEMENTATIONS
 / my_module.my_sc_impl.MyService2
 / UNO
 / ACTIVATOR
 Value: Type = RG_VALUETYPE_STRING
 Size = 34
 Data = "com.sun.star.loader.SharedLibrary"

 / SERVICES
 / my_module.MyService2
 / LOCATION
 Value: Type = RG_VALUETYPE_STRING
 Size = 21
 Data = "simple_component.dll"

 / my_module.my_sc_impl.MyService1
 / UNO
 / ACTIVATOR
 Value: Type = RG_VALUETYPE_STRING
 Size = 34
 Data = "com.sun.star.loader.SharedLibrary"

 / SERVICES
 / my_module.MyService1
 / LOCATION
 Value: Type = RG_VALUETYPE_STRING
 Size = 21
 Data = "simple_component.dll"

 / SERVICES
 / my_module.MyService1
 Value: Type = RG_VALUETYPE_STRINGLIST
 Size = 40
 Len = 1
 Data = 0 = "my_module.my_sc_impl.MyService1"

Chapter 4 Writing UNO Components 229

 / my_module.MyService2
 Value: Type = RG_VALUETYPE_STRINGLIST
 Size = 40
 Len = 1
 Data = 0 = "my_module.my_sc_impl.MyService2"

OpenOffice.org recognizes registry files being inserted into the unorc file (on Unix, uno.ini on
Windows) in the program directory of your OpenOffice.org installation. Extend the types and
services in that file by simple_component.rdb. The given file has to be an absolute file URL, but if the
rdb is copied to the OpenOffice.org program directory, a $SYSBINDIR macro can be used, as
shown in the following unorc file:
[Bootstrap]
UNO_TYPES=$SYSBINDIR/applicat.rdb $SYSBINDIR/simple_component.rdb
UNO_SERVICES=$SYSBINDIR/applicat.rdb $SYSBINDIR/simple_component.rdb

Second, when running OpenOffice.org, extend the PATH (Windows) or LD_LIBRARY_PATH
(Unix), including the output path of the build, so that the loader finds the component. If the
shared library is copied to the program directory or a link is created inside the program directory
(Unix only), do not extend the path.

Launching the test component inside a OpenOffice.org Basic script is simple to do, as shown in the
following code:
Sub Main

 REM calling service1 impl
 mgr = getProcessServiceManager()
 o = mgr.createInstance("my_module.MyService1")
 MsgBox o.methodOne("foo")
 MsgBox o.dbg_supportedInterfaces

 REM calling service2 impl
 dim args(0)
 args(0) = "foo"
 o = mgr.createInstanceWithArguments("my_module.MyService2", args())
 MsgBox o.methodOne("bar")
 MsgBox o.dbg_supportedInterfaces

End Sub

This procedure instantiates the service implementations and performs calls on their interfaces. The
return value of the methodOne() call is brought up in message boxes. The Basic object property
dbg_supportedInterfaces retrieves its information through the
com.sun.star.lang.XTypeProvider interfaces of the objects.

4.7 Integrating Components into OpenOffice.org
If a component needs to be called from the OpenOffice.org user interface, it must be able to take
part in the communication between the UI layer and the application objects. OpenOffice.org uses
command URLs for this purpose. When a user chooses an item in the user interface, a command
URL is dispatched to the application framework and processed in a chain of responsibility until an
object accepts the command and executes it, thus consuming the command URL. This mechanism
is known as the dispatch framework, it is covered in detail in chapter 6.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework.

From version 1.1, OpenOffice.org provides user interface support for custom components by two
basic mechanisms:

• Components can be enabled to process command URLs. There are two ways to accomplish
this. You can either make them a protocol handler for command URLs or integrate them into the
job execution environment of OpenOffice.org. The protocol handler technique is simple, but it can
only be used with command URLs in the dispatch framework. A component for the job execu-

230 OpenOffice.org 1.1 Developer's Guide • June 2003

tion environment can be used with or without command URLs, and has comprehensive
support when it comes to configuration, job environment, and lifetime issues.

• The user interface can be adjusted to new components. On the one hand, you can add new
menus and toolbar items and configure them to send the command URLs needed for your
component. On the other hand, it is possible to disable existing commands. All this is possible
by adding certain files to the UNO package distribution. When users of your component
deploy the package into an individual or a network OpenOffice.org installation, the GUI is
adjusted automatically.

The left side of Illustration 35 shows the two possibilities for processing command URLs: either
custom protocol handlers or the specialized job protocol. On the right, you see the job execution
environment, which is used by the job protocol, but can also be used without command URLs
from any source code.

Chapter 4 Writing UNO Components 231

Illustration 35: Processing command URLs and the job execution environment

This section describes how to use these mechanisms. It discusses protocol handlers and jobs, then
describes how to customize the OpenOffice.org user interface for components.

4.7.1 Protocol Handler
The dispatch framework binds user interface controls, such as menu or toolbar items, to the func-
tionality of OpenOffice.org. Every function that is reachable in the user interface is described by a
command URL and corresponding parameters.

The protocol handler mechanism is an API that enables programmers to add arbitrary URL
schemas to the existing set of command URLs by writing additional protocol handlers for them.
Such a protocol handler must be implemented as a UNO component and registered in the
OpenOffice.org configuration for the new URL schema.

Overview
To issue a command URL, the first step is to locate a dispatch object that is responsible for the
URL. Start with the frame that contains the document for which the command is meant. Its inter-
face method com.sun.star.frame.XDispatchProvider:queryDispatch()is called with a URL
and special search parameters to locate the correct target. This request is passed through the
following instances:

disabling commands Checks if command is on the list of disabled commands, described in 4.7.4
Writing UNO Components - Integrating Components into OpenOffice.org -
Disable Commands

interception Intercepts command and re-routes it, described in 6.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework -
Dispatch Interception

targeting Determines target frame for command, described in 6.1.5 Office Develop-
ment - OpenOffice.org Application Environment - Handling Documents -
Loading Documents - Target Frame

controller Lets the controller of the frame try to handle the command, described in
6.1.6 Office Development - OpenOffice.org Application Environment - Using the
Dispatch Framework - Processing Chain

protocol handler Determines if there is a custom handler for the command, described in this
section

interpret as loadable content Loads content from file, described in 6.1.5 Office Development -
OpenOffice.org Application Environment - Handling Documents - Loading Docu-
ments - URL Parameter. Generally contents are loaded into a frame by a
com.sun.star.frame.FrameLoader, but if a content (e.g. a sound)
needs no frame, a com.sun.star.frame.ContentHandler service is
used, which needs no target frame for its operation.

The list shows that the protocol handler will only be used if the URL has not been called before.
Because targeting has already been done, it is clear that the command will run in the located target
frame environment, which is usually "_self".

The target "_blank" cannot be used for a protocol handler. Since "_blank" leads to the creation of a new frame
for a component, there would be no component yet for the protocol handler to work with.

232 OpenOffice.org 1.1 Developer's Guide • June 2003

A protocol handler decides by itself if it returns a valid dispatch object, that is, it is asked to agree
with the given request by the dispatch framework. If a dispatch object is returned, the requester
can use it to dispatch the URL by calling its dispatch() method.

Implementation
A protocol handler implementation must follow the service definition
com.sun.star.frame.ProtocolHandler. At least the interface
com.sun.star.frame.XDispatchProvider must be supported.

The interface XDispatchProvider supports two methods:
XDispatch queryDispatch([in] ::com::sun::star::util::URL URL,
 [in] string TargetFrameName,
 [in] long SearchFlags)
sequence< XDispatch > queryDispatches([in] sequence< DispatchDescriptor > Requests)

The protocol handler is asked for its agreement to execute a given URL by a call to the interface
method com.sun.star.frame.XDispatchProvider:queryDispatch(). The incoming URL
should be parsed and validated. If the URL is valid and the protocol handler is able to handle it, it
should return a dispatch object, thus indicating that it accepts the request.

The dispatch object must support the interface com.sun.star.frame.XDispatch with the
methods

[oneway] void dispatch([in] ::com::sun::star::util::URL URL,
 [in] sequence< ::com::sun::star::beans::PropertyValue > Arguments)
addStatusListener [oneway] void addStatusListener([in] XStatusListener Control,
 [in] ::com::sun::star::util::URL URL)
removeStatusListener [oneway] void removeStatusListener([in] XStatusListener Control,
 [in] ::com::sun::star::util::URL URL)

Optionally, the dispatch object can support the interface
com.sun.star.frame.XNotifyingDispatch, which derives from XDispatch and introduces a
new method dispatchWithNotification(). This interface is preferred if it is present.

[oneway] void dispatchWithNotification(
 [in] com::sun::star::util::URL URL,
 [in] sequence<com::sun::star::beans::PropertyValue> Arguments,
 [in] com::sun::star::frame::XDispatchResultListener Listener);

A basic protocol handler is free to implement XDispatch itself, so it can simply return itself in the
queryDispatch() implementation. But it is advisable to return specialized helper dispatch objects
instead of the protocol handler instance. This helps to decrease the complexity of status updates. It
is easier to notify status listeners for a single-use dispatch object instead of multi-use dispatch
objects, which have to distinguish the URLs given in addStatusListener() all the time.

Chapter 4 Writing UNO Components 233

Illustration 36: Protocol handler

To supply the UI with status information for a command, it is required to call back a
com.sun.star.frame.XStatusListener during its registration immediately, for example:

public void addStatusListener(XStatusListener xControl, URL aURL) {
 FeatureStateEvent aState = new FeatureStateEvent();
 aState.FeatureURL = aURL;
 aState.IsEnabled = true;
 aState.State = Boolean.TRUE;
 xControl.statusChanged(aState);
 m_lListenerContainer.add(xControl);
}

A protocol handler can support the interface com.sun.star.lang.XInitialization if it wants to
be initialized with a com.sun.star.frame.Frame environment to work with. XInitialization
contains one method:

void initialize([in] sequence< any > aArguments)

A protocol handler is generally used in a well known com.sun.star.frame.Frame context, there-
fore the dispatch framework always passes this frame context through initialize() as the first
argument, if XInitialization is present. Its com.sun.star.frame.XFrame interface provides
access to the controller, from which you can get the document model and have a good starting
point to work with the document.

Illustration 36 shows how to get to the controller and the document model from an XFrame inter -
face. The chapter 6.1.3 Office Development - OpenOffice.org Application Environment - Using the
Component Framework describes the usage of frames, controllers and models in more detail.

234 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 37: Frame-controller-model organization

A protocol handler can be implemented as a singleton, but this poses multithreading difficulties. In a multi-
threaded environment it is most unlikely that the initial frame context matches every following dispatch
request. So you have to be prepared for calls to initialize() by multiple threads for multiple frames. A
dispatch object can also be used more then once, but must be bound to the target frame that was specified in
the original queryDispatch()call. A change of the frame context can cause trouble if the protocol handler
returns itself as a dispatch object. A protocol handler singleton must return new dispatch objects for every
request, which has to be initialized with the current context of the protocol handler, and you have to
synchronize between initialize() and queryDispatch(). The protocol handler would have to serve as
a kind of factory for specialized dispatch objects.
You can avoid these problems, if you write your protocol handler as a multi- instance service.

The opportunity to deny a queryDispatch() call allows you to register a protocol handler for a
URL schema using wildcards, and to accept only a subset of all possible URLs. That way the
handler object can validate incoming URLs and reject them if they appear to be invalid. However,
this feature should not be used to register different protocol handlers for the same URL schema
and accept different subsets by different handler objects, because it would be very difficult to
avoid ambiguities.

Since a protocol handler is a UNO component, it must contain the component operations needed
by a UNO service manager. These operations are certain static methods in Java or export functions
in C++. It also has to implement the core interfaces used to enable communication with UNO and
the application environment. For more information on the component operations and core inter-
faces, please see 4.3 Writing UNO Components - Component Architecture and 4.4 Writing UNO
Components - Core Interfaces to Implement.

Java Protocol Handler - vnd.sun.star.framework.ExampleHandler
The following example shows a simple protocol handler implementation in Java. For simplicity,
the component operations are omitted.
// imports
#import com.sun.star.beans.*;
#import com.sun.star.frame.*;
#import com.sun.star.uno.*;
#import com.sun.star.util.*;

// definition
public class ExampleHandler implements com.sun.star.frame.XDispatchProvider,
 com.sun.star.lang.XInitialization {
 // member
 /** points to the frame context in which this handler runs, is set in initialize()*/
 private com.sun.star.frame.XFrame m_xContext;

 // Dispatch object as inner class
 class OwnDispatch implements com.sun.star.frame.XDispatch {
 /** the target frame, in which context this dispatch must work */
 private com.sun.star.frame.XFrame m_xContext;

 /** describe the function of this dispatch.
 * Because a URL can contain e.g. optional arguments
 * this URL means the main part of such URL sets only. */
 private com.sun.star.util.URL m_aMainURL;

 /** contains all interested status listener for this dispatch */
 private java.lang.HashMap m_lListener;

 /** take over all neccessary parameters from outside. */
 public OwnDispatch(com.sun.star.frame.XFrame xContext, com.sun.star.util.URL aMainURL) {
 m_xContext = xContext;
 m_aMainURL = aMainURL;
 }

 /** execute the functionality, which is described by this URL.
 *
 * @param aURL
 * this URL can describe the main function, we already know;
 * but it can specify a sub function too! But queryDispatch()
 * and dispatch() are used in a generic way ...
 * m_aMainURL and aURL will be the same.
 *
 * @param lArgs

Chapter 4 Writing UNO Components 235

 * optional arguments for this request
 */
 public void dispatch(com.sun.star.util.URL aURL, com.sun.star.beans.PropertyValue lArgs)
 throws com.sun.star.uno.RuntimeException {
 // ... do function
 // ... inform listener if neccessary
 }

 /** register a new listener and bind it toe given URL.
 *
 * Note: Because the listener does not know the current state
 * and may nobody change it next time, it is neccessary to inform it
 * immediatly about this current state. So the listener is up to date.
 */
 public void addStatusListener(com.sun.star.frame.XStatusListener xListener,
 com.sun.star.util.URL aURL) throws com.sun.star.uno.RuntimeException {
 // ... register listener for given URL
 // ... inform it immediatly about current state!
 xListener.statusChanged(...);
 }

 /** deregister a listener for this URL. */
 public void removeStatusListener(com.sun.star.frame.XStatusListener xListener,
 com.sun.star.util.URLaURL) throws com.sun.star.uno.RuntimeException {
 // ... deregister listener for given URL
 }
 }

 /** set the target frame reference as context for all following dispatches. */
 public void initialize(com.sun.star.uno.Any[] lContext) {
 m_xContext = (com.sun.star.frame.XFrame)com.sun.star.uno.AnyConverter.toObject(lContext[0]);
 }

 /** should return a valid dispatch object for the given URL.
 *
 * In case the URL is not valid an empty reference can be returned.
 * The parameter sTarget and nFlags can be ignored. The will be "_self" and 0
 * everytime.
 */
 public com.sun.star.frame.XDispatch queryDispatch(com.sun.star.util.URL aURL,
 java.lang.String sTarget, int nFlags) throws com.sun.star.uno.RuntimeException {
 // check if given URL is valid for this protocol handler
 if (!aURL.Main.startsWith("myProtocol_1://") && !aURL.Main.startsWith("myProtocol_2://"))
 return null;
 // and return a specialized dispatch object
 // Of course "return this" would be possible too ...
 return (com.sun.star.frame.XDispatch)(new OwnDispatch(m_xContext, aURL));
 }

 /** optimized API call for remote.
 *
 * It should be forwarded to queryDispatch() for every request item of the
 * given DispatchDescriptor list.
 *
 * But note: it is not allowed to pack the return list of dispatch objects.
 * Every request in source list must match to a reference (null or valid) in
 * the destination list!
 */
 public com.sun.star.frame.XDispatch[] queryDispatches(
 com.sun.star.frame.DispatchDescriptor[] lRequests) throws com.sun.star.uno.RuntimeException
{
 int c = lRequests.length;
 com.sun.star.frame.XDispatch[] lDispatches = new com.sun.star.frame.XDispatch[c];
 for (int i=0; i<c; ++i)
 lDispatches[i] = queryDispatch(lRequests[i].FeatureURL,
 lRequests[i].FrameName, lRequests[i].SearchFlags);
 return lDispatches;
 }
}

C++ Protocol Handler - org.openoffice.Office.addon.example
The next example shows a protocol handler in C++. The section 4.7.3 Writing UNO Components -
Integrating Components into OpenOffice.org - User Interface Add-Ons below will integrate this
example handler into the graphical user interface of OpenOffice.org.

The following code shows the UNO component operations that must be implemented in a C++
protocol handler example. The three C functions return vital information to the UNO environ-
ment:

236 OpenOffice.org 1.1 Developer's Guide • June 2003

• component_getImplementationEnvironment()tells the shared library component loader
which compiler was used to build the library.

• component_writeInfo()is called during the registration process by the registration tool
regcomp, or indirectly when you apply pkgchk

• component_getFactory()provides a single service factory for the requested implementation.
This factory can be asked to create an arbitrary number of instances for only one service specifi-
cation, therefore it is called a single service factory, as opposed to a multi-service factory,
where you can order instances for many different service specifications. (A single service
factory has nothing to do with a singleton).

#include <stdio.h>

#ifndef _RTL_USTRING_HXX_
#include <rtl/ustring.hxx>
#endif

#ifndef _CPPUHELPER_QUERYINTERFACE_HXX_
#include <cppuhelper/queryinterface.hxx> // helper for queryInterface() impl
#endif
#ifndef _CPPUHELPER_FACTORY_HXX_
#include <cppuhelper/factory.hxx> // helper for component factory
#endif
// generated c++ interfaces

#ifndef _COM_SUN_STAR_LANG_XSINGLESERVICEFACTORY_HPP_
#include <com/sun/star/lang/XSingleServiceFactory.hpp>
#endif
#ifndef _COM_SUN_STAR_LANG_XMULTISERVICEFACTORY_HPP_
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#endif
#ifndef _COM_SUN_STAR_LANG_XSERVICEINFO_HPP_
#include <com/sun/star/lang/XServiceInfo.hpp>
#endif
#ifndef _COM_SUN_STAR_REGISTRY_XREGISTRYKEY_HPP_
#include <com/sun/star/registry/XRegistryKey.hpp>
#endif

// include our specific addon header to get access to functions and definitions
#include <addon.hxx>

using namespace ::rtl;
using namespace ::osl;
using namespace ::cppu;
using namespace ::com::sun::star::uno;
using namespace ::com::sun::star::lang;
using namespace ::com::sun::star::registry;

//##
//#### EXPORTED ##
//##

/**
 * Gives the environment this component belongs to.
 */
extern "C" void SAL_CALL component_getImplementationEnvironment(const sal_Char ** ppEnvTypeName,
uno_Environment ** ppEnv)
{

*ppEnvTypeName = CPPU_CURRENT_LANGUAGE_BINDING_NAME;
}

/**
 * This function creates an implementation section in the registry and another subkey
 *
 * for each supported service.
 * @param pServiceManager the service manager
 * @param pRegistryKey the registry key
 */
extern "C" sal_Bool SAL_CALL component_writeInfo(void * pServiceManager, void * pRegistryKey) {
 sal_Bool result = sal_False;

 if (pRegistryKey) {
 try {
 Reference< XRegistryKey > xNewKey(
 reinterpret_cast< XRegistryKey * >(pRegistryKey)->createKey(
 OUString(RTL_CONSTASCII_USTRINGPARAM("/" IMPLEMENTATION_NAME "/UNO/SERVICES"))));

 const Sequence< OUString > & rSNL = Addon_getSupportedServiceNames();
 const OUString * pArray = rSNL.getConstArray();
 for (sal_Int32 nPos = rSNL.getLength(); nPos--;)

Chapter 4 Writing UNO Components 237

 xNewKey->createKey(pArray[nPos]);

 return sal_True;
 }
 catch (InvalidRegistryException &) {

 // we should not ignore exceptions
 }
 }
 return result;
}

/**
 * This function is called to get service factories for an implementation.
 *
 * @param pImplName name of implementation
 * @param pServiceManager a service manager, need for component creation
 * @param pRegistryKey the registry key for this component, need for persistent data
 * @return a component factory
 */
extern "C" void * SAL_CALL component_getFactory(const sal_Char * pImplName,
 void * pServiceManager, void * pRegistryKey) {
 void * pRet = 0;

 if (rtl_str_compare(pImplName, IMPLEMENTATION_NAME) == 0) {
 Reference< XSingleServiceFactory > xFactory(createSingleFactory(
 reinterpret_cast< XMultiServiceFactory * >(pServiceManager),
 OUString(RTL_CONSTASCII_USTRINGPARAM(IMPLEMENTATION_NAME)),
 Addon_createInstance,
 Addon_getSupportedServiceNames()));

 if (xFactory.is()) {
 xFactory->acquire();
 pRet = xFactory.get();
 }
 }

 return pRet;
}

//##
//#### Helper functions for the implementation of UNO component interfaces #########################
//##

::rtl::OUString Addon_getImplementationName()
throw (RuntimeException) {
 return ::rtl::OUString (RTL_CONSTASCII_USTRINGPARAM (IMPLEMENTATION_NAME));
}

sal_Bool SAL_CALL Addon_supportsService(const ::rtl::OUString& ServiceName)
throw (RuntimeException)
{
 return ServiceName.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM (SERVICE_NAME));
}

Sequence< ::rtl::OUString > SAL_CALL Addon_getSupportedServiceNames()
throw (RuntimeException)
{

Sequence < ::rtl::OUString > aRet(1);
 ::rtl::OUString* pArray = aRet.getArray();
 pArray[0] = ::rtl::OUString (RTL_CONSTASCII_USTRINGPARAM (SERVICE_NAME));
 return aRet;
}

Reference< XInterface > SAL_CALL Addon_createInstance(const Reference< XMultiServiceFactory > & rSMgr)
throw(Exception)

{
return (cppu::OWeakObject*) new Addon(rSMgr);

}

The C++ protocol handler in the example has the implementation name
org.openoffice.Office.addon.example. It supports the URL protocol schema
org.openoffice.Office.addon.example: and provides three different URL commands: Function1, Func-
tion2 and Help.

The protocol handler implements the IDL:com.sun.star.frame.XDispatch] interface, so it can
return a reference to itself when it is queried for a dispatch object that matches the given URL.

The implementation of the dispatch() method below shows how the supported commands are
routed inside the protocol handler. Based on the path part of the URL, a simple message box
displays which function has been called. The message box is implemented using the UNO toolkit
and uses the container windows of the given frame as parent window.

238 OpenOffice.org 1.1 Developer's Guide • June 2003

#ifndef _Addon_HXX
#include <addon.hxx>
#endif
#ifndef _OSL_DIAGNOSE_H_
#include <osl/diagnose.h>
#endif
#ifndef _RTL_USTRING_HXX_
#include <rtl/ustring.hxx>
#endif
#ifndef _COM_SUN_STAR_LANG_XMULTISERVICEFACTORY_HPP_
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#endif
#ifndef _COM_SUN_STAR_BEANS_PROPERTYVALUE_HPP_
#include <com/sun/star/beans/PropertyValue.hpp>
#endif
#ifndef _COM_SUN_STAR_FRAME_XFRAME_HPP_
#include <com/sun/star/frame/XFrame.hpp>
#endif
#ifndef _COM_SUN_STAR_FRAME_XCONTROLLER_HPP_
#include <com/sun/star/frame/XController.hpp>
#endif
#ifndef _COM_SUN_STAR_AWT_XTOOLKIT_HPP_
#include <com/sun/star/awt/XToolkit.hpp>
#endif
#ifndef _COM_SUN_STAR_AWT_XWINDOWPEER_HPP_
#include <com/sun/star/awt/XWindowPeer.hpp>
#endif
#ifndef _COM_SUN_STAR_AWT_WINDOWATTRIBUTE_HPP_
#include <com/sun/star/awt/WindowAttribute.hpp>
#endif
#ifndef _COM_SUN_STAR_AWT_XMESSAGEBOX_HPP_
#include <com/sun/star/awt/XMessageBox.hpp>
#endif

using rtl::OUString;
using namespace com::sun::star::uno;
using namespace com::sun::star::frame;
using namespace com::sun::star::awt;
using com::sun::star::lang::XMultiServiceFactory;
using com::sun::star::beans::PropertyValue;
using com::sun::star::util::URL;

// This is the service name an Add-On has to implement
#define SERVICE_NAME "com.sun.star.frame.ProtocolHandler"

/**
 * Show a message box with the UNO based toolkit
 */
static void ShowMessageBox(const Reference< XToolkit >& rToolkit, const Reference< XFrame >& rFrame,
const OUString& aTitle, const OUString& aMsgText)
{
 if (rFrame.is() && rToolkit.is())
 {
 // describe window properties.
 WindowDescriptor aDescriptor;
 aDescriptor.Type = WindowClass_MODALTOP ;
 aDescriptor.WindowServiceName = OUString(RTL_CONSTASCII_USTRINGPARAM("infobox"));
 aDescriptor.ParentIndex = -1 ;
 aDescriptor.Parent = Reference< XWindowPeer >(rFrame->getContainerWindow(),
 UNO_QUERY) ;
 aDescriptor.Bounds = Rectangle(0,0,300,200) ;
 aDescriptor.WindowAttributes = WindowAttribute::BORDER |
 WindowAttribute::MOVEABLE |
 WindowAttribute::CLOSEABLE;

 Reference< XWindowPeer > xPeer = rToolkit->createWindow(aDescriptor);
 if (xPeer.is())
 {
 Reference< XMessageBox > xMsgBox(xPeer, UNO_QUERY);
 if (xMsgBox.is())
 {
 xMsgBox->setCaptionText(aTitle);
 xMsgBox->setMessageText(aMsgText);
 xMsgBox->execute();
 }
 }
 }
}

//##
//#### Implementation of the ProtocolHandler and Dispatch Interfaces ###################
//##

// XInitialization
/**
 * Called by the Office framework.

Chapter 4 Writing UNO Components 239

 * We store the context information
 * given, like the frame we are bound to, into our members.
 */
void SAL_CALL Addon::initialize(const Sequence< Any >& aArguments) throw (Exception,
RuntimeException)
{
 Reference < XFrame > xFrame;
 if (aArguments.getLength())
 {
 aArguments[0] >>= xFrame;
 mxFrame = xFrame;
 }

 // Create the toolkit to have access to it later
 mxToolkit = Reference< XToolkit >(mxMSF->createInstance(
 OUString(RTL_CONSTASCII_USTRINGPARAM(
 "com.sun.star.awt.Toolkit"))), UNO_QUERY);
}

// XDispatchProvider
/**
 * Called by the Office framework.
 * We are ask to query the given URL and return a dispatch object if the URL
 * contains an Add-On command.
 */
Reference< XDispatch > SAL_CALL Addon::queryDispatch(const URL& aURL, const ::rtl::OUString&
sTargetFrameName, sal_Int32 nSearchFlags)

throw(RuntimeException)
{
 Reference < XDispatch > xRet;
 if (aURL.Protocol.compareToAscii("org.openoffice.Office.addon.example:") == 0)
 {
 if (aURL.Path.compareToAscii("Function1") == 0)
 xRet = this;
 else if (aURL.Path.compareToAscii("Function2") == 0)
 xRet = this;
 else if (aURL.Path.compareToAscii("Help") == 0)
 xRet = this;
 }

 return xRet;
}

/**
 * Called by the Office framework.
 * We are ask to query the given sequence of URLs and return dispatch objects if the URLs
 * contain Add-On commands.
 */
Sequence < Reference< XDispatch > > SAL_CALL Addon::queryDispatches(

const Sequence < DispatchDescriptor >& seqDescripts)
throw(RuntimeException)

{
 sal_Int32 nCount = seqDescripts.getLength();
 Sequence < Reference < XDispatch > > lDispatcher(nCount);

 for(sal_Int32 i=0; i<nCount; ++i)
 lDispatcher[i] = queryDispatch(seqDescripts[i].FeatureURL, seqDescripts[i].FrameName,
seqDescripts[i].SearchFlags);

 return lDispatcher;
}

// XDispatch
/**
 * Called by the Office framework.
 * We are ask to execute the given Add-On command URL.
 */
void SAL_CALL Addon::dispatch(const URL& aURL, const Sequence < PropertyValue >& lArgs) throw
(RuntimeException)
{
 if (aURL.Protocol.compareToAscii("org.openoffice.Office.addon.example:") == 0)
 {
 if (aURL.Path.compareToAscii("Function1") == 0)
 {
 ShowMessageBox(mxToolkit, mxFrame,
 OUString(RTL_CONSTASCII_USTRINGPARAM("SDK Add-On example")),
 OUString(RTL_CONSTASCII_USTRINGPARAM("Function 1 activated")));
 }
 else if (aURL.Path.compareToAscii("Function2") == 0)
 {
 ShowMessageBox(mxToolkit, mxFrame,
 OUString(RTL_CONSTASCII_USTRINGPARAM("SDK Add-On example")),
 OUString(RTL_CONSTASCII_USTRINGPARAM("Function 2 activated")));
 }
 else if (aURL.Path.compareToAscii("Help") == 0)
 {

240 OpenOffice.org 1.1 Developer's Guide • June 2003

 // Show info box
 ShowMessageBox(mxToolkit, mxFrame,
 OUString(RTL_CONSTASCII_USTRINGPARAM("About SDK Add-On example")),
 OUString(RTL_CONSTASCII_USTRINGPARAM("This is the SDK Add-On example")));

}
 }
}
/**
 * Called by the Office framework.
 * We are asked to store a status listener for the given URL.
 */
void SAL_CALL Addon::addStatusListener(const Reference< XStatusListener >& xControl, const URL& aURL)

throw (RuntimeException)
{
}

/**
 * Called by the Office framework.
 * We are asked to remove a status listener for the given URL.
 */
void SAL_CALL Addon::removeStatusListener(const Reference< XStatusListener >& xControl,

const URL& aURL)
throw (RuntimeException)

{
}

//##
//#### Implementation of the recommended/mandatory interfaces of a UNO component ###################
//##

// XServiceInfo
::rtl::OUString SAL_CALL Addon::getImplementationName()

throw (RuntimeException)
{

return Addon_getImplementationName();
}

sal_Bool SAL_CALL Addon::supportsService(const ::rtl::OUString& rServiceName)
throw (RuntimeException)

{
 return Addon_supportsService(rServiceName);
}

Sequence< ::rtl::OUString > SAL_CALL Addon::getSupportedServiceNames()
throw (RuntimeException)

{
 return Addon_getSupportedServiceNames();
}

Configuration
A protocol handler needs configuration entries, which provide the framework with the necessary
information to find the handler. The schema of the configuration branch
org.openoffice.Office.ProtocolHandler defines how to bind handler instances to their URL schemas:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-schema SYSTEM "../../../../component-schema.dtd">
<oor:component-schema xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
oor:name="ProtocolHandler" oor:package="org.openoffice.Office" xml:lang="en-US">

<templates>
<group oor:name="Handler">

<prop oor:name="Protocols" oor:type="oor:string-list"/>
</group>

</templates>
<component>

<set oor:name="HandlerSet" oor:node-type="Handler"/>
</component>

</oor:component-schema>

Each set node entry specifies one protocol handler, using its UNO implementation name. The only
property it has is the Protocols item. Its type must be [string-list] and it contains a list of
URL schemas bound to the handler. Wildcards are allowed, otherwise the entire string must
match the dispatched URL.

Chapter 4 Writing UNO Components 241

Configuration for vnd.sun.star.framework.ExampleHandler
The following example ProtocolHandler.xcu contains the protocol handler configuration for the
example's Java protocol handler:
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data oor:name="ProtocolHandler" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<node oor:name="HandlerSet">
<node oor:name="vnd.sun.star.framework.ExampleHandler" oor:op="replace">

<prop oor:name="Protocols">
<value>myProtocol_1://* myProtocol_2://*</value>

</prop>
</node>

</node>
</oor:component-data>

The example adds two new URL protocols using wildcards:
myProtocol_1://*
myProtocol_2://*

Both protocols are bound to the handler implementation
vnd.sun.star.framework.ExampleHandler. Note that this must be the implementation name of
the handler, not the name of the service com.sun.star.frame.ProtocolHandler it implements.
Because all implementations of the service com.sun.star.frame.ProtocolHandler share the
same UNO service name, you cannot use this name in the configuration files.

To prevent ambiguous implementation names, the following naming schema for implementation
names is frequently used:

vnd.<namespace_of_company>.<namespace_of_implementation>.<class_name>
e.g. vnd.sun.star.framework.ExampleHandler
<namespace_of_company> = sun.star
<namespace_of_implementation> = framework
<class_name> = ExampleHandler
An alternative would be the naming convention proposed in 4.4.3 Writing UNO Components - Core
Interfaces to Implement - XServiceInfo:

<namespace_of_creator>.comp.<namespace_of_implementation>.<class_name>
e.g. org.openoffice.comp.framework.OProtocolHandler
All of these conventions are proposals; what matters is:

• use the implementation name in the configuration file, not the general service name
"com.sun.star.frame.ProtocolHandler"

• be careful to choose an implementation name that is likely to be unique, and be aware that
your handler ceases to function when another developer adds a handler with the same name.

Configuration for org.openoffice.Office.addon.example
The following ProtocolHandler.xcu file configures the example's C++ protocol handler with the
implementation name org.openoffice.Office.addon.example in the configuration branch
org.openoffice.Office.ProtocolHandler following the same schema.
<?xml version="1.0" encoding="UTF-8"?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="ProtocolHandler"
oor:package="org.openoffice.Office">
 <node oor:name="HandlerSet">
 <node oor:name="org.openoffice.Office.addon.example" oor:op="replace">
 <prop oor:name="Protocols" oor:type="oor:string-list">
 <value>org.openoffice.Office.addon.example:*</value>

242 OpenOffice.org 1.1 Developer's Guide • June 2003

 </prop>
 </node>
 </node>
</oor:component-data>

The configuration adds one new URL protocol using wildcards:
org.openoffice.Office.addon.example:*

Based on this URL protocol, the C++ protocol handler can route, for example, a dispatched URL

org.openoffice.Office.addon.example:Function1

to the corresponding target routine. See the implementation of the dispatch() method in the
XDispatch interface of the C++ source fragment above.

Installation
When the office finds a protocol handler implementation for a URL in the configuration files, it
asks the global service manager to instantiate that implementation. All components must be regis-
tered with the service manager before they can be instantiated. How this is done is described in
section 4.9.1 Writing UNO Components - Deployment Options for Components - UNO Package Installa-
tion.

The easiest method to configure and register a new protocol handler in a single step is to use the
package installation tool pkchkg. A suitable package file for the example protocol handler could
contain the following directory structure:
ExampleHandler.zip:
 ProtocolHandler.xcu
 windows.plt/

examplehandler.dll
 solaris_sparc.plt/
 libexamplehandler.so
 linux_x86.plt/
 libexamplehandler.so

The .xcu file goes into the root of the package, the shared libraries for the various platforms go to
their respective .plt directories.

The package installation is as simple as changing to the <OfficePath>/program directory with a
command- line shell and running

$ pkgchk /foo/bar/ExampleHandler.zip

For an explanation of the package structure and more deployment options please refer to 4.9
Writing UNO Components - Deployment Options for Components.

4.7.2 Jobs

Overview
A job in OpenOffice.org is a UNO component that can be executed by the job execution environ-
ment upon an event. It can read and write its own set of configuration data in the configuration
branch org.openoffice.Office.Jobs, and it can be activated and deactivated from a certain point in time
using special time stamps. It may be started with or without an environment, and it is protected
against termination and lifetime issues.

The event that starts a job can be triggered by:

Chapter 4 Writing UNO Components 243

• any code in OpenOffice.org that detects a defined state at runtime and passes an event string to
the service com.sun.star.task.JobExecutor through its interface method
com.sun.star.task.XJobExecutor:trigger(). The job executor looks in the configuration of
OpenOffice.org if there are any jobs registered for this event and executes them.

• the global document event broadcaster

• the dispatch framework, which provides for a vnd.star.sun.job: URL schema to start jobs using a
command URL. This URL schema can execute jobs in three different ways: it can issue an event
for job components that are configured to wait for it, it can call a component by an alias that has
been given to the component in the configuration or it can execute a job component directly by
its implementation name.

If you call trigger() at the job executor or employ the global event broadcaster, the office needs a
valid set of configuration data for every job you want to run. The third approach, to use a
vnd.star.sun.job: command URL, works with or without prior configuration.

Illustration 37 shows an example job that counts how many times it has been triggered by an event
and deactivates itself when it has been executed twice. It uses its own job-specific configuration
layer to store the number of times it has been invoked. This value is passed to each newly created
job instance as an initialization argument, and can be checked and written back to the configura-
tion. When the counter exceeds two, the job uses the special deactivation feature of the job execu-
tion environment. Each job can have a user time stamp and and administrator time stamp to
control activation and deactivation. When a job is deactivated, the execution environment updates
the user time stamp value, so that subsequent events do not start this job again. It can be enabled
by a newer time stamp value in the administration layer.

244 OpenOffice.org 1.1 Developer's Guide • June 2003

Execution Environment
Jobs are executed in a job execution environment, which handles a number of tasks and problems
that can occur when jobs are executed. In particular,

• it initializes the job with all necessary data

• it starts the job using the correct interfaces

• it keeps the job alive by acquiring a UNO reference

• it waits until the job finishes its work, including listening for asynchronous jobs

• it updates the configuration of a job after it has finished

• it informs listeners about the execution

Chapter 4 Writing UNO Components 245

Illustration 38: Flow diagram of an example job

• it protects the job from office termination, or informs it when it is impossible to veto termina-
tion

For this purpose, the job execution environment creates special wrapper objects for jobs. This
wrapper object implements mechanisms to support lifetime control . The wrapper vetoes termina-
tion of the com.sun.star.frame.Desktop and the closing of frames that contain document
models as long as there are dependent active jobs. It might also register as a
com.sun.star.util.XCloseListener at a com.sun.star.frame.Frame or
com.sun.star.document.OfficeDocument to handle the close communication on behalf of the
job. It also listens for asynchronous job instances, and it is responsible for updates to the configu-
ration data after a job has finished (see 4.7.2 Writing UNO Components - Integrating Components into
OpenOffice.org - Jobs - Returning Results).

A central problem of external components in OpenOffice.org is their lifetime control. Every
external component must deal with the possibility that the environment will terminate. It is not
efficient to implement lifetime strategies in every job, so the job execution environment takes care
of this problem. That way, a job can execute, while difficult situations are handled by the execu-
tion environment.

Another advantage of this approach is that it ensures future compatibility. If the mechanism
changes in the future, termination is detected and prevented, and it is unnecessary to adapt every
existing job implementation.

Implementation
A job must implement the service com.sun.star.task.Job if it needs to block the thread in which
it is executed or com.sun.star.task.AsyncJob if the current state of the office is unimportant for
the job. The service that a job implementation supports is detected at runtime. If both are available,
the synchronous service com.sun.star.task.Job is preferred by the job execution environment.

246 OpenOffice.org 1.1 Developer's Guide • June 2003

A synchronous job must not make assumptions about the environment, neither that it is the only
job that runs currently nor that another object waits for its results. Only the thread context of a
synchronous job is blocked until the job finishes its work.

An asynchronous job is not allowed to use threads internally, because OpenOffice.org needs to
control thread creation. How asynchronous jobs are executed is an implementation detail of the
global job execution environment.

Jobs that need a user interface must proceed with care, so that they do not interfere with the
message loop of OpenOffice.org. The following rules apply:

• You cannot display any user interface from a synchronous job, because repaint errors and other
threading issues will occur.

• The easiest way to have a user interface for an asynchronous job is to use a non-modal dialog.
If you need a modal dialog to get user input, problems can occur. The best way is to use the
frame reference that is part of the job environment initialization data, and to get its container
window as a parent window. This parent window can be used to create a dialog with the user
interface toolkit com.sun.star.awt.Toolkit. The C++ protocol handler discussed in 4.7.1
Writing UNO Components - Integrating Components into OpenOffice.org - Protocol Handler - Imple-
mentation shows how a modal message box uses this approach.

• Using a native toolkit or the Java AWT for your GUI can lead to a non-painting
OpenOffice.org. To avoid this, the user interface must be non-modal and the implementation
must allow the office to abort the job by supporting com.sun.star.lang.XComponent or
com.sun.star.util.XCloseable.

Chapter 4 Writing UNO Components 247

Illustration 39: Job framework

The optional interfaces com.sun.star.lang.XComponent or com.sun.star.util.XCloseable
should be supported so that jobs can be disposed of in a controlled manner. When these interfaces
are present, the execution environment can call dispose() or close() rather than waiting for a
job to finish. Otherwise OpenOffice.org must wait until the job is done. Invisible jobs can be espe-
cially problematic, because they cannot be recognized as the reason why OpenOffice.org refuses to
exit.

Initialization
A job is initialized by a call to its main interface method, which starts the job. For synchronous
jobs, the execution environment calls com.sun.star.task.XJob:execute(), whereas asynchro -
nous jobs are run through com.sun.star.task.XAsyncJob:executeAsync().

Both methods take one parameter Arguments, which is a sequence of
com.sun.star.beans.NamedValue structs. This sequence describes the job context.

It contains the environment where the job is running, which tells if the job was called by the job
executor, the dispatch framework or the global event broadcaster service, and possibly provides a
frame or a document model for the job to work with.

Section 4.7.1 Writing UNO Components - Integrating Components into OpenOffice.org - Protocol Handler - Imple-
mentation shows how to use a frame to get its associated document model.

The Arguments parameter also yields configuration data, if the job has been configured in the
configuration branch org.openoffice.Office.Jobs. This data is separated into basic configuration and
additional arguments stored in the configuration. The job configuration is described in section
4.7.2 Writing UNO Components - Integrating Components into OpenOffice.org - Jobs - Configuration.

Finally, Arguments can contain dynamic parameters given to the job at runtime. For instance, if a job
has been called by the dispatch framework, and the dispatched command URL used parameters,
these parameters can be passed on to the job through the execution arguments.

The following table shows the exact specification for the execution Arguments:

Elements of the Execution Arguments Sequence
Environment sequence< com.sun.star.beans.NamedValue >. Contains environment data. The following

named values are defined:

EnvType string. Determines in which environment a job is executed. Defined Values:
"EXECUTOR": job has been executed by a call to trigger() at the job
executor
"DISPATCH": job is dispatched as vnd.sun.star.job: URL
"DOCUMENTEVENT": job has been executed by the global event broadcaster
mechanism

Event-
Name

[optional] string. Only exists, if EnvType is "EXECUTOR" or "DOCUMENTE-
VENT". Contains the name of the event for which this job was registered in
configuration. During runtime, this information can be used to handle different
function sets by the same component implementation.

Frame [optional] com.sun.star.frame.XFrame. Only exists, if EnvType is "DISPATCH".
Contains the frame context of this job. Furthermore, the sub list DynamicData
can contain the optional argument list of the corresponding
com.sun.star.frame.XDispatch:dispatch() request.

Model [optional] com.sun.star.frame.XModel. Only exists, if EnvType is "DOCUMEN-
TEVENT". Contains the document model that can be used by the job.

248 OpenOffice.org 1.1 Developer's Guide • June 2003

Elements of the Execution Arguments Sequence
Config [optional] [sequence< com.sun.star.beans.NamedValue >]. Contains the generic set of job

configuration properties as described in 4.7.2 Writing UNO Components - Integrating Compo-
nents into OpenOffice.org - Jobs - Configuration but not the job specific data set. That is, this sub
list only includes the properties Alias and Service, not the property Arguments. The
property Arguments is reflected in the element JobConfig (see next element below)
Note: this sub list only exists if the job is configured with this data.
Alias string. This property is declared as the name of the corresponding set node in

the configuration set Jobs. It must be a unique name, which represents the
structured information of a job.

Service string. Represents the UNO implementation name of the job component.
JobConfig [optional] [sequence< com.sun.star.beans.NamedValue >]

This sub list contains the job-specific set of configuration data as specified in the Argu-
ments property of the job configuration. Its items depend on the job implementation. Note:
this sub list only exists if the job is configured with this data.

DynamicData [optional] [sequence< com.sun.star.beans.NamedValue >]. Contains optional parameters of
the call that started the execution of this job. In particular, it can include the parameters of a
com.sun.star.frame.XDispatch:dispatch() request, if Environment-EnvType
is "DISPATCH"

The following example shows how a job can analyze the given arguments and how the environ-
ment in which the job is executed can be detected:
public synchronized java.lang.Object execute(com.sun.star.beans.NamedValue[] lArgs)
 throws com.sun.star.lang.IllegalArgumentException, com.sun.star.uno.Exception {

 // extract all possible sub list of given argument list
 com.sun.star.beans.NamedValue[] lGenericConfig = null;
 com.sun.star.beans.NamedValue[] lJobConfig = null;
 com.sun.star.beans.NamedValue[] lEnvironment = null;
 com.sun.star.beans.NamedValue[] lDispatchArgs = null;

 int c = lArgs.length;
 for (int i=0; i<c; ++i) {
 if (lArgs[i].Name.equals("Config"))
 lGenericConfig = (com.sun.star.beans.NamedValue[])
 com.sun.star.uno.AnyConverter.toArray(lArgs[i].Value);
 else
 if (lArgs[i].Name.equals("JobConfig"))
 lJobConfig = (com.sun.star.beans.NamedValue[])
 com.sun.star.uno.AnyConverter.toArray(lArgs[i].Value);
 else
 if (lArgs[i].Name.equals("Environment"))
 lEnvironment = (com.sun.star.beans.NamedValue[])
 com.sun.star.uno.AnyConverter.toArray(lArgs[i].Value);
 else
 if (lArgs[i].Name.equals("DynamicData"))
 lDispatchArgs = (com.sun.star.beans.NamedValue[])
 com.sun.star.uno.AnyConverter.toArray(lArgs[i].Value);
 else
 // It is not realy an error – because unknown items can be ignored ...
 throw new com.sun.star.lang.IllegalArgumentException("unknown sub list
detected");
 }

 // Analyze the environment info. This sub list is the only guarenteed one!
 if (lEnvironment==null)
 throw new com.sun.star.lang.IllegalArgumentException("no environment");

 java.lang.String sEnvType = null;
 java.lang.String sEventName = null;
 com.sun.star.frame.XFrame xFrame = null;
 com.sun.star.frame.XModel xModel = null;

 c = lEnvironment.length;
 for (int i=0; i<c; ++i) {
 if (lEnvironment[i].Name.equals("EnvType"))
 sEnvType = com.sun.star.uno.AnyConverter.toString(lEnvironment[i].Value);
 else
 if (lEnvironment[i].Name.equals("EventName"))
 sEventName = com.sun.star.uno.AnyConverter.toString(lEnvironment[i].Value);
 else
 if (lEnvironment[i].Name.equals("Frame"))

Chapter 4 Writing UNO Components 249

 xFrame = (com.sun.star.frame.XFrame)com.sun.star.uno.AnyConverter.toObject(
 new com.sun.star.uno.Type(com.sun.star.frame.XFrame.class), lEnvironment[i].
Value);
 else
 if (lEnvironment[i].Name.equals("Model"))
 xModel = (com.sun.star.frame.XModel)com.sun.star.uno.AnyConverter.toObject(
 new com.sun.star.uno.Type(com.sun.star.frame.XModel.class),
 lEnvironment[i].Value);
 }

 // Further the environment property "EnvType" is required as minimum.
 if (
 (sEnvType==null) ||
 (
 (!sEnvType.equals("EXECUTOR")) &&
 (!sEnvType.equals("DISPATCH")) &&
 (!sEnvType.equals("DOCUMENTEVENT"))
)
)
 {
 throw new com.sun.star.lang.IllegalArgumentException("no valid value for EnvType");
 }

 // Analyze the set of shared config data.
 java.lang.String sAlias = null;
 if (lGenericConfig!=null) {
 c = lGenericConfig.length;
 for (int i=0; i<c; ++i) {
 if (lGenericConfig[i].Name.equals("Alias"))
 sAlias = com.sun.star.uno.AnyConverter.toString(lGenericConfig[i].Value);
 }
 }
}

Returning Results
Once a synchronous job has finished its work, it returns its result using the any return value of the
com.sun.star.task.XJob:execute() method. An asynchronous jobs send back the result
through the callback method jobFinished() to its com.sun.star.task.XJobListener. The
returned any parameter must contain a sequence< com.sun.star.beans.NamedValue > with the
following elements:

Elements of the Job Return Value
Deactivate boolean. Asks the job executor to disable a job from further execution. Note that

this feature is only available if the next event is triggered by the job executor or the
event broadcaster. If it comes, for example, from the dispatch framework using an
URL with an <alias> argument, the deactivation will be ignored.
This value should be used carefully if the Environment-EnvType is
"DISPATCH", because users will be irritated if clicking a UI element, such as an
Add- On menu entry, has no effect.

SaveArguments sequence< com.sun.star.beans.NamedValue >. Must contain a list of job specific
data, which are written directly to the Arguments list into the job configuration.
Note: Merging is not supported. The list must be complete and replaces all values
in the configuration. The necessary data can be copied and adjusted from the
JobConfig element of the execution arguments.

SendDispatchResult com.sun.star.frame.DispatchResultEvent. If a job is designed to be usable in the
dispatch framework, this contains a struct, which is send to all interested dispatch
result listeners.

Tip: This value should be omitted if Environment-EnvType is not "DISPATCH".

250 OpenOffice.org 1.1 Developer's Guide • June 2003

Configuration
Although jobs that are called through a vnd.sun.star.jobs: URL by their implementation name do
not require it, a job usually has configuration data . The configuration package
org.openoffice.Office.Jobs contains all necessary information:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-schema SYSTEM "../../../../component-schema.dtd">
<oor:component-schema xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
oor:name="Jobs" oor:package="org.openoffice.Office" xml:lang="en-US">
 <templates>
 <group oor:name="Job">
 <prop oor:name="Service" oor:type="xs:string"/>
 <group oor:name="Arguments" oor:extensible="true"/>
 </group>
 <group oor:name="TimeStamp">
 <prop oor:name="AdminTime" oor:type="xs:string"/>
 <prop oor:name="UserTime" oor:type="xs:string"/>
 </group>
 <group oor:name="Event">
 <set oor:name="JobList" oor:node-type="TimeStamp"/>
 </group>
 </templates>
 <component>
 <set oor:name="Jobs" oor:node-type="Job"/>
 <set oor:name="Events" oor:node-type="Event"/>
 </component>
</oor:component-schema>

The Job template contains all properties that describe a job component. Instances of this template
are located inside the configuration set Jobs.

Properties of the Job template
Alias string. This property is declared as the name of the corresponding set node inside the configu-

ration set Jobs. It must be a unique name, which represents the structured information of a job.
In the example .xcu file below its value is "SyncJob". In the job execution arguments this
property is passed as Config - Alias

Service string. Represents the UNO implementation name of the job component. In the job execution
arguments this property is passed as Config - Service

Arguments set of any entries. This list can be filled with any values and represents the private set of
configuration data for this job. In the job execution arguments this property is passed as
JobConfig

The job property Alias was created to provide you with more flexibility for a developing compo-
nents. You can use the same UNO implementation, but register it with different Aliases. At
runtime the job instance will be initialized with its own configuration data and can detect which
representation is used.

You cannot use the generic UNO service names com.sun.star.task.Job or
com.sun.star.task.AsyncJob for the Service job property, because the job executor cannot identify
the correct job implementation. To avoid ambiguities, it is necessary to use the UNO implementation name
of the component.

Every job instance can be bound to multiple events. An event indicates a special office state, which
can be detected at runtime (for example, OnFirstVisibleTask), and which can be triggered by a
call to the job executor when the first document window is displayed.

Chapter 4 Writing UNO Components 251

Properties of the Event template
EventName string. This property is declared as the name of the corresponding set node inside the configu-

ration set Events. It must be a unique name, which describes a functional state. In the example
.xcu file below its value is "onFirstVisibleTask".

Section 4.7.2 Writing UNO Components - Integrating Components into OpenOffice.org - Jobs - List of
Supported Events summarizes the events currently triggered by the office. In addition, devel-
opers can use arbitrary event strings with the vnd.sun.star.jobs: URL or in calls to trigger() at
the com.sun.star.task.JobExecutor service.

JobList set of TimeStamp entries. This set contains a list of all Alias names of jobs that are bound to
this event. Every job registration can be combined with time stamp values. Please refer to the
description of the template TimeStamp below for details

As an optional feature, every job registration that is bound to an event can be enabled or disabled
by two time stamp values. In a shared installation of OpenOffice.org, an administrator can use the
AdminTime value to reactivate jobs for every newly started user office instance; regardless of
earlier executions of these jobs. That can be useful, for example, for updating user installations if
new functions have been added to the shared installation.

Properties of the TimeStamp template
AdminTime string. This value must be formatted according to the ISO 8601. It contains the time stamp,

which can only be adjusted by an administrator, to reactivate this job.
UserTime string. This value must be formatted according to the ISO 8601. It contains the time, when this

job was finished successfully last time upon the configured event.

Using this time stamp feature can sometimes be complicated. For example, assume that there is a
job that uses the pkgchk mechanism of OpenOffice.org for installation. The job is enabled for a
registered event by default, but after the first execution it is disabled. By default, both values
(AdminTime and UserTime) do not exist for a configured event. A Jobs.xcu fragment, as part of the
package file, must also not contain the AdminTime and UserTime entries. Because both values are
not there, no check can be made and the job is enabled. A job can be deactivated by the global job
executor once it has finished its work successfully (depending on the Deactivate return value). In
that case, the UserTime entry is generated and set to the current time. An administrator can set a
newer and valid AdminTime value in order to reactivate the job again, or the user can remove his
UserTime entry manually from the configuration file of the user installation.

The following Jobs.xcu file shows an example job configuration:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-data SYSTEM "../../../../component-update.dtd">
<oor:component-data oor:name="Jobs" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <node oor:name="Jobs">
 <node oor:name="SyncJob" oor:op="replace">
 <prop oor:name="Service">
 <value>com.sun.star.comp.framework.java.services.SyncJob</value>
 </prop>
 <node oor:name="Arguments">
 <prop oor:name=”arg_1” oor:type=”xs:string” oor:op="replace">
 <value>val_1</value>
 </prop>
 </node>
 </node>
 </node>
 <node oor:name="Events">
 <node oor:name="onFirstVisibleTask" oor:op="replace">
 <node oor:name="JobList">
 <node oor:name="SyncJob" oor:op="replace"/>
 </node>
 </node>
 </node>
</oor:component-data>

This example job has the following characteristics:

252 OpenOffice.org 1.1 Developer's Guide • June 2003

• Its alias name is "SyncJob"
• The UNO implementation name of the component is

com.sun.star.comp.framework.java.services.SyncJob.

• The job has its own set of configuration data with one item. It is a string, its name is arg_1
and its value is "val_1".

• The job is bound to the global event onFirstVisibleTask, which is triggered when the first
document window of a new OpenOffice.org instance is displayed. The next execution of this
job is guaranteed, because there are no time stamp values present.

A job is not executed when it has deactivated itself and is called afterwards by a vnd.sun.star.jobs:event=...
command URL. This can be confusing to users, especially with add- ons, since it would seem that the custom-
ized UI items do not function.

Installation
The easiest way to register an external job component is to use the already mentioned pkgchk
mechanism of OpenOffice.org, described in section 4.9.1 Writing UNO Components - Deployment
Options for Components - UNO Package Installation. A package file for the example job of this
chapter can have the following directory structure:
SyncJob.zip:
 Jobs.xcu
 windows.plt/
 SyncJob.jar

Using the vnd.sun.star.jobs: URL Schema
This section describes the necessary steps to execute a job by issuing a command URL at the
dispatch framework. Based upon the protocol handler mechanism, a specialized URL schema has
been implemented in OpenOffice.org. It is registered for the URL schema
"vnd.sun.star.jobs:*" which uses the following syntax:

vnd.sun.star.jobs:{[event=<name>]}{,[alias=<name>]}{,[service=<name>]}

Elements of a vnd.sun.star.jobs: URL
event=<name> string . Contains an event string, which can also be used as parameter of the interface

method com.sun.star.task.XJobExecutor:trigger(). It corresponds to the
node name of the set Events in the configuration package org.openoffice.Office.Jobs.
Using the event parameter of a vnd.sun.star.jobs: URL will start all jobs that are
registered for this event in the configuration.
Note: Disabled jobs, that is jobs with a user time stamp that is newer than the adminis-
trator time stamp, are not triggered by event URLs.

alias=<name> string. Contains an alias name of a configured job. This name is not used by the job
execution API. It is a node name of the set Jobs in the configuration package
org.openoffice.Office.Jobs. Using the alias part of a vnd.sun.star.jobs: URL only
starts the requested job.

service=<name> string. Contains the UNO implementation name of a configured or unconfigured
com.sun.star.task.Job or com.sun.star.task.AsyncJob service. It is not necessary that
such jobs are registered in the configuration, provided that they work without configu-
ration data or implements necessary configuration on their own.

It is possible to combine elements so as to start several jobs at once with a single URL. For
instance, you could dispatch a URL vnd.sun.star.jobs:event=e1,alias=a1,event=e2 ,.... However, URLs
that start several jobs at once should be used carefully, since there is no check for double or

Chapter 4 Writing UNO Components 253

concurrent requests. If a service is designed asynchronously, it will be run concurrently with
another, synchronous job. If both services work at the same area, there might be race conditions
and they must synchronize their work. The generic job execution mechanism does not provide this
functionality.

The following configuration file for the configuration package org.openoffice.Office.Jobs shows two
jobs, which are registered for different events:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE oor:component-data SYSTEM "../../../../component-update.dtd">
<oor:component-data oor:name="Jobs" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <node oor:name="Jobs">
 <node oor:name="Job_1" oor:op="replace">
 <prop oor:name="Service">
 <value>vnd.sun.star.jobs.Job_1</value>
 </prop>
 <node oor:name="Arguments">
 <prop oor:name=”arg_1” oor:type=”xs:string” oor:op="replace">
 <value>val_1</value>
 </prop>
 </node>
 </node>
 <node oor:name="Job_2" oor:op="replace">
 <prop oor:name="Service">
 <value>vnd.sun.star.jobs.Job_2</value>
 </prop>
 <node oor:name="Arguments"/>
 </node>
 </node>
 <node oor:name="Events">
 <node oor:name="onFirstVisibleTask" oor:op="replace">
 <node oor:name="JobList">
 <node oor:name="Job_1" oor:op="replace">
 <prop oor:name="AdminTime">
 <value>01.01.2003/00:00:00</value>
 </prop>
 <prop oor:name="UserTime">
 <value>01.01.2003/00:00:01</value>
 </prop>
 </node>
 <node oor:name="Job_2" oor:op="replace"/>
 </node>
 </node>
 </node>
</oor:component-data>

The first job can be described by the following properties:

Properties of “Job_1”
alias Job_1
UNO implementation name vnd.sun.star.jobs.Job_1
activation state Disabled for job execution (because its AdminTime is older than its UserTime)
own configuration contains one string item arg1 with the value "val1"
event registration job is registered for the event string "onFirstVisibleTask"

The second job can be described by these properties:

Properties of “Job_2”
alias Job_2
UNO implementation name vnd.sun.star.jobs.Job_2
activation state Enabled for job execution (because it uses default values for AdminTime and

UserTime)
own configuration no own configuration items registered
event registration job is registered for the event string "onFirstVisibleTask"

254 OpenOffice.org 1.1 Developer's Guide • June 2003

The following demonstrates use cases for all possible vnd.sun.star.job: URLs. Not all possible
scenarios are shown here. The job dispatch can be used in different ways and the combination of
jobs can produce different results:

vnd.sun.star.jobs:event=onFirstVisibleTask
This URL starts Job_2 only, Job_1 is marked DISABLED, since its AdminTime stamp is older than
its UserTime stamp.

The job is initialized with environment information through the Environment sub list, as shown
in section 4.7.2 Writing UNO Components - Integrating Components into OpenOffice.org - Jobs - Initiali-
zation. Optional dispatch arguments are passed in DynamicData, and generic configuration data,
including the event string, is received in Config. However, it is not initialized with configuration
data of its own in JobConfig because Job_2 is not configured with such information. On the other
hand, Job_2 may return data after finishing its work, which will be written back to the configura-
tion.

Furthermore, the job instance can expect that the Frame property from the Environment sub list
points to the frame in which the dispatch request is to be executed.

vnd.sun.star.jobs:alias=Job_1
This starts Job_1 only. It is initialized with an environment, and optionally initialized with
dispatch arguments, generic configuration data, and configuration data of its own. However, the
event name is not set here because this job was triggered directly, not using an event name.

vnd.sun.star.jobs:service=vnd.sun.star.jobs.Job_3
A vnd.sun.star.jobs.Job_3 is not registered in the job configuration package. However, if this
implementation was registered with the global service manager, and if it provided the
com.sun.star.task.XJob or com.sun.star.task.XAsyncJob interfaces, it would be executed by
this URL. If both interfaces are present, the synchronous version is preferred.

The given UNO implementation name vnd.sun.star.jobs.Job_3 is used directly for creation at
the UNO service manager. In addition, this job instance is only initialized with an environment
and possibly with optional dispatch arguments—there is no configuration data for the job to use.

List of supported Events
Supported events triggered by code
onFirstRunInitialization Called on startup once after OpenOffice.org is installed. Should be used for

post-setup operations.
onFirstVisibleTask Called after a document window has been shown for the first time after

launching the application. Note: The quickstarter influences this behavior.
With the quickstarter, closing the last document does not close the applica-
tion. Opening a new document in this situation does not trigger this event.

onDocumentOpened Indicates that a new document was opened. It does not matter if a new or an
existing document was opened. Thus it represents the combined OnNew and
OnLoad events of the global event broadcaster.

Supported events triggered by the global event broadcaster
OnStartApp Application has been started
OnCloseApp Application is going to be closed
OnNew New Document was created
OnLoad Document has been loaded

Chapter 4 Writing UNO Components 255

Supported events triggered by the global event broadcaster
OnSaveAs Document is going to be saved under a new name
OnSaveAsDone Document was saved under a new name
OnSave Document is going to be saved
OnSaveDone Document was saved
OnPrepareUnload Document is going to be removed
OnUnload Document has been removed
OnFocus Document was activated
OnUnfocus Document was deactivated
OnPrint Document will be printed
OnModifyChange Modified state of the document has changed

Event names are case sensitive.

4.7.3 Add-Ons
A OpenOffice.org add- on is an external UNO component providing one or more functions
through the user interface of OpenOffice.org. A typical add- on is available as a UNO package for
easier deployment with the pkgchk tool. In addition to an ordinary UNO package an add- on
package contains configuration files which specify the user interface, registration for a protocol
schema and first-time instantiation.

The package installation tool pkgchk merges the configuration files with the menu and toolbar
items for an add- on directly into the OpenOffice.org configuration files.

256 OpenOffice.org 1.1 Developer's Guide • June 2003

Overview
OpenOffice.org supports the integration of add- ons into the following areas of the GUI.

Menu items for add- ons can be added to an Add-Ons submenu of the Tools menu and a corre-
sponding add- ons popup toolbar icon:

It is also possible to create custom menus in the Menu Bar. You are free to choose your own menu
title, and you can create menu items and submenus for your add- on. Custom menus are inserted
between the Tools and Window menus. Separators are supported as well:

You can create toolbar icons in the Function Bar, which is usually the topmost toolbar. Below you
see two toolbar items, an icon for Function 1 and a text item for Function 2:

The Help menu offers support for add- ons through help menu items that open the online help of
an add- on. They are inserted below the Help - Registration item under a separator.

Chapter 4 Writing UNO Components 257

Illustration 40: Add-Ons submenu and toolbar popup

Illustration 41: Custom top-level menu

Illustration 42: Toolbar icons for Function 1 and
Function 2

Guidelines
For a smooth integration, a developer should be aware of the following guidelines:

Add-Ons Submenu
• Since the Tools - Add-Ons menu is shared by all installed add- ons, an add- on should save

space and use a submenu when it has more than two functions. The name of the add- on should
be part of the menu item names or the submenu title.

• If your add- on has many menu items, use additional submenus to enhance the overview. Use
four to seven entries for a single menu. If you exceed this limit, start creating submenus.

Custom Top-Level Menu
• Only frequently used add- ons or add- ons that offer very important functions in a user environ-

ment should use their own top-level menu.

• Use submenus to enhance the overview. Use four to seven entries for a single menu. If you
exceed this limit, start creating submenus.

• Use the option to group related items by means of separator items.

Toolbar
• Only important functions should be integrated into the toolbar.

• Use the option to group functions by means of separator items.

Add-On Help menu
Every add- on should provide help to user. This help has to be made available through an entry in
the OpenOffice.org Help menu. Every add- on should only use a single Help menu item.

If the add- on comes with its own dialogs, it should also offer Help buttons in the dialogs.

Configuration
The user interface definitions of all add- ons are stored in the special configuration branch
org.openoffice.Office.Addons.

The schema of the configuration branch org.openoffice.Office.Addons specifies how to define a user
interface extension.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Addons" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <templates>
 <group oor:name="MenuItem">
 <prop oor:name="URL" oor:type="xs:string"/>
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="ImageIdentifier" oor:type="xs:string"/>
 <prop oor:name="Target" oor:type="xs:string"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 <set oor:name="Submenu" oor:node-type="MenuItem"/>
 </group>
 <group oor:name="PopupMenu">
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 <set oor:name="Submenu" oor:node-type="MenuItem"/>
 </group>
 <group oor:name="ToolBarItem">

258 OpenOffice.org 1.1 Developer's Guide • June 2003

 <prop oor:name="URL" oor:type="xs:string"/>
 <prop oor:name="Title" oor:type="xs:string" oor:localized="true"/>
 <prop oor:name="ImageIdentifier" oor:type="xs:string"/>
 <prop oor:name="Target" oor:type="xs:string"/>
 <prop oor:name="Context" oor:type="xs:string"/>
 </group>
 <group oor:name="UserDefinedImages">
 <prop oor:name="ImageSmall" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageBig" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageSmallHC" oor:type="xs:hexBinary"/>
 <prop oor:name="ImageBigHC" oor:type="xs:hexBinary"/>
 <prop oor:name=”ImageSmallURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageBigURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageSmallHCURL” oor:type=”xs:string”/>
 <prop oor:name=”ImageBigHCURL” oor:type=”xs:string”/>
 </group>
 <group oor:name="Images">
 <prop oor:name="URL" oor:type="xs:string"/>
 <node-ref oor:name="UserDefinedImages" oor:node-type="UserDefinedImages"/>
 </group>
 <set oor:name="ToolBarItems" oor:node-type="ToolBarItem"/>
 </templates>
 <component>
 <group oor:name="AddonUI">
 <set oor:name="AddonMenu" oor:node-type="MenuItem"/>
 <set oor:name="Images" oor:node-type="Images"/>
 <set oor:name="OfficeMenuBar" oor:node-type="PopupMenu"/>
 <set oor:name="OfficeToolBar" oor:node-type="ToolBarItems"/>
 <set oor:name="OfficeHelp" oor:node-type="MenuItem"/>
 </group>
 </component>
</oor:component-schema>

Menus
As explained in the previous section, OpenOffice.org supports two menu locations where an add-
on can be integrated: a top- level menu or the Tools - Add-Ons submenu. The configuration
branch org.openoffice.Office.Addons provides two different nodes for these locations:

Supported sets of org.openoffice.Office.Addons to define an Add-On menu
OfficeMenuBar A menu defined in this set will be a top- level menu in the OpenOffice.org

Menu Bar.
AddonMenu A menu defined in this set will be a pop-up menu which is part of the Add-

Ons menu item located on the bottom position of the Tools menu.

Submenu in Tools - Add- Ons

To integrate add- on menu items into the Tools – Add-Ons menu, use the AddonMenu set. The
AddonMenu set consists of nodes of type MenuItem. The MenuItem node- type is also used for the
submenus of a top- level add- on menu.

Properties of template MenuItem
oor:name string. The name of the configuration node. The name must begin with an ASCII letter

character. It must be unique within the OfficeMenuBar set. Therefore, it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know which add- ons, or how many add- ons, are
currently installed.
The node name of menu items of a submenu must be unique only within their submenu.
A configuration set cannot guarantee the order of its entries, so you should use a schema
such as string + number, for example “m1”, as the name is used to sort the entries.

URL string. Specifies the command URL that should be dispatched when the user activates
the menu entry. It will be ignored if the MenuItem is the title of a a submenu.
To define a separator you can use the special command URL "private:separator". A
separator ignores all other properties.

Chapter 4 Writing UNO Components 259

Properties of template MenuItem
Title string . Contains the title of a top- level menu item. This property supports localization:

The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language / locale
to the attribute, for example <value xml:lang="en-US">string</value>.

ImageIdentifier string. Defines an optional image URL that could address an internal OpenOffice.org
image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool will exchanges %origin% by another placeholder, which is substituted
during runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org
supports two different configuration folders (user and share) this mechanism is necessary
to determine the installation folder of a component.

For example the URL %origin%/image will be substituted to something like

vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.10516
10942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE will then be
substituted during runtime by the real path.

As the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small / large image and both as high contrast), a naming
schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to the
provided URL to address the small and large image. _16h.bmp and _26h.bmp is added to
address the high contrast images. If the high contrast images are omitted the normal
images are used instead.

OpenOffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results the size of small images should be 16x16 pixel and for big images
26x26 pixel. Other image sizes are scaled automatically by OpenOffice.org.
If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid will be ignored.
This property has a higher priority than the Images set when OpenOffice.org searches
for images.

Target string. Specifies the target frame for the command URL. Normally an add- on will use
one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

260 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of template MenuItem
Context string. A list of service names, separated by a comma, that specifies in which context the

add- on menu function should be visible. An empty Context means that the function
should visible in all contexts.
The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument
Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties
Chart: com.sun.star.chart.ChartDocument
Bibliography: com.sun.star.frame.Bibliography

The context service name for add- ons is determined by the service name of the model
that is bound to the frame, which is associated with UI element (toolbar, menu bar, ...).
Thus the service name of the Writer model is com.sun.star.text.TextDocument.
That means, the context name is bound to the model of an application module. If a
developer implements a new desktop component that has a model, it is possible to use
its service name as a context for add- on UI items.

Submenu A set of MenuItem entries. Optional to define a submenu for the menu entry.

The next examples shows a configuration file specifying a single menu item titled Add-On Func-
tion 1. The unique node name of the add- on is called org.openoffice.example.addon.example.function1.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="AddonMenu">
 <node oor:name="org.openoffice.Office.addon.example.function1" oor:op="replace">
 <prop oor:name="URL" oor:type="xs:string">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <prop oor:name="ImageIdentifier" oor:type="xs:string"
 <value/>
 </prop>
 <prop oor:name="Title" oor:type="xs:string">
 <value/>
 <value xml:lang="en-US">Add-On Function 1</value>
 </prop>
 <prop oor:name="Target" oor:type="xs:string">
 <value>_self</value>
 </prop>
 <prop oor:name="Context" oor:type="xs:string">
 <value>com.sun.star.text.TextDocument</value>
 </prop>
 </node>
 </node>
 </node>

Top-level Menu

If you want to integrate an add- on into the OpenOffice.org Menu Bar, you have to use the Offi-
ceMenuBar set. An OfficeMenuBar set consists of nodes of type PopupMenu.

Properties of template PopupMenu
oor:name string. The name of the configuration node. The name must begin with an ASCII letter

character. It must be unique within the OfficeMenuBar set. Therefore, it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Please keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know what add- ons, or how many add- ons, are
currently installed.

Chapter 4 Writing UNO Components 261

Properties of template PopupMenu
Title string . Contains the title of a top- level menu item. This property supports localization:

The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language / locale
to the attribute, for example <value xml:lang="en-US">string</value>.

Context string. A list of service names, separated by a comma, that specifies in which context the
add- on menu should be visible. An empty context means that the function should be
visible in all contexts.
The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument
Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties
Chart: com.sun.star.chart.ChartDocument
Bibliography: com.sun.star.frame.Bibliography

The context service name for add- ons is determined by the service name of the model
that is bound to the frame, which is associated with UI element (toolbar, menu bar, ...).
Thus the service name of the Writer model is com.sun.star.text.TextDocument.
That means, the context name is bound to the model of an application module. If a
developer implements a new desktop component that has a model it is possible to use
its service name as a context for add- on UI items.

Submenu A set of MenuItem entries. Defines the submenu of the top-level menu. It must be
defined on a top- level menu otherwise the whole menu will be ignored.
For more information how to define a submenu please refer to section 4.7.3 Writing
UNO Components - Integrating Components into OpenOffice.org - User Interface Add-Ons -
Guidelines where the MenuItem template is described.

The following example defines a top-level menu titled Add-On example with a single menu item
titled Add-On Function 1. The menu item has a self-defined image used for displaying it next to
the menu title.
In the example the nodes are called oor:name="org.openoffice.example.addon" and
oor:name="m1".

Do not forget to specify the oor:op="replace" attribute in your self-defined nodes. The replace
operation must be used to add a new node to a set or extensible node. Thus the real meaning of
the operation is "add or replace". Dynamic properties can only be added once and are then consid-
ered mandatory, so during layer merging the replace operation always means "add" for them.
For more details about the configuration and their file formats please read 15 Configuration
Management.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="OfficeMenuBar">
 <node oor:name="org.openoffice.example.addon" oor:op="replace">
 <prop oor:name="Title" oor:type="xs:string">
 <value/>
 <value xml:lang="en-US">Add-On example</value>
 <value xml:lang=”de”>Add-On Beispiel</value>
 </prop>
 <prop oor:name="Context" oor:type="xs:string">
 <value>com.sun.star.text.TextDocument</value>
 </prop>
 <node oor:name="Submenu">
 <node oor:name="m1" oor:op="replace">
 <prop oor:name="URL" oor:type="xs:string">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <prop oor:name="Title" oor:type="xs:string">
 <value/>

262 OpenOffice.org 1.1 Developer's Guide • June 2003

 <value xml:lang=”en-US”>Add-On Function 1</value>
 <value xml:lang="de">Add-On Funktion 1</value>
 </prop>
 <prop oor:name="Target" oor:type="xs:string">
 <value>_self</value>
 </prop>
 </node>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

Toolbars
An add- on can also be integrated into the Function Bar of OpenOffice.org. The
org.openoffice.Office.Addons configuration branch has a set called OfficeToolBar where you can
add toolbar items for an add- on. The toolbar structure uses an embedded set called Tool-
barItems, which is used by OpenOffice.org to group toolbar items from different add- ons.
OpenOffice.org automatically inserts a separator between different add- ons toolbar items.

The space of the Function Bar is limited, so only the most used /important functions should be added to the
OfficeToolBar set. Otherwise OpenOffice.org will add scroll-up /down buttons at the end of the Function
Bar and the user has to scroll the toolbar to have access to all toolbar buttons.

Properties of template ToolBarItems
oor:name string. The name of the configuration node. The name must begin with an ASCII letter

character. It must be unique within the OfficeMenuBar set. Therefore it is mandatory
to use a schema such as org.openoffice.<developer>.<product>.<addon
name> or com.<company>.<product>.<addon name> to avoid name conflicts.
Please keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know what add- ons, or how many add- ons, are
currently installed.

The ToolBarItems set is a container for the ToolBarItem nodes.

Properties of template ToolBarItem
oor:name string. The name of the configuration node. It must be unique inside your own Tool-

BarItems set. A configuration set cannot guarantee the order of its entries, therefore
use a schema such as string + number, for example "m1", as the name is used to sort
the entries. Please be aware that the name must begin with an ASCII letter character.

URL string. Specifies the command URL that should be dispatched when the user activates
the menu entry. To define a separator you can use the special command URL
"private:separator". A separator ignores all other properties.

Title string . Contains the title of a top- level menu item. This property supports localization:
The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language / locale
to the attribute, for example <value xml:lang="en-US">string</value>.

Chapter 4 Writing UNO Components 263

Properties of template ToolBarItem
ImageIdentifier string. Defines an optional image URL that could address an internal OpenOffice.org

image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%,
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool exchanges %origin% with another placeholder, which is substituted during
runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org supports
two different configuration folders (user and share) this mechanism is necessary to deter-
mine the installation folder of a component.

For example the URL %origin%/image will be substituted with something like

vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.10516
10942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE is then substi -
tuted during runtime with the real path.

Since the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small / large image, and both as high contrast), a naming
schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to the
provided URL to address the small and large image. _16h.bmp and _26h.bmp is added to
address the high contrast images. If the high contrast images are omitted, the normal
images are used instead.

OpenOffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results, the size of small images should be 16x16 pixel, and for big images
26x26 pixel. Other image sizes are scaled automatically by OpenOffice.org.
If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid are ignored.
This property has a higher priority than the Images set when OpenOffice.org searches
for images.

Target string. Specifies the target frame for the command URL. Normally an add- on will use
one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

264 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of template ToolBarItem
Context string. A list of service names, separated by a comma, that specifies in which context the

add- on menu should be visible. An empty context means that the function should be
visible in all contexts.
The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument
Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties
Chart: com.sun.star.chart.ChartDocument
Bibliography: com.sun.star.frame.Bibliography

The context service name for add- ons is determined by the service name of the model
that is bound to the frame, which is associated with an UI element (toolbar, menu
bar, ...). Thus the service name of the Writer model is
com.sun.star.text.TextDocument. That means, the context name is bound to the
model of an application module. If you implement a new desktop component that has a
model, it is possible to use its service name as a context for add- on UI items.

The following example defines one toolbar button for the function called
org.openoffice.Office.addon.example:Function1. The toolbar button is only visible when
using the OpenOffice.org Writer module.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="OfficeToolBar">
 <node oor:name="org.openoffice.Office.addon.example" oor:op="replace">
 <node oor:name=”m1”>
 <prop oor:name="URL" oor:type="xs:string">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <prop oor:name="Title" oor:type="xs:string">
 <value/>
 <value xml:lang=”en-US”>Function 1</value>
 <value xml:lang="de">Funktion 1</value>
 </prop>
 <prop oor:name="Target" oor:type="xs:string">
 <value>_self</value>
 </prop>
 <prop oor:name="Context" oor:type="xs:string">
 <value>com.sun.star.text.TextDocument</value>
 </prop>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

Images for Toolbars and Menus
OpenOffice.org supports images in menus and toolboxes. In addition to the property ImageIdenti-
fier, the add- ons configuration branch has a fourth set called Images that let developers define and
use their own images. The image data can be integrated into the configuration either as hex
encoded binary data or as references to external bitmap files. The Images set binds a command
URL to user defined images.

Chapter 4 Writing UNO Components 265

Properties of template Images
oor:name string. The name of the configuration node. It must be unique inside the configuration

branch. Therefore it is mandatory to use a schema such as
org.openoffice.<developer>.<add-on name> or
com.<company>.<product>.<add-on name> to avoid name conflicts. Please
keep in mind that your configuration file will be merged into the OpenOffice.org
configuration branch. You do not know how many or which add- ons were installed
before by the user.
Please be aware that the name must begin with an ASCII letter character.

URL string. Specifies the command URL that should be bound to the defined images.
OpenOffice.org searches for images with the command URL that a menu
item/ toolbox item contains.

UserDefinedImages Group of properties. This optional group provides self-defined images data to
OpenOffice.org. There are two different groups of properties to define the image data.
One property group provides the image data as ongoing hex values specifying an
uncompressed bitmap format stream. The other property group uses URLs to external
bitmap files. The names of these properties end with 'URL'. OpenOffice.org supports
bitmap streams with 1, 4, 8, 16, 24 bit color depth. Magenta (color value red=0xffff,
green=0x0000, blue=0xffff) is used as the transparent color, meaning that the back-
ground color of the display will be used instead of the image pixel color when the
image is drawn.
For best quality, the size of small images should be 16x16 pixel, and for big images
26x26 pixel. Other image sizes will be scaled automatically by OpenOffice.org.
If no high contrast image data is provided, OpenOffice.org uses the normal image for
high contrast environments. Image data that is not valid will be ignored.

An Images node uses a second node called UserDefinedImages where the user defined images
data are stored.

Properties of template UserDefinedImages
ImageSmall HexBinary. Used for normal menu / toolbar items, standard size is 16x16 pixel.
ImageBig HexBinary. Only toolbars can use big images. Standard size is 26x26 pixel. The user can

activate large buttons with the Tools – Options – View – Large Buttons check box.
ImageSmallHC HexBinary. Used for high contrast environments , which means that the background

color of a menu or toolbar is below a certain threshold value for the brightness.
ImageBigHC HexBinary. Only toolbars can use big images. Used for high contrast environments ,

which means that the background color of a toolbar is below a certain threshold value
for the brightness.

ImageSmallURL string. An URL to an external image which is used for menu items and normal toolbar
buttons. External user-defined images are supported using the placeholder variable %
origin%, representing the folder where the component will be installed by the pkgchk
tool. The pkgchk tool exchanges %origin% with another placeholder, which is substituted
during runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org
supports two different configuration folders (user and share) this mechanism is necessary
to determine the installation folder of a component.

For example the URL %origin%/image will be substituted with something like

vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.10516
10942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE is then substi -
tuted during runtime with the real path.

ImageBigURL string. An URL to an external image which is used for big toolbar buttons.

266 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of template UserDefinedImages
ImageSmallHCURL string. An URL to an external image which is used for menu items and normal toolbar

button in a high contrast environment.
ImageBigHCURL string. An URL to an external image which is used for big toolbar buttons in a high

contrast environment.

The embedded image data have a higher priority when used in conjunction with the URL proper-
ties. The embedded and URL properties can be mixed without a problem.

The next example creates two user-defined images for the function
org.openoffice.Office.addon.example:Function1. The normal image is defined using the
embedded image data property ImageSmall and has a size of 16x16 pixel and a 4-bit color depth.
The other one uses the URL property ImageSmallHCURL to reference an external bitmap file for the
high contrast image.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="Images">
 <node oor:name="com.sun.star.comp.framework.addon.image1" oor:op="replace">
 <prop oor:name="URL" oor:type="xs:string">
 <value>org.openoffice.Office.addon.example:Function1</value>
 </prop>
 <node oor:name=”UserDefinedImages”>
 <prop oor:name=”ImageSmall”>
 <value>424df80000000000000076000000280000001000000010000000010004000000000000000
000120b0000120b000000000000000000000000ff0000ffff0000ff0000ffff0000ff000000ff00ff00ffffff00c0c0c00080808
00000000000000080000080800000800000808000008000000080008000cccccccccccccccc2c266b181b666c2c5cc66b818b666
5c555566b181b66655555566b818b66655555566b181b6665555a8666bbb6668a55a0a866666668a0a5000a8666668a000a6000a
86668a000a556000a868a000a55556000a8a000a5555556000a000a55555555600000a55555555556000a55555555555560a5555
5550000</value>
 </prop>
 <prop oor:name=”ImageSmallHCURL”>
 <value>%origin%/function1.bmp</value>
 </prop>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

Help Integration
OpenOffice.org supports the integration of add- ons into its Help menu. The add- on help menu
items are inserted below the Registration menu item, guarded by separators. This guarantees that
users have quick access to the add- on help.
The OfficeHelp set uses the same MenuItem node- type as the AddonMenu set, but there are some
special treatments of the properties.

Properties of template MenuItem
oor:name string. The name of the configuration node. It must be unique inside the configuration

branch. Therefore it is mandatory to use a schema such as org.openoffice.<devel-
oper>.<add-on name> or com.<company>.<product>.<add-on name> to avoid
name conflicts. Please keep in mind that your configuration file will be merged into the
OpenOffice.org configuration branch. You do not know how many or which add- ons
were installed before by the user.
Please be aware that the name must begin with an ASCII letter character.

URL string. Specifies the help command URL that should be dispatched when the user acti-
vates the menu entry.
Separators defined by the special command URL "private:separator" are
supported, but should not be used in the help menu, because every add- on should only
use one menu item.

Chapter 4 Writing UNO Components 267

Properties of template MenuItem
Title string . Contains the title of a top- level menu item. This property supports localization:

The default string, which is used when OpenOffice.org cannot find a string definition
for its current language, uses the value element without an attribute. You define a
string for a certain language with the xml:lang attribute. Assign the language / locale
to the attribute, for example <value xml:lang="en-US">string</value>.

ImageIdentifier string. Defines an optional image URL that could address an internal OpenOffice.org
image or an external user-defined image. The syntax of an internal image URL is:
private:image/<number> where number specifies the image.

External user-defined images are supported using the placeholder variable %origin%,
representing the folder where the component will be installed by the pkgchk tool. The
pkgchk tool exchanges %origin% with another placeholder, which is substituted during
runtime by OpenOffice.org to the real installation folder. Since OpenOffice.org supports
two different configuration folders (user and share), this mechanism is necessary to
determine the installation folder of a component.

For example the URL %origin%/image is substituted with something like

vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE/uno_packages/component.zip.10516
10942/image .

The placeholder vnd.sun.star.expand:$UNO_USER_PACKAGES_CACHE is then substi -
tuted during runtime by the real path.

Since the ImageIdentifier property can only hold one URL but OpenOffice.org
supports four different images (small / large image and both as high contrast), a naming
schema is used to address them. OpenOffice.org adds _16.bmp and _26.bmp to the
provided URL to address the small and large image. _16h.bmp and _26h.bmp is added to
address the high contrast images. If the high contrast images are omitted, the normal
images are used instead.

OpenOffice.org supports bitmaps with 1, 4, 8, 16, 24 bit color depth. Magenta (color
value red=0xffff, green=0x0000, blue=0xffff) is used as the transparent color, which
means that the background color of the display is used instead of the image pixel color
when the image is drawn.

For optimal results the size of small images should be 16x16 pixel and for big images
26x26 pixel. Other image sizes will be scaled automatically by OpenOffice.org.
If no high contrast image is provided, OpenOffice.org uses the normal image for high
contrast environments. Images that are not valid are ignored.
This property has a higher priority than the Images set when OpenOffice.org searches
for images.

Target string. Specifies the target frame for the command URL. Normally an add- on will use
one of the predefined target names:

_top
Returns the top frame of the called frame, which is the first frame where isTop()
returns true when traversing up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are
searching for a frame you already have, but it is legal to do so.

_blank
Creates a new top-level frame whose parent is the desktop frame.

268 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of template MenuItem
Context string. A list of service names, separated by a comma, that specifies in which context the

add- on menu should be visible. An empty context means that the function is visible in
all contexts.
The OpenOffice.org application modules use the following services names:

Writer: com.sun.star.text.TextDocument
Spreadsheet: com.sun.star.sheet.SpreadsheetDocument
Presentation: com.sun.star.presentation.PresentationDocument
Draw: com.sun.star.drawing.DrawingDocument
Formula: com.sun.star.formula.FormulaProperties
Chart: com.sun.star.chart.ChartDocument
Bibliography: com.sun.star.frame.Bibliography

The context service name for add- ons is determined by the service name of the model
that is bound to the frame, which is associated with an UI element (toolbar, menu
bar, ...). Thus the service name of the Writer model is
com.sun.star.text.TextDocument. That means, the context name is bound to the
model of an application module. If a developer implements a new desktop component
that has a model, it is possible to use its service name as a context for add- on UI items.

Submenu A set of MenuItem entries. Not used for OfficeHelp MenuItems, any definition
inside will be ignored.

The following example shows the single help menu item for the add- on example.
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-data xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xs="http://www.w3.org/2001/XMLSchema" oor:name="Addons" oor:package="org.openoffice.Office">
 <node oor:name="AddonUI">
 <node oor:name="OfficeHelp">
 <node oor:name="com.sun.star.comp.framework.addon" oor:op="replace">
 <prop oor:name="URL" oor:type="xs:string"
 <value>org.openoffice.Office.addon.example:Help</value>
 </prop>
 <prop oor:name="ImageIdentifier" oor:type="xs:string">
 <value/>
 </prop>
 <prop oor:name="Title" oor:type="xs:string">
 <value xml:lang="de">Über Add-On Beispiel</value>
 <value xml:lang="en-US">About Add-On Example</value>
 </prop>
 <prop oor:name="Target" oor:type="xs:string">
 <value>_self</value>
 </prop>
 </node>
 </node>
 </node>
</oor:component-data>

Installation
After finishing the implementation of the UNO component and the definition of the user interface
part you can create the UNO package. A UNO package can be used by an end-user to install the
add- on into OpenOffice.org.

An UNO package is a zip file containing UNO components, type libraries or basic libraries. The
pkgchk tool unzips all packages found in the package directory into the cache directory, preserving
the file structure of the zip file. It also copies all single files recognized in the package directory to
the cache directory.

The configuration files that were created for the add- on, such as protocol handler, jobs, and user
interface definition must be added to the root of the zip file. The structure of a zip file supporting
Windows should resemble the following code:
example_addon.zip:
 Addons.xcu

Chapter 4 Writing UNO Components 269

 ProtocolHandler.xcu
 windows.plt/
 example_addon.dll

Before you install the package, make absolutely sure there are no running instances of
OpenOffice.org. The pkchk tool recognizes a running OpenOffice.org in a local installation, but not
in a networked installation. Installing into a running office installation might cause inconsistencies
and destroy your installation!

The package installation for the example add- on is as simple as changing to the
<OfficePath>/program directory with a command- line shell and running
[<OfficePath>/program] $ pkgchk /foo/bar/example_addon.zip

For an explanation of the package structure and more deployment options, please refer to 4.9
Writing UNO Components - Deployment Options for Components.

4.7.4 Disable Commands
In OpenOffice.org, there may be situations where functions should be disabled to prevent users
from changing or destroying documents inadvertently. OpenOffice.org maintains a list of disabled
commands that can be maintained by users and developers through the configuration API.

A command request can be created by any object, but in most cases, user interface objects create
these requests. Consider, for instance, a toolbox where different functions acting on the office
component are presented as buttons. Once a button is clicked, the desired functionality should be
executed. If the code assigned to the button is provided with a suitable command URL, the
dispatch framework can handle the user action by creating the request and finding a component
that can handle it.

The dispatch framework works with the design pattern chain of responsibility: everything a compo-
nent needs to know if it wants to execute a request is the last link in a chain of objects capable of
executing requests. If this object gets the request, it checks whether it can handle it or otherwise
passes it to the next chain member until the request is executed or the end of the chain is reached.
The disable commands implementation is the first chain member and can therefore work as a wall
for all disabled commands. They are not be sent to the next chain member, and disappear.

 shows how the disable commands feature affects the normal command application flow.

270 OpenOffice.org 1.1 Developer's Guide • June 2003

Since the disable commands implementation is the first part in the dispatch chain, there is no way to circum-
vent it. The disabled command must be removed from the list, otherwise it remains disabled.

Chapter 4 Writing UNO Components 271

Illustration 43: How the disable commands feature works

Configuration
The disable commands feature uses the configuration branch org.openoffice.Office.Commands to read
which commands should be disabled. The following schema applies:
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Commands" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <templates>
 <group oor:name="CommandType">
 <prop oor:name="Command" oor:type="xs:string"/>
 </group>
 </templates>
 <component>
 <group oor:name="Execute">
 <set oor:name="Disabled" oor:node-type="CommandType"/>
 </group>
 </component>
</oor:component-schema>

The configuration schema for disabled commands is very simple. The
org.openoffice.Office.Commands branch has a group called Execute. This group has only one set
called Disabled. The Disabled set supports nodes of the type CommandType. The following table
describes the supported properties of CommandType.

Properties of the CommandType group
oor:compo-
nent-data string. It must be unique inside the Disabled set, but has no additional meaning for the

implementation of the disable commands feature. Use a consecutive numbering scheme;
even numbers are allowed.

Command string. This is the command name with the preceding protocol. That means the command
URL .uno:Open (which shows the File – Open dialog) must be written as Open.
The valid commands can be found in the document Index of Command Names in the Docu-
mentation section of the framework project on the OpenOffice.org web page. The
OpenOffice.org SDK also includes the latest list of command names.

The example below shows a configuration file that disables the commands for File – Open , Edit –
Select All , Help – About OpenOffice.org and File – Exit.
<?xml version="1.0" encoding="UTF-8" ?>
<oor:component-data oor:name="Commands" oor:package="org.openoffice.Office"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <node oor:name="Execute">
 <node oor:name="Disabled">
 <node oor:name="m1" oor:op="replace">
 <prop oor:name="Command">
 <value>Open</value>
 </prop>
 </node>
 <node oor:name="m2" oor:op="replace">
 <prop oor:name="Command">
 <value>SelectAll</value>
 </prop>
 </node>
 <node oor:name="m3" oor:op="replace">
 <prop oor:name="Command">
 <value>About</value>
 </prop>
 </node>
 <node oor:name="m4" oor:op="replace">
 <prop oor:name="Command">
 <value>Quit</value>
 </prop>
 </node>
 </node>
 </node>
</oor:component-data>

272 OpenOffice.org 1.1 Developer's Guide • June 2003

Disabling Commands at Runtime
The following code example first removes all commands that were defined in the user layer of the
configuration branch org.openoffice.Office.Commands as having a defined starting point. Then
it checks if it can get dispatch objects for some pre-defined commands.
Then the example disables these commands and tries to get dispatch objects for them again. At the
end, the code removes the disabled commands again, otherwise OpenOffice.org would not be
fully useable any longer.
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.util.XURLTransformer;
import com.sun.star.frame.XDesktop;

import com.sun.star.beans.UnknownPropertyException;

/*
 * Provides example code how to enable/disable
 * commands.
 */
public class DisableCommandsTest extends java.lang.Object {

 /*
 * A list of command names
 */
 final static private String[] aCommandURLTestSet =
 {
 new String("Open"),
 new String("About"),
 new String("SelectAll"),
 new String("Quit"),
 };

 private static XComponentContext xRemoteContext = null;
 private static XMultiComponentFactory xRemoteServiceManager = null;
 private static XURLTransformer xTransformer = null;
 private static XMultiServiceFactory xConfigProvider = null;

 /*
 * @param args the command line arguments
 */
 public static void main(String[] args) {

 try {
 // connect
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);
 Object initialObject = xUnoUrlResolver.resolve(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 xRemoteServiceManager = xRemoteContext.getServiceManager();
 Object transformer = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.util.URLTransformer", xRemoteContext);
 xTransformer = (com.sun.star.util.XURLTransformer)UnoRuntime.queryInterface(
 com.sun.star.util.XURLTransformer.class, transformer);

 Object configProvider = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.configuration.ConfigurationProvider", xRemoteContext);
 xConfigProvider = (com.sun.star.lang.XMultiServiceFactory)UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, configProvider);

 // First we need a defined starting point. So we have to remove
 // all commands from the disabled set!
 enableCommands();

 // Check if the commands are usable
 testCommands(false);

Chapter 4 Writing UNO Components 273

 // Disable the commands
 disableCommands();

 // Now the commands should not be usable anymore
 testCommands(true);

 // Remove disable commands to make Office usable again
 enableCommands();
 }
 catch (java.lang.Exception e){
 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }
 }

 /**
 * Test the commands that we enabled/disabled
 */
 private static void testCommands(boolean bDisabledCmds) throws com.sun.star.uno.Exception {
 // We need the desktop to get access to the current frame
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);
 com.sun.star.frame.XDesktop xDesktop = (com.sun.star.frame.XDesktop)UnoRuntime.queryInterface(
 com.sun.star.frame.XDesktop.class, desktop);
 com.sun.star.frame.XFrame xFrame = xDesktop.getCurrentFrame();
 com.sun.star.frame.XDispatchProvider xDispatchProvider = null;
 if (xFrame != null) {
 // We have a frame. Now we need access to the dispatch provider.
 xDispatchProvider = (com.sun.star.frame.XDispatchProvider)UnoRuntime.queryInterface(
 com.sun.star.frame.XDispatchProvider.class, xFrame);
 if (xDispatchProvider != null) {
 // As we have the dispatch provider we can now check if we get a dispatch
 // object or not.
 for (int n = 0; n < aCommandURLTestSet.length; n++) {
 // Prepare the URL
 com.sun.star.util.URL[] aURL = new com.sun.star.util.URL[1];
 aURL[0] = new com.sun.star.util.URL();
 com.sun.star.frame.XDispatch xDispatch = null;

 aURL[0].Complete = ".uno:" + aCommandURLTestSet[n];
 xTransformer.parseSmart(aURL, ".uno:");

 // Try to get a dispatch object for our URL
 xDispatch = xDispatchProvider.queryDispatch(aURL[0], "", 0);

 if (xDispatch != null) {
 if (bDisabledCmds)
 System.out.println("Something is wrong, I got dispatch object for "

+ aURL[0].Complete);
 else
 System.out.println("Ok, dispatch object for " + aURL[0].Complete);
 }
 else {
 if (!bDisabledCmds)
 System.out.println("Something is wrong, I cannot get dispatch object for "

+ aURL[0].Complete);
 else
 System.out.println("Ok, no dispatch object for " + aURL[0].Complete);
 }
 resetURL(aURL[0]);
 }
 }
 else
 System.out.println("Couldn't get XDispatchProvider from Frame!");
 }
 else
 System.out.println("Couldn't get current Frame from Desktop!");
 }

 /**
 * Ensure that there are no disabled commands in the user layer. The
 * implementation removes all commands from the disabled set!
 */
 private static void enableCommands() {
 // Set the root path for our configuration access
 com.sun.star.beans.PropertyValue[] lParams = new com.sun.star.beans.PropertyValue[1];

 lParams[0] = new com.sun.star.beans.PropertyValue();
 lParams[0].Name = new String("nodepath");
 lParams[0].Value = "/org.openoffice.Office.Commands/Execute/Disabled";

 try {
 // Create configuration update access to have write access to the configuration
 Object xAccess = xConfigProvider.createInstanceWithArguments(

274 OpenOffice.org 1.1 Developer's Guide • June 2003

 "com.sun.star.configuration.ConfigurationUpdateAccess", lParams);

 com.sun.star.container.XNameAccess xNameAccess = (com.sun.star.container.XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, xAccess);
 if (xNameAccess != null) {
 // We need the XNameContainer interface to remove the nodes by name
 com.sun.star.container.XNameContainer xNameContainer =
 (com.sun.star.container.XNameContainer)
 UnoRuntime.queryInterface(com.sun.star.container.XNameContainer.class, xAccess);

 // Retrieves the names of all Disabled nodes
 String[] aCommandsSeq = xNameAccess.getElementNames();
 for (int n = 0; n < aCommandsSeq.length; n++) {
 try {
 // remove the node
 xNameContainer.removeByName(aCommandsSeq[n]);
 }
 catch (com.sun.star.lang.WrappedTargetException e) {
 }
 catch (com.sun.star.container.NoSuchElementException e) {
 }
 }
 }

 // Commit our changes
 com.sun.star.util.XChangesBatch xFlush =
 (com.sun.star.util.XChangesBatch)UnoRuntime.queryInterface(
 com.sun.star.util.XChangesBatch.class, xAccess);
 xFlush.commitChanges();
 }
 catch (com.sun.star.uno.Exception e) {
 System.out.println("Exception detected!");
 System.out.println(e);
 }
 }

 /**
 * Disable all commands defined in the aCommandURLTestSet array
 */
 private static void disableCommands() {
 // Set the root path for our configuration access
 com.sun.star.beans.PropertyValue[] lParams = new com.sun.star.beans.PropertyValue[1];
 lParams[0] = new com.sun.star.beans.PropertyValue();
 lParams[0].Name = new String("nodepath");
 lParams[0].Value = "/org.openoffice.Office.Commands/Execute/Disabled";

 try {
 // Create configuration update access to have write access to the configuration
 Object xAccess = xConfigProvider.createInstanceWithArguments(
 "com.sun.star.configuration.ConfigurationUpdateAccess", lParams);

 com.sun.star.lang.XSingleServiceFactory xSetElementFactory =
 (com.sun.star.lang.XSingleServiceFactory)UnoRuntime.queryInterface(
 com.sun.star.lang.XSingleServiceFactory.class, xAccess);

 com.sun.star.container.XNameContainer xNameContainer =
 (com.sun.star.container.XNameContainer)UnoRuntime.queryInterface(
 com.sun.star.container.XNameContainer.class, xAccess);

 if (xSetElementFactory != null && xNameContainer != null) {
 Object[] aArgs = new Object[0];

 for (int i = 0; i < aCommandURLTestSet.length; i++) {
 // Create the nodes with the XSingleServiceFactory of the configuration
 Object xNewElement = xSetElementFactory.createInstanceWithArguments(aArgs);
 if (xNewElement != null) {
 // We have a new node. To set the properties of the node we need
 // the XPropertySet interface.
 com.sun.star.beans.XPropertySet xPropertySet =
 (com.sun.star.beans.XPropertySet)UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class,
 xNewElement);

 if (xPropertySet != null) {
 // Create a unique node name.
 String aCmdNodeName = new String("Command-");
 aCmdNodeName += i;

 // Insert the node into the Disabled set
 xPropertySet.setPropertyValue("Command", aCommandURLTestSet[i]);
 xNameContainer.insertByName(aCmdNodeName, xNewElement);
 }
 }
 }

 // Commit our changes
 com.sun.star.util.XChangesBatch xFlush = (com.sun.star.util.XChangesBatch)

Chapter 4 Writing UNO Components 275

 UnoRuntime.queryInterface(com.sun.star.util.XChangesBatch.class, xAccess);
 xFlush.commitChanges();
 }
 }
 catch (com.sun.star.uno.Exception e) {
 System.out.println("Exception detected!");
 System.out.println(e);
 }
 }

 /**
 * reset URL so it can be reused
 *
 * @param aURL
 * the URL that should be reseted
 */
 private static void resetURL(com.sun.star.util.URL aURL) {
 aURL.Protocol = "";
 aURL.User = "";
 aURL.Password = "";
 aURL.Server = "";
 aURL.Port = 0;
 aURL.Path = "";
 aURL.Name = "";
 aURL.Arguments = "";
 aURL.Mark = "";
 aURL.Main = "";
 aURL.Complete = "";
 }
}

4.8 File Naming Conventions
As a recommendation, UNO component libraries and UNO packages should be named according
to the following naming scheme:

<NAME>[<VERSION>].uno.(so|dll|dylib|jar|zip)
This recommendation applies to shared libraries and Java archives, as well as UNO packages
deployed by pkgchk as described in section 4.9.1 Writing UNO Components - Deployment Options for
Components - UNO Package Installation.

This file name convention results in file names such as:

component.uno.so
component1.uno.dll
component0.1.3.uno.dylib
component.uno.jar
component1.5.uno.zip

<NAME> should be a descriptive name, optionally extended by version information as shown
below, followed by the characters .uno and the necessary file extension.

The term .uno is placed next to the platform- specific extension to emphasize that this is a special
type of shared library, jar, or zip file.

Usually a shared library or jar has to be registered with UNO to be useful, as its shared library
interface only consists of the component operations. Zipped files cannot easily be recognized as
UNO packages. In both cases the .uno tag informs users that a component or package file is meant
for use with UNO.

Since the given naming scheme is only a suggestion, there might be component shared libraries
that do not contain the .uno addition in their names. Therefore, no tool should build assumptions
on whether a shared library name contains .uno or not.

<VERSION> is optional and should be in the form:
<VERSION> = <MAJOR> [.<MINOR> [.<MICRO>]]
<MAJOR> = <NUMBER>

276 OpenOffice.org 1.1 Developer's Guide • June 2003

<MINOR> = <NUMBER>
<MICRO> = <NUMBER>
<NUMBER> = 0 | 1–9 0–9*

Using the version tag in the file name of a shared library or jar is primarily meant for simple
components that are not part of a larger UNO package file deployed by pkgchk. Such components
are usually made up of a single shared library, and different file names for different versions can
be useful, for instance in bug reports.

The version of a larger UNO package should be indicated in the package file name, as in
component1.5.uno.zip., which results in a corresponding path name in the package cache.

The version of components that are part of the OpenOffice.org installation is already well defined
by the version and build number of the installed OpenOffice.org itself.

It is up to the developer how the version scheme is used. You can count versions of a given
component shared library using MAJOR alone, or add MINOR and MICRO as needed.

If version is used, it must be placed before the platform- specific extension, never after it. Under Linux and
Solaris, there is a convention to add a version number after the .so, but that version number has different
semantics than the version number used here. In short, those version numbers change whenever the
shared library's interface changes, whereas the UNO component interface with the component operations
component_getFactory() etc. never changes.

The following considerations give an overview of ways that a component can evolve:

A component shared library's interface, as defined by the component operations such as compo-
nent_getFactory() is assumed to be stable.

The UNO services offered by a component can change:

• compatibly : by changing an implementation in the component file but adhering to its specifica-
tion, or by adding a new UNO service implementation to a component file

• incompatibly: by removing an implementation, or by removing a UNO service from a compo-
nent

• indirectly compatibly: when one of the UNO services changes compatibility and the compo-
nent is adapted accordingly. This can happen when a service specification is extended by addi-
tional optional interfaces, and the component is altered to support these interfaces.

When an implementation in a component file is changed, for instance when a bug is fixed, such a
change will typically be compatible unless clients made themselves dependent on the bug. This
can happen when clients considered the bug a feature or worked around the bug in a way that
made them dependent on the bug. Therefore developers must be careful to program according to
the specification, not the implementation.

Finally, a component shared library can change its dependencies on other shared libraries. Exam-
ples of such dependencies are:

C/C++ runtime libraries
such as libc.so.6, libstdc++.so.3.0.1, and libstlport_gcc.so

UNO runtime libraries
such as libcppu.so.3.1.0 and libcppuhelpergcc3.so.3.1.0

OpenOffice.org libraries
such as libsvx644li.so

Dependency changes are typically incompatible, as they rely on compatible or incompatible
changes of the component's environment.

Chapter 4 Writing UNO Components 277

4.9 Deployment Options for Components
There are a number of opportunities to deploy components to a OpenOffice.org environment. The
options available depend on how the new component is to be deployed. If OpenOffice.org is
installed in a network mode, the new component could be available to an entire network or to
certain users. Another option is to install the new component to individual desktop installations.
Third, you may want to use UNO components without any local installation at all. This chapter
introduces a simple automatic deployment tool and provides a full understanding of the under-
lying deployment process, so that you can troubleshoot or deploy manually, if necessary.

4.9.1 UNO Package Installation
OpenOffice.org has a simple concept for adding components to an existing installation. Bringing a
UNO component into a OpenOffice.org installation involves the following steps:

• Get a UNO package from a third party vendor or package your component as described below.

• Place the package into a specific package directory. By default, the directory for user-specific
packages is <OfficePath>/user/uno_package and the directory for shared packages in a network
installation is <OfficePath>/share/uno_package.

• Close all instances of OpenOffice.org, run a command line shell, change to
<OfficePath>/program and run the tool pkgchk from the program directory. The pkgchk tool is
part of the SDK.

For a user package, simply run pkgchk without options:
[<OfficePath>/program] $ pkgchk

A shared package is installed using the option -s or --shared:
[<OfficePath>/program] $ pkgchk --shared

The tool analyzes the packages in the package directories, matches them with a cache directory for
custom extensions used by OpenOffice.org, registers the components found in the packages and
configures them as needed.

As an alternative, the packages can also be specified as command line arguments. In that case, the
zip files are automatically copied into the package directory and installed afterwards.
[<OfficePath>/program] $ pkgchk /foo/bar/my_package.zip

To remove a package from the OpenOffice.org installation, the opposite steps are necessary:

• Remove the package from the packages directory.

• Close all instances of OpenOffice.org and run pkgchk or pkgchk –shared.

The pkgchk mechanism also works for user-defined OpenOffice.org Basic libraries. For details see
11 Basic and Dialogs.

Be careful not to run the pkgchk deployment tool while there are running instances of OpenOffice.org. For
ordinary users, this case is recognized by the pkgchk process and leads to abortion, but for shared network
installations (using option '--shared' or '-s'), this cannot be determined. If any user of a network installation
has open processes, data inconsistencies may occur, and OpenOffice.org processes may crash afterwards.

278 OpenOffice.org 1.1 Developer's Guide • June 2003

Package Structure
A UNO package is a zip file containing UNO components, type libraries, configuration files or
basic libraries. The pkgchk tool unzips all packages found in the package directory into the cache
directory, preserving the file structure of the zip file. It also copies all single files recognized in the
package directory to the cache directory. Subdirectories are normally ignored.

There is often the need for platform dependent files inside a package for the supported UNO plat-
forms. For this purpose, create special platform directories with the extension .plt in the package,
which are only processed if the platform is present. A package structure for all platforms currently
supported by UNO has to look like the following:
my_package.zip:
 windows.plt/
 my_comp.dll
 solaris_sparc.plt/
 libmy_comp.so
 linux_x86.plt/
 libmy_comp.so
 linux_powerpc.plt/
 libmy_comp.so
 macosx_powerpc.plt/
 libmy_comp.so
 netbsd_sparc.plt/
 libmy_comp.so

A component library might need a third- party library shipped with the package. This library must
not be registered if it is not a UNO component. In order to skip registration of shared libraries or
jar files, place these libraries in a directory called skip_registration within each platform folder. This
causes pkgchk to copy the files and directories below that directory without registering them.

After the cache directory has been made ready, pkgchk traverses the cache directory recursively.
Depending on the extension of the files it detects, it carries out the necessary registration steps.
Nothing is done for unknown file types.

Shared Libraries
The file extension for shared libraries is .dll for Windows and .so for Unix. Shared library files
are registered and revoked in the registry database <CacheDir>/services.rdb and linked into the
OpenOffice.org installation through the UNO_SERVICES entry in uno(.ini |rc) as shown in the
following code. The leading '?' in uno(.ini |rc) indicates optional rdb files:
UNO_SERVICES=?$UNO_USER_PACKAGES_CACHE/services.rdb \
 ?$UNO_SHARED_PACKAGES_CACHE/services.rdb \
 $SYSBINDIR/applicat.rdb

Java Archive Files
Jar files are registered and revoked in the registry database <CacheDir>/services.rdb and added
to the java classpath of the Java virtual machine used by OpenOffice.org.

Python Components
The UNO deployment tool pkgchk now supports registration of Python components (.py files).
Those files are registered using the com.sun.star.loader.Python loader. For details
concerning Python- UNO, please refer to http://udk.openoffice.org/python/python-bridge.html

Basic Libraries
Basic libraries are recognized by the extension .xlb, and they are linked to the basic library
container files. Refer to 11 Basic and Dialogs for additional information.

Type Library Files
The file extension for type libraries is .rdb on all platforms. Type libraries in UNO packages are
automatically integrated into OpenOffice.org during package installation.
For this purpose, new type library files are merged into the <CacheDir>/types.rdb file. In turn,
types.rdb is linked into the OpenOffice.org installation through the UNO_TYPES entry in the
file uno(.ini |rc). The file uno(.ini |rc) and its role is described in 4.9.2 Writing UNO Components -

Chapter 4 Writing UNO Components 279

Deployment Options for Components - Background: UNO Registries. After package installation, uno
(.ini |rc) contains an entry as shown below. The leading '?' denotes optional type library files in
uno(.ini |rc) :
UNO_TYPES=$SYSBINDIR/applicat.rdb \
 ?$UNO_SHARED_PACKAGES_CACHE/types.rdb \
 ?$UNO_USER_PACKAGES_CACHE/types.rdb

Configuration Data Files
Configuration files are recognized by the extension .xcu and are mapped into the global
OpenOffice.org configuration at runtime.

Configuration Schema Files
Configuration schema files are recognized by the extension .xcs. Beware of adding concurring
schemata, for example, two .xcs files defining the same schema name (oor:package,
oor:name), but different definitions.

Arbitrary Files
Arbitrary files are copied into the UNO packages cache. You can, for instance, deploy an image
for add- on menus with the package, or any other file needed by your component. The
OpenOffice.org configuration is used to find out in which path this file is located in a particular
installation.
When you define a package containing additional files, include an .xcu configuration data file,
which points to your files. Use a variable %origin% as a placeholder for the exact path where
the file will be copied by the package installer. When pkgchk installs the .xcu, it resolves %
origin% to a file URL in the configuration that points to this path. The URL in the configura-
tion contains a macro that has to be expanded before it is a valid file URL. This can be done
using the com.sun.star.util.MacroExpander service. The %origin% variable is, for instance,
used by the ImageIdentifier property of add- on menus and toolbar items, which is described
in the 4.7.3 Writing UNO Components - Integrating Components into OpenOffice.org - User Interface
Add-Ons - Configuration section.

Path Settings
The package directories are called uno-packages by default. The packages can be in
<OfficePath>/share for shared installations and another package can be in <OfficePath>/user for
single users. The cache directories are created automatically within the respective uno_package
directory. OpenOffice.org must be configured to look for these paths in uno(.ini |rc). When pkgchk
is launched, it checks uno(.ini |rc) for package entries; if they do not exist, the following default
values are added:
[Bootstrap]
UNO_SHARED_PACKAGES=${$SYSBINDIR/bootstrap.ini::BaseInstallation}/share/uno_packages
UNO_SHARED_PACKAGES_CACHE=$UNO_SHARED_PACKAGES/cache
UNO_USER_PACKAGES=${$SYSBINDIR/bootstrap.ini::UserInstallation}/user/uno_packages
UNO_USER_PACKAGES_CACHE=$UNO_USER_PACKAGES/cache

The settings reflect the default values for the shared package and cache directory, and the user
package and cache directory, described previously.

In a network installation, all users start the office from a common directory on a file server. The
administrator puts the packages for all users of the network installation into the
<OfficePath>/share/uno_packages folder of the shared installation. If a user wants to install packages
locally so that only the single installation is affected, the packages must be copied to
<OfficePath>/user/uno_packages.

The pkgchk is run differently for a shared and for a user installation. To install shared packages,
run pkgchk with the -s (-shared) option, which causes pkgchk to process the shared packages
only. If pkgchk is run without command- line parameters, the user packages are registered.

280 OpenOffice.org 1.1 Developer's Guide • June 2003

Additional Options
The pkgchk can be run with the option -h (--help) to get a comprehensive overview of all
switches.

By default, the tool logs all actions into the <CacheDir>/log.txt file. Switch to another log file
through the -l (–log) <file name> option.

Option -v (–verbose) logs to stdout, in addition to the log file.

The tool handles errors loosely. It continues after errors, even if a package cannot be inflated or a
shared library cannot be registered. The tool logs these errors and proceeds silently. But you can
switch on --strict_error handling to make the tool stop on every error.

When pkgchk is raised giving packages through the command line, then those packages are first
copied to the packages directory. Then the packages directory is scanned, balancing the UNO
packages cache directory. To avoid the loss of packages of the same name in the packages direc-
tory, pkgchk aborts if there is an existing file in the packages directory. You have to explicitly raise
pkgchk with option -f (--force_overwrite) to overwrite those files.

If there is inconsistency between the package directory and the cache, renew it from the ground up
by repeating the installation, using the option -r (–renewal). This could be necessary when the
variables UNO_USER_PACKAGES_CACHE or UNO_SHARED_PACKAGES_CACHE have been
modified or after the office installation has been relocated.

4.9.2 Background: UNO Registries
This section explains the necessary steps to deploy new UNO components manually into an
installed OpenOffice.org. Background information is provided and the tools required to test
deployment are described. The developer and deployer of the component should be familiar with
this section. If the recommendations provided are accepted, interoperability of components of
different vendors can be achieved easily.

UNO registries store binary data in a tree-like structure. The stored data can be accessed within a
registry programmatically through the com.sun.star.registry.SimpleRegistry service,
however this is generally not necessary. Note that UNO registries have nothing to do with the
Windows registry, except that they follow a similar concept for data storage.

UNO-registries mainly store two types of data :

Type-library
To invoke UNO calls from BASIC or through an interprocess connection, the core UNO bridges
need information about the used data types. UNO stores this information into a type library, so
that the same data is reusable from any bridge. This is in contrast to the CORBA approach,
where code is generated for each data type that needs to be compiled and linked into huge
libraries. Every UNOIDL type description is stored as a binary large object (BLOB) that is inter-
preted by the com.sun.star.reflection.TypeDescriptionProvider service.

Information about registered components
One basic concept of UNO is to create an instance of a component simply by its service name
through the ServiceManager. The association between the service name and the shared library
or .jar-file where the necessary compiled code is found is stored into a UNO-registry.
The structure of this data is provided below. Future versions of OpenOffice.org will probably
store this information in an XML file that will make it modifiable using a simple text editor.

Chapter 4 Writing UNO Components 281

Both types of data are necessary to run a UNO-C++ process. If the types of data are not present, it
could lead to termination of the program. UNO processes in general open their registries during
startup and close them when the process terminates. Both types of data are commonly stored in a
file with an .rdb suffix (rdb=registry database), but this suffix is not mandatory.

UNO Type Library
All type descriptions must be available within the registry under the /UCR main key (UCR = Uno
Core Reflection) to be usable in a UNO C++ process . Use the regview tool to view the file <office-
path>/install/program/applicat.rdb. The regview tool comes with the OpenOffice.org SDK.

For instance:

$ regview applicat.rdb /UCR

prints all type descriptions used within the office to stdout. To check if a certain type is included
within the registry, invoke the following command:

$ regview applicat.rdb /UCR/com/sun/star/bridge/XUnoUrlResolver

/UCR/com/sun/star/bridge/XUnoUrlResolver
 Value: Type = RG_VALUETYPE_BINARY
 Size = 461
 Data = minor version: 0
 major version: 1
 type: 'interface'
 name: 'com/sun/star/bridge/XUnoUrlResolver'
 super name: 'com/sun/star/uno/XInterface'
 Doku: ""
 number of fields: 0
 number of methods: 1
 method #0: com/sun/star/uno/XInterface resolve([in] string sUnoUrl)
 raises com/sun/star/connection/NoConnectException,
 com/sun/star/connection/ConnectionSetupException,
 com/sun/star/lang/IllegalArgumentException
 Doku: ""
 number of references: 0

The regview tool decodes the format of the BLOB containing the type description and presents it in
a readable form.

Component Registration
The UNO component provides the data about what services are implemented. In order not to load
all available UNO components into memory when starting a UNO process, the data is assembled
once during setup and stored into the registry. The process of writing this information into a
registry is called component registration. The tools used to perform this task are discussed below.

For an installed OpenOffice.org, the applicat.rdb contains the component registration information.
The data is stored within the /IMPLEMENTATIONS and /SERVICES key. The code below shows
a sample SERVICES key for the com.sun.star.io.Pipe service.
$ regview applicat.rdb /SERVICES/com.sun.star.io.Pipe

/SERVICES/com.sun.star.io.Pipe
 Value: Type = RG_VALUETYPE_STRINGLIST

Size = 38
Len = 1
Data = 0 = "com.sun.star.comp.io.stm.Pipe"

The code above contains one implementation name, but it could contain more than one. In this
case, only the first is used. The following entry can be found within the IMPLEMENTATIONS section:
$ regview applicat.rdb /IMPLEMENTATIONS/com.sun.star.comp.io.stm.Pipe

282 OpenOffice.org 1.1 Developer's Guide • June 2003

/IMPLEMENTATIONS/com.sun.star.comp.io.stm.Pipe
 / UNO
 / ACTIVATOR
 Value: Type = RG_VALUETYPE_STRING
 Size = 34
 Data = "com.sun.star.loader.SharedLibrary"
 / SERVICES
 / com.sun.star.io.Pipe
 / LOCATION
 Value: Type = RG_VALUETYPE_STRING
 Size = 8
 Data = "stm.dll"

The implementations section holds three types of data.

1. The loader to be used when the component is requested at runtime (here
com.sun.star.loader.SharedLibrary).

2. The services supported by this implementation.

3. The URL to the file the loader uses to access the library (the url may be given relative to the
OpenOffice.org library directory for native components as it is in this case).

4.9.3 Command Line Registry Tools
There are various tools to create, modify and use registries. This section shows some common use
cases. The regmerge tool is used to merge multiple registries into a sub-key of an existing or new
registry. For instance:
$ regmerge new.rdb / test1.rdb test2.rdb

merges the contents of test1.rdb and test2.rdb under the root key / of the registry database new.rdb .
The names of the keys are preserved, because both registries are merged into the root-key. In case
new.rdb existed before, the previous contents remain in new.rdb unless an identical key names exist
in test1.rdb and test2.rdb. In this case, the content of these keys is overwritten with the ones in
test1.rdb or test2.rdb. So the above command is semantically identical to:
$ regmerge new.rdb / test1.rdb
$ regmerge new.rdb / test2.rdb

The following command merges the contents of test1.urd and test2.urd under the key /UCR into
the file myapp_types.rdb.
$ regmerge myapp_types.rdb /UCR test1.urd test2.urd

The names of the keys in test1.urd and test2.urd should only be added to the /UCR key. This is a
real life scenario as the files produced by the idl-compiler have a .urd-suffix. The regmerge tool
needs to be run before the type library can be used in a program, because UNO expects each type
description below the /UCR key.

Component Registration Tool
Components can be registered using the regcomp tool. Below, the components necessary to estab-
lish an interprocess connection are registered into the myapp_services.rdb.

$ regcomp -register -r myapp_services.rdb \
 -c uuresolver.dll \
 -c brdgfctr.dll \
 -c acceptor.dll \
 -c connectr.dll \
 -c remotebridge.dll

The \ means command line continuation. The option -r gives the registry file where the informa-
tion is written to. If it does not exist, it is created, otherwise the new data is added. In case there

Chapter 4 Writing UNO Components 283

are older keys, they are overwritten. The registry file (here myapp_services.rdb) must NOT be
opened by any other process at the same time. The option -c is followed by a single name of a
library that is registered. The -c option can be given multiple times. The shared libraries registered
in the example above are needed to use the UNO interprocess bridge.

Registering a Java component is currently more complex. It works only in an installed office envi-
ronment, the <OfficePath>/program must be the current working directory, the office setup must
point to a valid Java installation that can be verified using jvmsetup from the <OfficePath>/program,
and Java must be enabled. See Tools - Options - General - Security. The office must not run. On
Unix, the LD_LIBRARY_PATH environment variable must additionally contain the directories
listed by the javaldx tool (which is installed with the office).

Copy the regcomp executable into the <officepath>/program directory. The regcomp tool must then be
invoked using the following parameters :
$ regcomp -register -r your_registry.rdb \
 -br applicat.rdb \
 -l com.sun.star.loader.Java2 \
 -c file:///i:/StarOffice6.0/program/classes/JavaTestComponent.jar

The option -r (registry) tells regcomp where to write the registration data and the -br (bootstrap
registry) option points regcomp to a registry to read common types from. The regcomp tool does not
know the library that has the Java loader. The -l option gives the service name of the loader to use
for the component that must be com.sun.star.loader.Java2. The option can be omitted for C++
components, because regcomp defaults to the com.sun.star.loader.SharedLibrary loader. The
option -c gives the file url to the Java component.

File urls can be given absolute or relative. Absolute file urls must begin with 'file:///'. All other
strings are interpreted as relative file urls. The '3rdpartYcomp/filterxy.dll',
'../../3rdpartycomp/filterxyz.dll', and 'filterxyz.dll' are a few examples. Relative file urls are interpreted
relative to all paths given in the PATH variable on Windows and LD_LIBRARY_PATH variable
on Unix.

Java components require an absolute file URL for historical reasons.

The regcomp tool should be used only during the development and testing phase of components. For
deploying final components, the pkgchk tool should be used instead. See 4.9.1 Writing UNO Components -
Deployment Options for Components - UNO Package Installation.

UNO Type Library Tools
There are several tools that currently access the type library directly. They are encountered when
new UNOIDL types are introduced.

– idlc, Compiles .idl files into .urd- registry- files.

– cppumaker, Generates C++ header for a given UNO type list from a type registry used with the
UNO C++ binding.

– javamaker, Generates .java files for a given type list from a type registry.

– rdbmaker, Creates a new registry by extracting given types (including dependent types) from
another registry, and is used for generating minimal, but complete type libraries for compo-
nents. It is useful when building minimal applications that use UNO components.

– regcompare, Compares a type library to a reference type library and checks for compatibility.

– regmerge, Merges multiple registries into a certain sub-key of a new or already existing registry.

284 OpenOffice.org 1.1 Developer's Guide • June 2003

4.9.4 Manual Component Installation

Manually Merging a Registry and Adding it to uno.ini or soffice.ini
Registry files used by OpenOffice.org are configured within the uno(.ini |rc) and soffice(.ini |rc) files
found in the program directory. After a default OpenOffice.org installation, the files look like this:
uno.ini :
[Bootstrap]
UNO_TYPES=$SYSBINDIR/applicat.rdb
UNO_SERVICES=$SYSBINDIR/applicat.rdb

soffice.ini:
[Bootstrap]
Logo=1
UNO_WRITERDB=$SYSUSERCONFIG/user60.rdb

The three UNO variables are relevant for UNO components. The UNO_TYPES variable gives a
space separated list of type library registries, and the UNO_SERVICES variable gives a space sepa-
rated list of registries that contain component registration information. These registries are opened
read- only. The same registry may appear in UNO_TYPES and UNO_SERVICES variables, for
example, the applicat.rdb. The UNO_WRITERDB provides one registry that is opened in read- write
mode. The $SYSBINDIR points to the directory where the soffice executable is located and $SYSUS-
ERCONFIG points to the user's home directory.

OpenOffice.org uses the applicat.rdb as a type and component registration information repository.
When a programmer or software vendor releases a UNO component, the following files must be
provided at a minimum:

• A file containing the code of the new component, for instance a shared library, a jar file, or
maybe a python file in the future.

• A registry file containing user defined UNOIDL types, if any.

• (optional) A registry file containing registration information of a pre-registered component.
The registry provider should register the component with a relative path to be beneficial in
other OpenOffice.org installations.

The latter two can be integrated into a single file.

In fact, a vendor may release more files, such as documentation, the .idl files of the user defined types, the
source code, and configuration files. While every software vendor is encouraged to do this, there are
currently no recommendations how to integrate these files into OpenOffice.org. These type of files are
ignored in the following paragraphs. These issues will be addressed in next releases of OpenOffice.org.

The recommended method to add a component to OpenOffice.org manually is described in the
following steps:

1. Copy new shared library components into the <OfficePath>/program directory and new Java
components into the <OfficePath>/program/classes directory.

2. Copy the registry containing the type library into the <OfficePath>/program directory, if needed
and available.

3. Copy the registry containing the component registration information into the
<OfficePath>/program directory, if required. Otherwise, register the component with the regcomp
command line tool coming with the OpenOffice.org SDK into a new registry.

4. Modify the uno(.ini |rc) file, and add the type registry to the UNO_TYPES variable and the
component registry to the UNO_SERVICES variable. The new uno(.ini |rc) might look like this:

Chapter 4 Writing UNO Components 285

[Bootstrap]
UNO_TYPES=$SYSBINDIR/applicat.rdb $SYSBINDIR/filterxyz_types.rdb
UNO_SERVICES=$SYSBINDIR/applicat.rdb $SYSBINDIR/filterxyz_services.rdb

After these changes are made, every office that is restarted can use the new component. The uno
(.ini |rc) changes directly affect the whole office network installation. If adding a component only
for a single user, pass the modified UNO_TYPES and UNO_SERVICES variables per command
line. An example might be:
$ soffice “-env:UNO_TYPES=$SYSBINDIR/applicat.rdb $SYSBINDIR/filterxyz_types.rdb“
 “-env:UNO_SERVICES=$SYSBINDIR/applicat.rdb $SYSBINDIR/filter_xyz_services.rdb”).

Alternatives
There are more ways to add a component to the office with their own advantages and disadvan-
tages. Below are some alternatives :

1) When adding many third- party components to your office, the startup performance suffers
from having types scattered about many registries. To avoid this, merge all third- party type
registries into a single type registry and all third- party service registries into a single service
registry using the regmerge tool.

New types and services can be merged into the applicat.rdb directly. With this method, the uno
(.ini |rc) does not have to be modified. Modifying the applicat.rdb while there are running office
instances is not allowed. This is important in a network installation.
Once merged, these registries can not be 'unmerge'. To remove a certain type library, a merge
with all the other source types will have to be performed, that is, repeat the installation.

2) When separating the OpenOffice.org installation from any third- party additions, the additional
registries, shared libraries and .jar files can be stored into a directory other than the
<OfficePath>/program directory. In this case, use relative filenames for component registrations,
for instance ../../office3rdparty/filterxyz.dll. The only file that needs to be modified is the uno(.ini |
rc).

3) Configuring your Application with Bootstrap Parameters

A flexible approach is to use the UNO bootstrap parameters and the
defaultBootstrap_InitialComponentContext() function. Arguments, such as registry
names are not passed to this function, rather they are given through bootstrap parameters.

4.9.5 Bootstrapping a Service Manager
Bootstrapping a service manager means to create an instance of a service manager that is able to
instantiate the UNO objects needed by a user. All UNO applications, that want to use the UnoUrl-
Resolver for connections to the office, have to bootstrap a local service manager in order to create a
UnoUrlResolver object. If developers create a new language binding, for instance for a scripting
engine, they have to find a way to bootstrap a service manager in the target environment.

There are many methods to bootstrap a UNO C++ application, each requiring one or more registry
files to be prepared. Once the registries are prepared, there are different options available to boot-
strap your application. A flexible approach is to use UNO bootstrap parameters and the default-
Bootstrap_InitialComponentContext() function.
#include <cppuhelper/bootstrap.hxx>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace rtl;

286 OpenOffice.org 1.1 Developer's Guide • June 2003

using namespace cppu;
int main()
{
 // create the initial component context
 Reference< XComponentContext > rComponentContext =
 defaultBootstrap_InitialComponentContext();

 // retrieve the service manager from the context
 Reference< XMultiComponentFactory > rServiceManager =
 rComponentContext()->getServiceManager();

 // instantiate a sample service with the service manager.
 Reference< XInterface > rInstance =
 rServiceManger->createInstanceWithContext(
 OUString::createFromAscii("com.sun.star.bridge.UnoUrlResolver"),
 rComponentContext);

 // continue to connect to the office
}

No arguments, such as a registry name, are passed to this function. These are given using bootstrap
parameters. Bootstrap parameters can be passed through a command line, an .ini file or using envi-
ronment variables.

For bootstrapping the UNO component context, the following three variables are relevant:

1) UNO_TYPES
Gives a space separated list of type library registry files. Each registry must be given as an
absolute or relative file url. Note that some special characters within the path require encoding,
for example, a space must become a %20. The registries are opened in read-only.

2) UNO_SERVICES
Gives a space separated list of registry files with component registration information. The
registries are opened in read- only. The same registry may appear in UNO_TYPES and
UNO_SERVICES variables.

3) UNO_WRITERDB

Gives one registry file that is opened in read- write mode. Using this variable is optional,
because it registers components at runtime and uses them directly.

An absolute file URL must begin with the file:/// prefix (on windows, it must look like
file:///c:/mytestregistry.rdb). To make a file URL relative, the file:/// prefix must be omitted. The rela-
tive url is interpreted relative to the current working directory.

Within the paths, use special placeholders.

Bootstrap variable Meaning
$SYSUSERHOME Path of the user's home directory (see osl_getHomeDir())

$SYSBINDIR Path to the directory of the current executable.

$SYSUSERCONFIG Path to the directory where the user's configuration data is stored (see
osl_getConfigDir())

The advantage of this method is that the executable can be configured after it has been built. The
OpenOffice.org bootstraps the service manager with this mechanism.

Consider the following example:

A tool needs to be written that converts documents between different formats. This is achieved by
connecting to OpenOffice.org and doing the necessary conversions. The tool is named docconv. In
the code, the defaultBootstrap_InitialComponentContext() function is used as described
above to create the component context. Two registries are prepared: docconv_services.rdb with the
registered components and applicat.rdb that contains the types coming with OpenOffice.org. Both
files are placed beside the executable. The easiest method to configure the application is to create a

Chapter 4 Writing UNO Components 287

docconv(.ini |rc) ascii file in the same folder as your executable, that contains the following two
lines:
UNO_TYPES=$SYSBINDIR/applicat.rdb
UNO_SERVICES=$SYSBINDIR/docconv_services.rdb

No matter where the application is started form, it will always use the mentioned registries. Note
that this also works on different machines when the volume is mapped to different location mount
points as $SYSBINDIR is evaluated at runtime.

The second possibility is to set UNO_TYPES and UNO_SERVICES as environment variables, but
this method has drawbacks. All UNO applications started with this shell use the same registries.

The third possibility is to pass the variables as command line parameters, for instance
docconv -env:UNO_TYPES=$SYSBINDIR/applicat.rdb -env:UNO_SERVICES=$SYSBINDIR/docconv_services.rdb

Note that on UNIX shells, you need to quote the $ with a backslash \.

The command line arguments do not need to be passed to the UNO runtime, because it is gener-
ally retrieved from some static variables. How this is done depends on the operating system, but it
is hidden from the programmer. The docconv executable should ignore all command line parame-
ters beginning with '-env:'. The easiest way to do this is to ignore argc and argv[] and to use the
rtl_getCommandLineArg() functions defined in rtl/process.h header instead which automatically
strips the additional parameters.

4) Combine the methods mentioned above. Command line parameters take precedence over .ini
file variables and .ini file parameter take precedence over environment variables. That way, it is
possible to overwrite the UNO_SERVICES variable on the command line for one invocation of
the program only.

4.9.6 Special Service Manager Configurations
The com.sun.star.container.XSet interface allows the insertion or removal of
com.sun.star.lang.XSingleServiceFactory or
com.sun.star.lang.XSingleComponentFactory implementations into or from the service
manager at runtime without making these changes persistent. When the office applications termi-
nate, all the changes are lost. The inserted object must support the
com.sun.star.lang.XServiceInfo interface. This interface returns the same information as the
XServiceInfo interface of the component implementation which is created by the component
factory.

With this feature, a running office can be connected, a new factory inserted into the service
manager and the new service instantiated without registering it beforehand. This method of hard
coding the registered services is not acceptable with OpenOffice.org, because it must be extended
after compilation.

Java applications can use a native persistent service manager in their own process using JNI (see
3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding), or in a remote process.
But note, that all services will be instantiated in this remote process.

Dynamically Modifying the Service Manager
Bootstrapping in pure Java is simple, by calling the static runtime method createInitialCompo-
nentContext() from the Bootstrap class. The following small test program shows how to insert
service factories into the service manager at runtime. The sample uses the Java component from

288 OpenOffice.org 1.1 Developer's Guide • June 2003

the section 4.5.6 Writing UNO Components - Simple Component in Java - Storing the Service Manager
for Further Use. The complete code can be found with the JavaComp sample component.

The example shows that there is the possibility to control through command line parameter,
whether the service is inserted in the local Java service manager or the remote office service
manager. If it is inserted into the office service manager, access the service through OpenOffice.org
Basic. In both cases, the component runs in the local Java process.

If the service is inserted into the office service manager, instantiate the component through
OpenOffice.org Basic calling createUnoService("JavaTestComponentB"),as long as the Java
process is not terminated. Note, to add the new types to the office process by one of the above
explained mechanisms, use uno.ini.
 public static void insertIntoServiceManager(
 XMultiComponentFactory serviceManager, Object singleFactory)
 throws com.sun.star.uno.Exception {
 XSet set = (XSet) UnoRuntime.queryInterface(XSet.class, serviceManager);
 set.insert(singleFactory);
 }

 public static void removeFromServiceManager(
 XMultiComponentFactory serviceManager, Object singleFactory)
 throws com.sun.star.uno.Exception {
 XSet set = (XSet) UnoRuntime.queryInterface(XSet.class, serviceManager);
 set.remove(singleFactory);

 }

 public static void main(String[] args) throws java.lang.Exception {
 if (args.length != 1) {
 System.out.println("usage: RunComponent local|uno-url");
 System.exit(1);
 }
 XComponentContext xLocalComponentContext =
 Bootstrap.createInitialComponentContext(null);

 // initial serviceManager
 XMultiComponentFactory xLocalServiceManager = xLocalComponentContext.getServiceManager();

 XMultiComponentFactory xUsedServiceManager = null;
 XComponentContext xUsedComponentContext = null;
 if (args[0].equals("local")) {
 xUsedServiceManager = xLocalServiceManager;
 xUsedComponentContext = xLocalComponentContext;

 System.out.println("Using local servicemanager");
 // now the local servicemanager is used !
 }
 else {
 // otherwise interpret the string as uno-url
 Object xUrlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalComponentContext);
 XUnoUrlResolver urlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, xUrlResolver);
 Object initialObject = urlResolver.resolve(args[0]);
 xUsedServiceManager = (XmultiComponentFactory) UnoRuntime.queryInterface(
 XMultiComponentFactory.class, initialObject);

 System.out.println("Using remote servicemanager");
 // now the remote servicemanager is used.
 }

 // retrieve the factory for the component implementation
 Object factory = TestServiceProvider.__getServiceFactory(
 "componentsamples.TestComponentB", null, null);

 // insert the factory into the servicemanager
 // from now on, the service can be instantiated !
 insertIntoServiceManager(xUsedServiceManager, factory);

 // Now instantiate one of the services via the servicemanager !
 Object objTest= xUsedServiceManager.createInstanceWithContext(
 "JavaTestComponentB",xUsedComponentContext);

 // query for the service interface
 XSomethingB xs= (XSomethingB) UnoRuntime.queryInterface(
 XSomethingB.class, objTest);

 // and call the test method.
 String s= xs.methodOne("Hello World");
 System.out.println(s);

Chapter 4 Writing UNO Components 289

 // wait until return is pressed
 System.out.println("Press return to terminate");
 while (System.in.read() != 10);

 // remove it again from the servicemanager, otherwise we have
 // a dangling reference (in case we use the remote service manager)
 removeFromServiceManager(xUsedServiceManager, factory);

 // quit, even when a remote bridge is running
 System.exit(0);
 }

Creating a ServiceManager from a Given Registry File
To create a service manager from a given registry, use a single registry that contains the type
library and component registration information. Hard code the name of the registry in the
program and use the createRegistryServiceFactory() function located in the cppuhelper
library.

#include <cppuhelper/servicefactory.hxx>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace rtl;
using namespace cppu;
int main()
{
 // create the service manager on the registry test.rdb
 Reference< XMultiServiceFactory > rServiceManager =
 createRegistryServiceFactory(OUString::createFromAscii(“test.rdb”));

 // instantiate a sample service with the service manager.
 Reference< XInterface > rInstance =
 rServiceManger->createInstance(
 OUString::createFromAscii(“com.sun.star.bridge.UnoUrlResolver”));

 // continue to connect to the office
}

This instantiates the old style service manager without the possibility of offering a component context. In
future versions, (642) you will be able to use the new service manager here.

4.10 The UNO Executable
In chapter 3.4.2 Professional UNO - UNO Language Bindings - UNO C++ Binding, several methods to
bootstrap a UNO application were introduced. In this section, the option UNO executable is
discussed. With UNO executable, there is no need to write executables anymore, instead only
components are developed. Code within executables is locked up, it can only run by starting the
executable, and it can never be used in another context. Components offer the advantage that they
can be used from anywhere. They can be executed from Java or from a remote process.

For these cases, the com.sun.star.lang.XMain interface was introduced. It has one method:
/* module com.sun.star.lang.XMain */
interface XMain: com::sun::star::uno::XInterface
{
 long run([in] sequence< string > aArguments);
};

Instead of writing an executable, write a component and implement this interface. The component
gets the fully initialized service manager during instantiation. The run() method then should do
what a main() function would have done. The UNO executable offers one possible infrastructure
for using such components.

Basically, the uno tool can do two different things:

290 OpenOffice.org 1.1 Developer's Guide • June 2003

1) Instantiate a UNO component which supports the com.sun.star.lang.XMain interface and
executes the run() method.
// module com::sun::star::lang
interface XMain: com::sun::star::uno::XInterface
{
 long run([in] sequence< string > aArguments);
};

2) Export a UNO component to another process by accepting on a resource, such as a tcp /ip
socket or named pipe, and instantiating it on demand.

In both cases, the uno executable creates a UNO component context which is handed to the instan-
tiated component. The registries that should be used are given by command line arguments. The
goal of this tool is to minimize the need to write executables and focus on writing components.
The advantage for component implementations is that they do not care how the component
context is bootstrapped. In the future there may be more ways to bootstrap the component context.
While executables will have to be adapted to use the new features, a component supporting XMain
can be reused.

Standalone Use Case
Simply typing uno gives the following usage screen :

uno (-c ComponentImplementationName -l LocationUrl | -s ServiceName)
 [-ro ReadOnlyRegistry1] [-ro ReadOnlyRegistry2] ... [-rw ReadWriteRegistry]
 [-u uno:(socket[,host=HostName][,port=nnn]|pipe[,name=PipeName]);urp;Name
 [--singleaccept] [--singleinstance]]
 [-- Argument1 Argument2 ...]

Choosing the implementation to be instantiated
Using the option -s servicename gives the name of the service which shall be instantiated. The
uno executable then tries to instantiate a service by this name, using the registries as listed
below.

Alternatively, the -l and -c options can be used. The -l gives an url to the location of the shared
library or .jar file, and -c the name of the desired service implementation inside the component.
Remember that a component may contain more than one implementation.

Choosing the registries for the component context (optional)
With the option -ro, give a file url to a registry file containing component's registration infor-
mation and /or type libraries. The -ro option can be given multiple times. The -rw option can
only be given once and must be the name of a registry with read /write access. It will be used
when the instantiated component tries to register components at runtime. This option is rarely
needed.

Note that the uno tool ignores bootstrap variables, such as UNO_TYPES and UNO_SERVICES.

The UNO URL (optional)
Giving a UNO URL causes the uno tool to start in server mode, then it accepts on the connec-
tion part of the UNO URL. In case another process connects to the resource (tcp /ip socket or
named pipe), it establishes a UNO interprocess bridge on top of the connection (see also 3.3.1
Professional UNO - UNO Concepts - UNO Interprocess Connections). Note that urp should always
be used as protocol. An instance of the component is instantiated when the client requests a
named object using the name, which was given in the last part of the UNO URL.

Option --singleaccept
Only meaningful when a UNO URL is given. It tells the uno executable to accept only one
connection, thus blocking any further connection attempts.

Chapter 4 Writing UNO Components 291

Option --singleinstance
Only meaningful when a UNO URL is given. It tells the uno executable to always return the
same (first) instance of the component, thus multiple processes communicate to the same
instance of the implementation. If the option is not given, every getInstance() call at the
com.sun.star.bridge.XBridge interface instantiates a new object.

Option -- (double dash)
Everything following –- is interpreted as an option for the component itself. The arguments are
passed to the component through the initialize() call of
com.sun.star.lang.XInitialization interface.

The uno executable currently does not support the bootstrap variable concept as introduced by 3.4.2 Profes-
sional UNO - UNO Language Bindings - UNO C++ Binding. The uno registries must be given explicitly given
by command line.

The following example shows how to implement a Java component suitable for the uno execu-
table.

import com.sun.star.uno.XComponentContext;
import com.sun.star.comp.loader.FactoryHelper;
import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.registry.XRegistryKey;

public class UnoExeMain implements com.sun.star.lang.XMain
{
 final static String __serviceName = "MyMain";
 XComponentContext _ctx;

 public UnoExeMain(XComponentContext ctx)
 {
 // in case we would need the component context !
 _ctx = ctx;
 }

 public int run(/*IN*/String[] aArguments)
 {
 System.out.println("Hello world !");
 return 0;
 }

 public static XSingleServiceFactory __getServiceFactory(
 String implName, XMultiServiceFactory multiFactory, XRegistryKey regKey)
 {
 XSingleServiceFactory xSingleServiceFactory = null;

 if (implName.equals(UnoExeMain.class.getName()))
 {
 xSingleServiceFactory =
 FactoryHelper.getServiceFactory(
 UnoExeMain.class, UnoExeMain.__serviceName, multiFactory, regKey);
 }
 return xSingleServiceFactory;
 }

 public static boolean __writeRegistryServiceInfo(XRegistryKey regKey)
 {
 boolean b = FactoryHelper.writeRegistryServiceInfo(
 UnoExeMain.class.getName(),
 UnoExeMain.__serviceName, regKey);
 return b;
 }
}

The class itself inherits from com.sun.star.lang.XMain. It implements a constructor with the
com.sun.star.uno.XComponentContext interface and stores the component context for future
use. Within its run() method, it prints 'Hello World'. The last two mandatory functions are
responsible for instantiating the component and writing component information into a registry.
Refer to 4.5.6 Writing UNO Components - Simple Component in Java - Storing the Service Manager for
Further Use for further information.

The code needs to be compiled and put into a .jar file with an appropriate manifest file:

292 OpenOffice.org 1.1 Developer's Guide • June 2003

RegistrationClassName: UnoExeMain

These commands create the jar:
javac UnoExeMain
jar -cvfm UnoExeMain.jar Manifest UnoExeMain.class

To be able to use it, register it with the following command line into a separate registry file (here
test.rdb). The <OfficePath>/program directory needs to be the current directory, and the regcomp and
uno tools must have been copied into this directory.
regcomp -register \

-br applicat.rdb \
-r test.rdb \
-c file:///c:/devmanual/Develop/samples/unoexe/UnoExeMain.jar \
-l com.sun.star.loader.Java2

The \ means command line continuation.

The component can now be run:
uno -s MyMain -ro applicat.rdb -ro test.rdb

This command should give the output "hello world !"

Server Use Case
This use case enables the export of any arbitrary UNO component as a remote server. As an
example, the com.sun.star.io.Pipe service is used which is already implemented by a compo-
nent coming with the office. It exports an com.sun.star.io.XOutputStream and a
com.sun.star.io.XInputStream interface. The data is written through the output stream into the
pipe and the same data from the input stream is read again. To export this component as a remote
server, switch to the <OfficePath>/program directory and issue the following command line.

i:\o641l\program>uno -s com.sun.star.io.Pipe -ro applicat.rdb -u uno:socket,host=0,port=2002;urp;test

> accepting socket,host=0,port=2002...

Now a client program can connect to the server. A client may look like the following:
import com.sun.star.lang.XServiceInfo;
import com.sun.star.uno.XComponentContext;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.io.XOutputStream;
import com.sun.star.io.XInputStream;
import com.sun.star.uno.UnoRuntime;

// Note: This example does not do anything meaningful, it shall just show,
// how to import an arbitrary UNO object from a remote process.
class UnoExeClient {
 public static void main(String [] args) throws java.lang.Exception {
 if (args.length != 1) {
 System.out.println("Usage : java UnoExeClient uno-url");
 System.out.println(" The imported object must support the com.sun.star.io.Pipe service");
 return;
 }

 XComponentContext ctx =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);

 // get the UnoUrlResolver service
 Object o = ctx.getServiceManager().createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver" , ctx);
 XUnoUrlResolver resolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, o);

 // connect to the remote server and retrieve the appropriate object
 o = resolver.resolve(args[0]);

 // Check if we got what we expected
 // Note: This is not really necessary, you can also use the try and error approach
 XServiceInfo serviceInfo = (XServiceInfo) UnoRuntime.queryInterface(XServiceInfo.class,o);
 if (serviceInfo == null) {
 throw new com.sun.star.uno.RuntimeException(
 "error: The object imported with " + args[0] + " did not support XServiceInfo", null);

Chapter 4 Writing UNO Components 293

 }

 if (!serviceInfo.supportsService("com.sun.star.io.Pipe")) {
 throw new com.sun.star.uno.RuntimeException(
 "error: The object imported with "+args[0]+" does not support the pipe service", null);
 }

 XOutputStream output = (XOutputStream) UnoRuntime.queryInterface(XOutputStream.class,o);
 XInputStream input = (XInputStream) UnoRuntime.queryInterface(XInputStream.class,o);

 // construct an array.
 byte[] array = new byte[]{1,2,3,4,5};

 // send it to the remote object
 output.writeBytes(array);
 output.closeOutput();

 // now read it again in two blocks
 byte [][] read = new byte[1][0];
 System.out.println("Available bytes : " + input.available());
 input.readBytes(read,2);
 System.out.println("read " + read[0].length + ":" + read[0][0] + "," + read[0][1]);
 System.out.println("Available bytes : " + input.available());
 input.readBytes(read,3);
 System.out.println("read " + read[0].length + ":" + read[0][0] +
 "," + read[0][1] + "," + read[0][2]);

 System.out.println("Terminating client");
 System.exit(0);
 }
}

After bootstrapping the component context, the UnoUrlResolver service is instantiated to access
remote objects. After resolving the remote object, check whether it really supports the Pipe
service. For instance, try to connect this client to a running OpenOffice.org — this check will fail. A
byte array with five elements is written to the remote server and read again with two readBytes
() calls. Starting the client with the following command line connects to the server started above.
You should get the following output:
I:\tmp>java UnoExeClient uno:socket,host=localhost,port=2002;urp;test
Available bytes : 5
read 2:1,2
Available bytes : 3
read 3:3,4,5
Terminating client

Using the uno Executable
The main benefit of using the uno tool as a replacement for writing executables is that the service
manager initialization is separated from the task-solving code and the component can be reused.
For example, to have multiple XMain implementations run in parallel in one process. There is more
involved when writing a component compared to writing an executable. With the bootstrap vari-
able mechanism there is a lot of freedom in bootstrapping the service manager (see chapter 3.4.2
Professional UNO - UNO Language Bindings - UNO C++ Binding).

The uno tool is a good starting point when exporting a certain component as a remote server.
However, when using the UNO technology later, the tool does have some disadvantages, such as
multiple objects can not be exported or the component can only be initialized with command line
arguments. If the uno tool becomes insufficient, the listening part in an executable will have to be
re-implemented.

To instantiate Java components in build version 641, you need a complete setup so that the uno executable
can find the java.ini file.

294 OpenOffice.org 1.1 Developer's Guide • June 2003

5 Advanced UNO

5.1 Choosing an Implementation Language
The UNO technology provides a framework for cross-platform and language independent
programming. All the OpenOffice.org components can be implemented in any language
supported by UNO, as long as they only communicate with other components through their IDL
interfaces.

 Note: The condition "as long as they only communicate with other components through their IDL interfaces"
is to be strictly taken. In fact, a lot of implementations within OpenOffice.org export UNO interfaces and still
use private C++ interfaces. This is a tribute to older implementations that cannot be rewritten in an accept-
able timeframe.

A developer can customize the office to their needs with this flexibility, but they will have to
decide which implementation language should be selected for a specific problem.

5.1.1 Supported Programming Environments
The support for programming languages in UNO and OpenOffice.org is divided into three
different categories.

1) Languages that invoke calls on existing UNO objects are possibly implemented in other
programming languages. Additionally, it may be possible to implement certain UNO inter-
faces, but not UNO components that can be instantiated by the service manager.

2) Languages that implement UNO components. UNO objects implemented in such a language
are accessible from any other language that UNO supports, just by instantiating a service by
name at the servicemanager. For instance, the developer can implement a OpenOffice.org Calc
addin (see 8 Spreadsheet Documents).

3) Languages that are used to write code to be delivered within OpenOffice.org documents and
utilize dialogs designed with the OpenOffice.org dialog editor.

The following table lists programming languages currently supported by UNO. 'Yes' in the table
columns denotes full support, 'no' denotes that there is no support and is not even planned in the
future. 'Maybe in future' means there is currently no support, but this may change with future
releases.

295

Language UNO scripting UNO components Deployment with
 OpenOffice.org docu-
ments

C++ yes yes no

C maybe in future maybe in future no

Java yes yes maybe in future

StarBasic yes no yes

OLE automation
(win32 only)

yes maybe in future maybe in future

Python maybe in future
 (under development)

maybe in future
 (under development)

maybe in future

Java
Java is a an accepted programming language offering a standard library with a large set of
features and available extensions. Additional extensions will be available in the future, such as
JAX-RPC for calling webservices. It is a typesafe language with a typesafe UNO binding.
Although interfaces have to be queried explicitly, the type safety makes it suitable for larger proj-
ects. UNO components can be implemented with Java, that is, the Java VM is started on demand
inside the office process when a Java component is instantiated. The OfficeBean allows embedding
OpenOffice.org documents in Java Applets and Applications.

There is a constant runtime overhead of about 1 to 2 ms per call that is caused by the bridge
conversion routines when calling UNO objects implemented in other language bindings. Since
OpenOffice.org consists of C++ code, every Java call into the office needs to be bridged. This poses
no problems if there are a few calls per user interaction. The runtime overhead will hurt the appli-
cation when routines produce hundreds or thousands of calls.

C++
C++ is an accepted programming language offering third- party products. In addition to C++
being fast since it is compiled locally, it offers the fastest communication with OpenOffice.org
because most of the essential parts of office have been developed in C++. This advantage becomes
less important as you call into the office through the interprocess bridge, because every remote call
means a constant loss of 1 to2 ms. The fastest code to extend the office can be implemented as a
C++ UNO component. It is appropriate for larger projects due to its strong type safety at compile
time.

C++ is difficult to learn and coding, in general, takes longer, for example, in Java. The components
must be built for every platform, that leads to a higher level of complexity during development
and deployment.

OpenOffice.org Basic
OpenOffice.org Basic is the scripting language developed for and integrated directly into
OpenOffice.org. It currently offers the best integration with OpenOffice.org, because you can
insert code into documents, attach arbitrary office events, such as document loading, keyboard
shortcuts or menu entries, to Basic code and use dialogs designed within the OpenOffice.org IDE.
In Basic, calls are invoked on an object rather than on a specific interface. Interfaces, such as

296 OpenOffice.org 1.1 Developer's Guide • June 2003

com.sun.star.beans.XPropertySet are integrated as Basic object properties. Basic always runs
in the office process and thus avoids costly interprocess calls.

The language is type unsafe, that is, only a minimal number of errors are found during compila-
tion. Most errors appear at runtime, therefore it is not the best choice for large projects. The
language is OpenOffice.org specific and only offers a small set of runtime functionality with little
third- party support. All office functionality is used through UNO. UNO components cannot be
implemented with Basic. The only UNO objects that can be implemented are listeners. Finally,
Basic does not offer any thread support.

OLE Automation Bridge
The OLE Automation bridge opens the UNO world to programming environments that support
OLE automation, such as Visual Basic, JScript, Delphi or C++ Builder. Programmers working on
the Windows platform can write programs for OpenOffice.org without leaving their language by
learning a new API. These programmers have access to the libraries provided by their language. It
is possible to implement UNO objects, if the programming language supports object implementa-
tion.

This bridge is only useful on a Win32 machine, thereby being a disadvantage . Scripts always run
in a different process so that every UNO call has at least the usual interprocess overhead of 1 to 2
ms. Currently Automation UNO components cannot be implemented for the service manager, but
this may change in the future.

Python
A Python scripting bridge (PyUNO) is currently developed by Ralph Thomas. It is available in an
experimental alpha state with known limitations. For details, see PyUNO on udk.openoffice.org.

5.1.2 Use Cases
The following list gives typical UNO applications for the various language environments.

Java
• Servlets creating Office Documents on the fly, Java Server Pages

• Server-Based Collaboration Platforms, Document Management Systems

• Calc add- ins

• Chart add- ins

• Database Drivers

C++
• Filters reading document data and generating Office Documents through UNO calls

• Database Drivers

• Database Drivers

Chapter 5 Advanced UNO 297

• Calc add- ins

• Chart add- ins

OpenOffice.org Basic
• Office Automation

• Event-driven data-aware forms

OLE Automation
• Office Automation, creating and controlling Office Documents from other applications and

from Active Server Pages

Python
• Calc add- ins

5.1.3 Recommendation
All languages have their advantages and disadvantages as previously discussed , but there is not
one language for all purposes, depending on your use. Consider carefully before starting a new
project and evaluate the language to use so that it saves you time.

Sometimes it may be useful to use multiple languages to gain the advantages of both languages.
For instance, currently it is not possible to attach a keyboard event to a java method, therefore,
write a small basic function, which forwards the event to a java component.

The number of languages supported by UNO may increase and some of the limitations shown in
the table above may disappear.

5.2 Language Bindings
UNO language bindings enable developers to use and implement UNO objects in arbitrary
programming languages. Thus, the existing language bindings connect between implementation
environments, such as Java, C++, OpenOffice.org Basic and OLE Automation. The connection is
accomplished by bridges. The following terms are used in our discussion about the implementation
of language bindings.

In our context, the target language or target environment denotes the language or environment from
which the UNO component model is accessed. The bridging language is the language used for
writing the bridge code.

An object-oriented language determines the layout of its objects in memory. We call an object that
is based on this layout a language object. The layout along with everything that relates to it, such as
creation, destruction, and interaction, is the object model of a language .

A UNO proxy (short: proxy) is created by a bridge and it is a language object that represents a UNO
object in the target language. It provides the same functionality as the original UNO object. There

298 OpenOffice.org 1.1 Developer's Guide • June 2003

are two terms which further specialize a UNO proxy. The UNO interface proxy is a UNO proxy
representing exactly one interface of a UNO object, whereas a UNO object proxy represents an uno
object with all its interfaces.

An interface bridge bridges one UNO interface to one interface of the target language, that is, to a
UNO interface proxy. When the proxy is queried for another interface that is implemented by the
UNO object, then another interface proxy is returned. In contrast, an object bridge bridges entire
UNO objects into UNO object proxies of the target language. The object proxy receives calls for all
interfaces of the UNO object.

5.2.1 Implementing UNO Language Bindings
This section introduces the basic steps to create a new language binding. The steps required
depend on the target language. The section provides an overview of existing language bindings to
help you to decide what is necessary for your case. It is recommended that you read the sources
for available language bindings and transfer the solutions they offer to the new circumstances of
your target language.

Overview of Language Bindings and Bridges
Creating a language binding for UNO involves the following tasks:

Language Specification and UNO Feature Support
When writing a language binding, consider how to map UNOIDL types to your target language,
treat simple types and handle complex types, such as struct, sequence, interface and any.
Furthermore, UNOIDL features, such as services, properties and exceptions must be matched to
the capabilities of the target language and accommodated, if need be.

Code Generator
If the target language requires type definitions at compile time, a code generator must translate
UNOIDL type definitions to the target language type definitions according to the language specifi-
cation, so that the types defined in UNOIDL can be used.

UNO Bridge
UNO communication is based on calls to interfaces. Bridges supply the necessary means to use
interfaces of UNO objects between implementation environments. The key for bridging is an inter-
mediate environment called binary UNO ,that consists of binary data formats for parameters and
return values, and a C dispatch method used to call arbitrary operations on UNO interfaces. A
bridge must be capable of the following tasks:

• Between the target language and OpenOffice.org:

• a) Converting operation parameters from the target language to binary UNO.

• b) Transforming operation calls in the target language to calls in binary UNO in a
different environment.

• c) Transporting the operation call with its parameters to OpenOffice.org and the return
values back to the target language.

Chapter 5 Advanced UNO 299

• d) Mapping return values from binary UNO to the target language.

• Between OpenOffice.org and the target language, that is, during callbacks or when using a
component in the target language:

• a) Converting operation parameters from binary UNO to the target language.

• b) Transforming operation calls in binary UNO to calls in the target language.

• c) Transporting the operation call with its parameters to the target language and the
return values back to OpenOffice.org.

• d) Converting return values from the target language to binary UNO.

The Reflection API delivers information about UNO types and is used by bridges to support type
conversions (com.sun.star.script.Converter), and method invocations
(com.sun.star.script.Invocation and com.sun.star.script.XInvocation). Furthermore, it
supplies runtime type information and creates instances of certain UNO types, such as structs
(com.sun.star.reflection.CoreReflection).

UNO Component Loader
An implementation loader is required to load and activate code produced by the target language
if implementations in the target language are to be instantiated. This involves locating the compo-
nent files produced by the target language, and mechanisms to load and execute the code
produced by the target language, such as launching a runtime environment. Currently there are
implementation loaders for jar files and locally shared libraries on the platforms supported by
UNO.

Bootstrapping
A UNO language binding must prepare itself so that it can bridge to the UNO environments. It
depends on the target environment how this is achieved. In Java, C++, and Python, a local service
manager in the target environment is used to instantiate a com.sun.star.bridge.UnoUrlResolver
that connects to OpenOffice.org. In the Automation bridge, the object
com.sun.star.ServiceManager is obtained from the COM runtime system and in OpenOffice.org
Basic the service manager is available from a special method of the Basic runtime environment,
getProcessServiceManager().

Implementation Options
There are two different approaches when creating a UNO language binding.

A) Programming languages checking types at compile time.
Examples are the languages Java or C++. In these environments, it is necessary to query for
interfaces at certain objects and then invoke calls compile-time-typesafe on these interfaces.

B) Programming languages checking types at runtime.
Examples are the languages StarBasic, Python or Perl. In these languages, the interfaces are not
queried explicitly as there is no compiler to check the signature of a certain method. Instead,
methods are directly invoked on objects. During execution, the runtime engine checks if a
method is available at one of the exported interfaces, and if not, a runtime error is raised. Typi-
cally, such a binding has a slight performance disadvantage compared to the solution above.

You can achieve different levels of integration with both types of language binding.

300 OpenOffice.org 1.1 Developer's Guide • June 2003

1) Call existing UNO interfaces implemented in different bindings.
This is the normal scripting use case, for example, connect to a remote running office, instan-
tiate some services and invoke calls on these services (unidirectional binding).

2) Implement UNO interfaces and let them be called from different bindings.
In addition to 1) above, a language binding is able to implement UNO interfaces, for example,
for instance listener interfaces, so that your code is notified of certain events (limited bidirec-
tional binding).

3) Implement a UNO component that is instantiated on demand from any other language at the
global service manager.
In addition to 2) above, a binding must provide the code which starts up the runtime engine of
the target environment. For example, when a Java UNO component is instantiated by the
OpenOffice.org process, the Java VM must be loaded and initialized, before the actual compo-
nent is loaded (bidirectional binding).

A language binding should always be bidirectional. That is, it should be possible to access UNO
components implemented in the target language from OpenOffice.org, as well as accessing UNO
components that are implemented in a different language from the target language.

The following table provides an overview about the capabilities of the different language bindings
currently available for OpenOffice.org:

Language scripting
 (accessing office objects)

interface
 implementation

component
 development

C++ (platform dependent) yes yes yes

Java yes yes yes

StarBasic yes (only listener interfaces) no

OLE automation
(Win32 only)

yes yes no (maybe in
the future)

The next section outlines the implementation of a C++ language binding. The C++ binding itself is
extremely platform and compiler dependent, which provides a barrierwhen porting
OpenOffice.org to a new platform. Although this chapter focuses on C++ topics, the chapter can be
applied for other typesafe languages that store their code in a shared library, for instance, Delphi,
because the same concepts apply.

The section 5.2.3 Advanced UNO - Language Bindings - UNO Reflection API considers the UNO
reflection and invocation API, which offers generic functionality to inspect and call UNO objects.
The section 5.2.4 Advanced UNO - Language Bindings - XInvocation Bridge explains how the Reflec-
tion API is used to implement a runtime type-checking language binding.

The final chapter 5.2.5 Advanced UNO - Language Bindings - Implementation Loader briefly describes
the concept of implementation loaders that instantiates components on demand independently of the
client and the implementation language.The integration of a new programming language into the
UNO component framework is completed once you have a loader.

5.2.2 UNO C++ bridges
This chapter focuses on writing a UNO bridge locally, specifically writing a C++ UNO bridge to
connect to code compiled with the C++ compiler. This is an introduction for bridge implementers..
It is assumed that the reader has a general understanding of compilers and a of 80x86 assembly
language. Refer to the section 5.2.5 Advanced UNO - Language Bindings - Implementation Loader for
additional information.

Chapter 5 Advanced UNO 301

Binary UNO Interfaces
A primary goal when using a new compiler is to adjust the C++-UNO data type generator (cppu-
maker tool) to produce binary compatible declarations for the target language. The tested cppu
core functions can be used when there are similar sizes and alignment of UNO data types. The
layout of C++ data types, as well as implementing C++-UNO objects is explained in 3.4.2 Profes-
sional UNO - UNO Language Bindings - UNO C++ Binding.

When writing C++ UNO objects, you are implementing UNO interfaces by inheriting from pure
virtual C++ classes, that is, the generated cppumaker classes (see .hdl files). When you provide an
interface, you are providing a pure virtual class pointer. The following paragraph describes how
the memory layout of a C++ object looks.

A C++-UNO interface pointer is always a pointer to a virtual function table (vftable), that is, a C++
this pointer. The equivalent binary UNO interface is a pointer to a struct _uno_Interface that
contains function pointers. This struct holds a function pointer to a uno_DispatchMethod() and
also a function pointer to acquire() and release():
// forward declaration of uno_DispatchMethod()

typedef void (SAL_CALL * uno_DispatchMethod)(
 struct _uno_Interface * pUnoI,
 const struct _typelib_TypeDescription * pMemberType,
 void * pReturn,
 void * pArgs[],
 uno_Any ** ppException);

// Binary UNO interface

typedef struct _uno_Interface
{

 /** Acquires uno interface.

 @param pInterface uno interface
 */
 void (SAL_CALL * acquire)(struct _uno_Interface * pInterface);
 /** Releases uno interface.

 @param pInterface uno interface
 */
 void (SAL_CALL * release)(struct _uno_Interface * pInterface);
 /** dispatch function
 */
 uno_DispatchMethod pDispatcher ;

} uno_Interface;

Similar to com.sun.star.uno.XInterface, the life-cycle of an interface is controlled using the
acquire() and release() functions of the binary UNO interface. Any other method is called
through the dispatch function pointer pDispatcher. The dispatch function expects the binary
UNO interface pointer (this), the interface member type of the function to be called, an optional
pointer for a return value, the argument list and finally a pointer to signal an exception has
occurred.

The caller of the dispatch function provides memory for the return value and the exception holder
(uno_Any).

The pArgs array provides pointers to binary UNO values, for example, a pointer to an interface
reference (_uno_Interface **) or a pointer to a SAL 32 bit integer (sal_Int32 *).

A bridge to binary UNO maps interfaces from C++ to binary UNO and conversely. To achieve
this, implement a mechanism to produce proxy interfaces for both ends of the bridge.

302 OpenOffice.org 1.1 Developer's Guide • June 2003

C++ Proxy
A C++ interface proxy carries its interface type (reflection), as well as its destination binary UNO
interface (this pointer). The proxy's vftable pointer is patched to a generated vftable that is
capable of determining the index that was called ,as well as the this pointer of the proxy object to
get the interface type.

The vftable requires an assembly code. The rest is programmed in C/C++. You are not allowed to
trash the registers. On many compilers, the this pointer and parameters are provided through
stack space. The following provides an example of a Visual C++ 80x86:

vftable slot0:
mov eax, 0
jmp cpp_vftable_call
vftable slot0:
mov eax, 1
jmp cpp_vftable_call
vftable slot0:
mov eax, 2
jmp cpp_vftable_call
...

static __declspec(naked) void __cdecl cpp_vftable_call(void)
{
__asm

 {
 sub esp, 8 // space for immediate return type
 push esp
 push eax // vtable index
 mov eax, esp
 add eax, 16
 push eax // original stack ptr
 call cpp_mediate // proceed in C/C++
 add esp, 12
 // depending on return value, fill registers
 cmp eax, typelib_TypeClass_FLOAT
 je Lfloat
 cmp eax, typelib_TypeClass_DOUBLE
 je Ldouble
 cmp eax, typelib_TypeClass_HYPER
 je Lhyper
 cmp eax, typelib_TypeClass_UNSIGNED_HYPER
 je Lhyper
 // rest is eax
 pop eax
 add esp, 4
 ret

Lhyper: pop eax
 pop edx
 ret

Lfloat: fld dword ptr [esp]
 add esp, 8
 ret

Ldouble: fld qword ptr [esp]
 add esp, 8
 ret
 }

}

The vftable is filled with pointers to the different slot code (snippets). The snippet code recognizes
the table index being called and calls cpp_vftable_call(). That function calls a C/C++ function
(cpp_mediate()) and sets output registers upon return, for example, for floating point numbers
depending on the return value type.

Remember that the vftable handling described above follows the Microsoft calling convention,
that is, the this pointer is always the first parameter on the stack. This is currently not the case for
gcc that prepends a pointer to a complex return value before the this pointer on the stack if a
method returns a struct. This complicates the (static) vftable treatment, because different vftable
slots have to be generated for different interface types, adjusting the offset to the proxy this
pointer:

Chapter 5 Advanced UNO 303

Microsoft Visual C++ call stack layout (esp offset [byte]):
0: return address

4: this pointer

8: optional pointer, if return value is complex (i.e. struct to be copy-constructed)

12: param0

16: param1

20: ...

 This is usually the hardest part for stack-oriented compilers. Afterwards proceed in C/C++
(cpp_mediate()) to examine the proxy interface type, read out parameters from the stack and
prepare the call on the binary UNO destination interface.

Each parameter is read from the stack and converted into binary UNO. Use cppu core functions if
you have adjusted the cppumaker code generation (alignment, sizes) to the binary UNO layout (see
cppu/inc/uno/data.h).

After calling the destination uno_dispatch() method, convert any out/inout and return the
values back to C++-UNO, and return to the caller. If an exception is signalled (*ppException !=
0), throw the exception provided to you in ppException. In most cases, you can utilize Runtime
Type Information (RTTI) from your compiler framework to throw exceptions in a generic manner.
Disassemble code throwing a C++ exception, and observe what the compiler generates.

Binary UNO Proxy
The proxy code is simple for binary UNO. Convert any in/inout parameters to C++-UNO values,
preparing a call stack. Then perform a virtual function call that is similar to the following example
for Microsoft Visual C++:
void callVirtualMethod(

 void * pThis, sal_Int32 nVtableIndex,
 void * pRegisterReturn, typelib_TypeClass eReturnTypeClass,
 sal_Int32 * pStackLongs, sal_Int32 nStackLongs)

{
 // parameter list is mixed list of * and values
 // reference parameters are pointers

__asm
 {
 mov eax, nStackLongs
 test eax, eax
 je Lcall
 // copy values
 mov ecx, eax
 shl eax, 2 // sizeof(sal_Int32) == 4
 add eax, pStackLongs // params stack space

Lcopy: sub eax, 4
 push dword ptr [eax]
 dec ecx
 jne Lcopy

Lcall:
 // call
 mov ecx, pThis
 push ecx // this ptr
 mov edx, [ecx] // pvft
 mov eax, nVtableIndex
 shl eax, 2 // sizeof(void *) == 4
 add edx, eax
 call [edx] // interface method call must be __cdecl!!!

 // register return
 mov ecx, eReturnTypeClass
 cmp ecx, typelib_TypeClass_VOID
 je Lcleanup
 mov ebx, pRegisterReturn

// int32
 cmp ecx, typelib_TypeClass_LONG
 je Lint32

304 OpenOffice.org 1.1 Developer's Guide • June 2003

 cmp ecx, typelib_TypeClass_UNSIGNED_LONG
 je Lint32
 cmp ecx, typelib_TypeClass_ENUM
 je Lint32

// int8
 cmp ecx, typelib_TypeClass_BOOLEAN
 je Lint8
 cmp ecx, typelib_TypeClass_BYTE
 je Lint8

// int16
 cmp ecx, typelib_TypeClass_CHAR
 je Lint16
 cmp ecx, typelib_TypeClass_SHORT
 je Lint16
 cmp ecx, typelib_TypeClass_UNSIGNED_SHORT
 je Lint16

// float
 cmp ecx, typelib_TypeClass_FLOAT
 je Lfloat

// double
 cmp ecx, typelib_TypeClass_DOUBLE
 je Ldouble

// int64
 cmp ecx, typelib_TypeClass_HYPER
 je Lint64
 cmp ecx, typelib_TypeClass_UNSIGNED_HYPER

 je Lint64
 jmp Lcleanup // no simple type

Lint8:
 mov byte ptr [ebx], al
 jmp Lcleanup

Lint16:
 mov word ptr [ebx], ax
 jmp Lcleanup

Lfloat:
 fstp dword ptr [ebx]
 jmp Lcleanup

Ldouble:
 fstp qword ptr [ebx]
 jmp Lcleanup

Lint64:
 mov dword ptr [ebx], eax
 mov dword ptr [ebx+4], edx
 jmp Lcleanup

Lint32:
 mov dword ptr [ebx], eax
 jmp Lcleanup

Lcleanup:
 // cleanup stack
 mov eax, nStackLongs
 shl eax, 2 // sizeof(sal_Int32) == 4
 add eax, 4 // this ptr
 add esp, eax
 }

}

First stack data is pushed to the stack., including a this pointer, then the virtual function's pointer
is retrieved and called. When the call returns, the return register values are copied back. It is also
necessary to catch all exceptions generically and retrieve information about type and data of a
thrown exception. In this case, look at your compiler framework functions also.

Additional Hints
Every local bridge is different, because of the compiler framework and code generation and
register allocation. Before starting, look at your existing bridge code for the processor, compiler,
and the platform in module bridges/source/cpp_uno that is part of the OpenOffice.org source tree on
www.openoffice.org.

Also test your bridge code extensively and build the module cppu with debug symbols before
implementing the bridge, because cppu contains alignment and size tests for the compiler.

For quick development, use the executable build in cppu/test raising your bridge library, doing lots
of calls with all kinds of data on mapped interfaces.

Chapter 5 Advanced UNO 305

Also test your bridge in a non-debug build. Often, bugs in assembly code only occur in non-debug
versions, because of trashed registers. In most cases, optimized code allocates or uses more proc-
essor registers than non-optimized (debug) code.

5.2.3 UNO Reflection API
This section describes the UNO Reflection API. This API includes services and interfaces that can
be used to get information about interfaces and objects at runtime.

XTypeProvider Interface
The interface com.sun.star.lang.XTypeProvider allows the developer to retrieve all types
provided by an object. These types are usually interface types and the XTypeProvider interface
can be used at runtime to detect which interfaces are supported by an object. This interface should
be supported by every object to make it scriptable from OpenOffice.org Basic.

Converter Service
The service com.sun.star.script.Converter supporting the interface
com.sun.star.script.XTypeConverter provides basic functionality that is important in the
reflection context. It converts values to a particular type. For the method
com.sun.star.script.XTypeConverter:convertTo(), the target type is specified as type,
allowing any type available in the UNO type system. The method
com.sun.star.script.XTypeConverter:convertToSimpleType() converts a value into a simple
type that is specified by the corresponding com.sun.star.uno.TypeClass. If the requested
conversion is not feasible, both methods throw a
com.sun.star.script.CannotConvertException.

CoreReflection Service
The service com.sun.star.reflection.CoreReflection supporting the interface
com.sun.star.reflection.XIdlReflection is an important entry point for the Uno Reflection
API. The XIdlReflection interface has two methods that each return a
com.sun.star.reflection.XIdlClass interface for a given name (method forName()) or any
value (method getType()).

The interface XIdlClass is one of the central interfaces of the Reflection API. It provides informa-
tion about types, especially about class or interface, and struct types. Besides general information,
for example, to check type identity through the method equals() or to determine a type or class
name by means of the method getName(), it is possible to ask for the fields or members, and
methods supported by an interface type (method getFields() returning a sequence of XIdlField
interfaces and method getMethods() returning a sequence of XIdlMethod interfaces).

The interface XIdlField is deprecated and should not be used. Instead the interface
com.sun.star.reflection.XIdlField2 is available by querying it from an XIdlField interface
returned by an XIdlClass method.

306 OpenOffice.org 1.1 Developer's Guide • June 2003

The interface XIdlField or XIdlField2 represents a struct member of a struct or get or set
accessor methods of an interface type. It provides information about the field (methods getType()
and getAccessMode()) and reads and – if allowed by the access mode – modifies its value for a
given instance of the corresponding type (methods get() and set()).

The interface XIdlMethod represents a method of an interface type. It provides information about
the method (methods getReturnType(), getParameterTypes(), getParameterInfos(), getEx-
ceptionTypes() and getMode()) and invokes the method for a given instance of the corre-
sponding type (method invoke()).

Introspection
The service com.sun.star.beans.Introspection supporting the interface
com.sun.star.beans.XIntrospection is used to inspect an object of interface or struct type to
obtain information about its members and methods. Unlike the CoreReflection service, and the
XIdlClass interface ,the inspection is not limited to one interface type but to all interfaces
supported by an object. To detect the interfaces supported by an object, the Introspection service
queries for the XTypeProvider interface. If an object does not support this interface, the introspec-
tion does not work correctly.

To inspect an object, pass it as an any value to the inspect() method of XIntrospection. The
result of the introspection process is returned as com.sun.star.beans.XIntrospectionAccess
interface. This interface is used to obtain information about the inspected object. All information
returned refers to the complete object as a combination of several interfaces. When accessing an
object through XIntrospectionAccess, it is impossible to distinguish between the different inter-
faces.

The com.sun.star.beans.XIntrospectionAccess interface provides a list of all properties
(method getProperties()) and methods (method getMethods()) supported by the object. The
introspection maps methods matching the pattern
FooType getFoo()
 setFoo(FooType)

to a property Foo of type FooType.

com.sun.star.beans.XIntrospectionAccess also supports a categorization of properties and
methods. For instance, it is possible to exclude "dangerous" methods ,such as the reference
counting methods com.sun.star.uno.XInterface:acquire() and
com.sun.star.uno.XInterface:release() from the set of methods returned by getMethods().
When the Introspection service is used to bind a new scripting language, it is useful to block the
access to functionality that could crash the entire OpenOffice.org application when used in an
incorrect manner.

The XIntrospectionAccess interface does not allow the developer to invoke methods and access
properties directly. To invoke methods, the invoke() method of the XIdlMethod interfaces
returned by the methods getMethods() and getMethod() are used. To access properties, a
com.sun.star.beans.XPropertySet interface is used that can be queried from the
com.sun.star.beans.XIntrospectionAccess:queryAdapter() method. This method also
provides adapter interfaces for other generic access interfaces like
com.sun.star.container.XNameAccess and com.sun.star.container.XIndexAccess, if these
interfaces are also supported by the original object.

Invocation
The service com.sun.star.script.Invocation supporting the interface
com.sun.star.lang.XSingleServiceFactory provides a generic, high- level access (higher

Chapter 5 Advanced UNO 307

compared to the Introspection service) to the properties and methods of an object. The object
that should be accessed through Introspection is passed to the
com.sun.star.lang.XSingleServiceFactory:createInstanceWithArguments() method. The
returned XInterface can then be queried for com.sun.star.script.XInvocation2 derived from
com.sun.star.script.XInvocation.

The XInvocation interface invokes methods and access properties directly by passing their names
and additional parameters to the corresponding methods (method invoke(), getValue() and
setValue()). It is also possible to ask if a method or property exists with the methods hasMethod
() and hasProperty().

When invoking a method with invoke(), the parameters are passed as a sequence of any values.
The Invocation service automatically converts these arguments, if possible to the appropriate
target types using the com.sun.star.script.Converter service that is further described below.
The Introspection functionality is suitable for binding scripting languages to UNO that are not
or only weakly typed.

The XInvocation2 interface extends the Invocation functionality by methods to ask for further
information about the properties and methods of the object represented by the Invocation
instance. It is possible to ask for the names of all the properties and methods (method getMember-
Names()) and detailed information about them represented by the
com.sun.star.script.InvocationInfo struct type (methods getInfo() and getInfoForName
()).

Members of struct com.sun.star.script.InvocationInfo
aName Name of the method or property.
eMemberType Kind of the member (method or property).
PropertyAttribute Only for property members: This field may contain zero or more constants of the

com::sun::star::beans::PropertyAttribute constants group. It is not guaranteed that all
necessary constants are set to describe the property completely, but a flag will be set
if the corresponding characteristic really exists. For example,iIf the READONLY flag
is set, the property is read only. If it is not set, the property nevertheless can be read
only. This field is irrelevant for methods and is set to 0.

aType Type of the member, when referring to methods, the return type
aParamTypes Types of method parameters, for properties this sequence is empty
aParamModes Mode of method parameters (in, out, inout), for properties this sequence is

empty.

The Invocation service is based on the Introspection service. The XInvocation interface has a
method getIntrospection() to ask for the corresponding XIntrospectionAccess interface. The
Invocation implementation currently implemented in OpenOffice.org supports this, but in
general, an implementation of XInvocation does not provide access to an XInvocationAccess
interface.

InvocationAdapterFactory
The service com.sun.star.script.InvocationAdapterFactory supporting the interfaces
com.sun.star.script.XInvocationAdapterFactory and
com.sun.star.script.XInvocationAdapterFactory2 are used to create adapters that map a
generic XInvocation interface to specific interfaces. This functionality is especially essential for
creating scripting language bindings that do not only access UNO from the scripting language, but
also to implement UNO objects using the scripting language. Without the InvocationAdapter-
Factory functionality, this would only be possible if the scripting language supported the imple-
mentation of interfaces directly.

308 OpenOffice.org 1.1 Developer's Guide • June 2003

By means of the InvocationAdapterFactory functionality it is only necessary to map the
scripting language specific native invocation interface, for example, realized by an OLE IDis-
patch interface, to the UNO XInvocation interface. Then, any combination of interfaces needed to
represent the services supported by a UNO object are provided as an adapter using the
com.sun.star.script.XInvocationAdapterFactory2:createAdapter() method.

Another important use of the invocation adapter is to create listener interfaces that are passed to
the corresponding add...Listener() method of an UNO interface and maps to the methods of
an interface to XInvocation. In this case, usually the
com.sun.star.script.XInvocationAdapterFactory:createAdapter() method is used.

XTypeDescription
Internally, types in UNO are represented by the type type. This type also has an interface repre-
sentation com.sun.star.reflection.XTypeDescription. A number of interfaces derived from
XTypeDescription represent types. These interfaces are:

• com.sun.star.reflection.XArrayTypeDescription
• com.sun.star.reflection.XCompoundTypeDescription
• com.sun.star.reflection.XEnumTypeDescription
• com.sun.star.reflection.XIndirectTypeDescription
• com.sun.star.reflection.XUnionTypeDescription
• com.sun.star.reflection.XInterfaceTypeDescription
• com.sun.star.reflection.XInterfaceAttributeTypeDescription
• com.sun.star.reflection.XInterfaceMemberTypeDescription
• com.sun.star.reflection.XInterfaceMethodTypeDescription
The corresponding services are com.sun.star.reflection.TypeDescriptionManager and
com.sun.star.reflection.TypeDescriptionProvider. These services support
com.sun.star.container.XHierarchicalNameAccess and asks for a type description interface
by passing the fully qualified type name to the
com.sun.star.container.XHierarchicalNameAccess:getByHierarchicalName() method.

The TypeDescription services and interfaces are listed here for completeness. Ordinarily this
functionality would not be used when binding a scripting language to UNO, because the high-
level services Invocation, Introspection and Reflection provide all the functionality required.
If the binding is implemented in C++, the type type and the corresponding C API are used
directly.

The following illustration provides an overview of how the described services and interfaces work
together. Each arrow expresses a "uses" relationship. The interfaces listed for a service are not
necessarily supported by the service directly, but contain interfaces that are strongly related to the
services.

Chapter 5 Advanced UNO 309

5.2.4 XInvocation Bridge

Scripting Existing UNO Objects
This section describes UNO bridges for type-unsafe (scripting) programming languages. These
bridges are based on the com.sun.star.script.Invocation service.

The most common starting point for a new scripting language binding is that you want to control
OpenOffice.org from a script running externally. To accomplish this, you need to know what your
scripting language offers to extend the language, for example, Python or Perl extend the language
with a module concept using locally shared libraries.

In general, your bridge must offer a static method that is called from a script. Within this method,
bootstrap a UNO C++ component context as described in
[Chapter:Components.Deployment.Bootstrapping].

310 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 44

Proxying a UNO Object
Next, this component context must be passed to the script programmer, so that you can instantiate
a com.sun.star.bridge.UnoUrlResolver and connect to a running office within the script.

The component context can not be passed directly as a C++ UNO reference, because the scripting
engine does not recognize it, therefore build a language dependent proxy object around the C++
object Reference.

For example, Python offers an API to create a proxy. Typically calls invoked on the proxy from a
script are narrowed into one single C function. The Python runtime passes method names and an
array containing the arguments to this C function.

If a proxy is implemented for a concrete interface, the method names that you received could in
theory be compared to all method names offered by the UNO interface. This is not feasible,
because of all the interfaces used in OpenOffice.org. The com.sun.star.script.Invocation
service exists for this purpose. It offers a simple interface
com.sun.star.lang.XSingleServiceFactory that creates a proxy for an arbitrary UNO object
using the createInstanceWithArguments() method and passing the object the proxy acts for.
Use the com.sun.star.script.XInvocation interface that is exported by this proxy to invoke a
method on the UNO object.

Chapter 5 Advanced UNO 311

Illustration 45

Argument Conversion
In addition, argument conversion must be c onsidered by specifying how each UNO type should
be mapped to your target language.

Convert the language dependent data types to UNO data types before calling
com.sun.star.script.XInvocation:invoke() and convert the UNO datatypes (return value
and out parameters) to language dependent types after the call has been exectuted. The conversion
routines are typically recursive functions, because data values are nested in complex types, such
as struct or any.

When UNO object references are returned by method calls to UNO objects, create new language
dependent proxies as discussed above. When passing a previously returned UNO object as a
parameter to a new method call, the language binding must recognize that it is a proxied object
and pass the original UNO object reference to the com.sun.star.script.XInvocation:invoke()
call instead.

A special case for conversions are UNOIDL structs. You want to call a method that takes a struct
as an argument. The first problem is the struct must be created by the bridge and the script
programmer must be able to set members at the struct. One solution is that the bridge imple-
menter creates a UNO struct using core C functions from the cppu library, but this is complicated
and results in a lot of difficulty.

Therefore, a solution has been created that accesses structs through the XInvocation interface, as
if they were UNO objects. This simplifies struct handling for bridge programmers. Refer to the
reference documentation of com.sun.star.reflection.CoreReflection and the

312 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 46

com.sun.star.script.Invocation service and the com.sun.star.beans.XMaterialHolder
interface.

Exception Handling
UNO method calls may throw exceptions and must be mapped to the desired target language
appropriately, depending on the capabilities of your target language. Ideally, the target language
supports an exception concept, but error handlers, such as in OpenOffice.org Basic can be used
also. A third way and worst case scenario is to check after every API call if an exception has been
thrown,. In case the UNO object throws an excception, the XInvocation proxy throws a
com.sun.star.reflection.InvocationTargetException. The exception has an additional any
member, that contains the exception that was really thrown.

Note that the XInvocation proxy may throw a com.sun.star.script.CannotConvertException
indicating that the arguments passed by the script programmer cannot be matched to the argu-
ments of the desired function. For example, there are missing arguments or the types are incom-
patible. This must be reported as an error to the script programmer.

Property Support
The com.sun.star.script.Invocation has special getProperty() and setProperty()
methods. These methods are used when the UNO object supports a property set and your target
language, for example, supports something similar to the following:
object.propname = 'foo';.

Note that every property is also reachable by com.sun.star.script.XInvocation:invoke
('setPropertyValue', ...), so these set or getProperty functions are optional.

Implementing UNO objects
When it is possible to implement classes in your target language, consider offering support for
implementation of UNO objects. This is useful for callbacks, for example, event listeners. Another
typical use case is to provide a datasource through a com.sun.star.io.XInputStream.

The script programmer determines which UNOIDL types the developed class implements, such as
flagged by a special member name, for example, such as __supportedUnoTypes.

When an instance of a class is passed as an argument to a call on an external UNO object, the
bridge code creates a new language dependent proxy that additionally supports the XInvocation
interface. the bridge code hands the XInvocation reference of the bridge's proxy to the called
object. This works as long as the com.sun.star.script.XInvocation:invoke() method is used
directly, for instance OpenOffice.org Basic, except if the called object expects an XInputStream.

The com.sun.star.script.InvocationAdapterFactory service helps by creating a proxy for a
certain object that implements XInvocation and a set of interfaces, for example, given by the
__supportedUnoTypes variable. The proxy returned by the createAdapater() method must be
passed to the called object instead of the bridge's XInvocation implementation. When the
Adapter is queried for one of the supported types, an appropriate proxy supporting that interface
is created.

If a UNO object invokes a call on the object, the bridge proxy's
com.sun.star.script.XInvocation:invoke() method is called. It converts the passed argu-
ments from UNO types to language dependent types and conversely using the same routines you
have for the other calling direction. Finally, it delegates the call to the implementation within the
script.

Chapter 5 Advanced UNO 313

It may become difficult if you do not want to start with an external scripting engine, but want to
use the scripting engine inside the OpenOffice.org process instead. This must be supported by the
target language. Often it is possible to load some library dynamically and access the scripting
runtime engine through a C API. It should be implemented as a UNO C++ component. There are
currently no generic UNO interfaces for this case, except for the
com.sun.star.loader.XImplementationLoader. Define your own interfaces that best match
your requirements. You might instantiate from Basic and retrieve an initial object or start a script.
Future versions of OpenOffice.org may have a more comprehensive solution.

Example: Python Bridge PyUNO
This section provides an example of how the Python UNO bridge PyUNO bootstraps a service
manager and how it makes use of the Invocation service to realize method invocation. While
some parts are implementation or Python specific, the example provides a general understanding
of language bindings.

The Python bridge PyUNO uses the cppu helper library to bootstrap a local service manager that
is asked for a UnoUrlResolver service in Python.

In UNO.py , Python calls PyUNO.bootstrap() and receives a local component context. Note the
parameter setup in that, it points to an ini file that configures the bootstrapped service manager
with a type library. The file setup.ini corresponds to the uno.ini file that is used with the global
service manager of the office.
import PyUNO
import os

setup_ini = 'file:///%s/setup.ini' % os.getenv ('PWD')
class UNO:

 def __init__ (self, connection='socket,host=localhost,port=2002;urp', setup=setup_ini):
 """ do the bootstrap

 connection can be one or more of the following:

 socket,
 host = localhost | <hostname> | <ip-addr>,
 port = <port>,
 service = soffice,
 user = <username>,

314 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 47

 password = <password>
 ;urp

 """

 self.XComponentContext = PyUNO.bootstrap (setup)
 self.XUnoUrlResolver, o = \
 self.XComponentContext.ServiceManager.createInstanceWithContext (
 'com.sun.star.bridge.UnoUrlResolver', self.XComponentContext)
 self.XNamingService, o = self.XUnoUrlResolver.resolve (
 'uno:%s;StarOffice.NamingService' % connection)
 self.XMultiServiceFactory, o = self.XNamingService.getRegisteredObject (
 'StarOffice.ServiceManager')
 self.XComponentLoader, o = \
 self.XMultiServiceFactory.createInstance ('com.sun.star.frame.Desktop')
 ...

Python uses function tables to map Python to C functions. PyUNO_module.cc defines a table with
the mappings for the PyUNO object. As shown in the following example, PyUNO.bootstrap() is
mapped to the C function newBootstrapPyUNO():
static struct PyMethodDef PyUNOModule_methods [] =
 {
 {"bootstrapPyUNO", bootstrapPyUNO, 1},
 {"bootstrap ", newBootstrapPyUNO , 1},
 {"createIdlStruct", createIdlStruct, 1},
 {"true", createTrueBool, 1},
 {"false", createFalseBool, 1},
 {NULL, NULL}
 };

The function newBootstrapPyUNO() calls Util::bootstrap() in PyUNO_Util.cc and passes the
location of the setup.ini file.
static PyObject* newBootstrapPyUNO (PyObject* self, PyObject* args)
{
 char* ini_file_location;
 Reference<XComponentContext> tmp_cc;
 Any a;

 if (!PyArg_ParseTuple (args, "s", &ini_file_location))
 return NULL;
 tmp_cc = Util::bootstrap (ini_file_location);
 ...

Util::bootstrap() uses defaultBootstrap_InitialComponentContext(iniFile) from
cppuhelper/bootstrap.hxx to create a local component context and its parameter iniFile points to
the setup.ini file that configures the local service manager to use applicat.rdb. This local component
context instantiates services, such as the UnoUrlResolver.
 Reference<XComponentContext> bootstrap (char* ini_file_location)
 {
 Reference<XComponentContext> my_component_context;
 try
 {

 my_component_context = defaultBootstrap_InitialComponentContext (
 OUString::createFromAscii (ini_file_location));

 }
 catch (com::sun::star::uno::Exception e)
 {

 printf (OUStringToOString (e.Message, osl_getThreadTextEncoding ()).getStr ());
 }
 return my_component_context;
 }

Now newBootstrapPyUNO() continues to set up a UNO proxy. It creates local instances of
com.sun.star.script.Invocation and com.sun.star.script.Converter, and calls PyUNO_new
(), passing the local ComponentContext, a reference to the XSingleServiceFactory interface of
com.sun.star.script.Invocation and a reference to the XTypeConverter interface of
com.sun.star.script.Converter.
static PyObject* newBootstrapPyUNO (PyObject* self, PyObject* args)
{
 char* ini_file_location;
 Reference<XComponentContext> tmp_cc;
 Any a;

 if (!PyArg_ParseTuple (args, "s", &ini_file_location))
 return NULL;

Chapter 5 Advanced UNO 315

 tmp_cc = Util::bootstrap (ini_file_location) ;
 Reference<XMultiServiceFactory> tmp_msf (tmp_cc->getServiceManager (), UNO_QUERY);
 if (!tmp_msf.is ())
 {
 PyErr_SetString (PyExc_RuntimeError, "Couldn't bootstrap from inifile");
 return NULL;
 }
 Reference<XSingleServiceFactory> tmp_ssf (tmp_msf->createInstance (

 OUString (RTL_CONSTASCII_USTRINGPARAM ("com.sun.star.script.Invocation "))), UNO_QUERY);
 Reference<XTypeConverter> tmp_tc (tmp_msf->createInstance (

 OUString (RTL_CONSTASCII_USTRINGPARAM ("com.sun.star.script.Converter "))), UNO_QUERY);
 if (!tmp_tc.is ())
 {
 PyErr_SetString (PyExc_RuntimeError, "Couldn't create XTypeConverter");
 return NULL;
 }
 if (!tmp_ssf.is ())
 {
 PyErr_SetString (PyExc_RuntimeError, "Couldn't create XInvocation");
 return NULL;
 }
 a <<= tmp_cc;

 return PyUNO_new (a, tmp_ssf, tmp_tc) ;

}

PyUNO_new() in PyUNO.cc is the function responsible for building all Python proxies. The call to
PyUNO_new() here in newBootstrapPyUno() builds the first local PyUNO proxy for the Compo-
nentContext object a which has been returned by Util::bootstrap().

For this purpose, PyUNO_new() uses the Invocation service to retrieve an XInvocation2 interface
to the ComponentContext service passed in the parameter a:
// PyUNO_new
//
// creates Python object proxies for the given target UNO interfaces
// targetInterface given UNO interface
// ssf XSingleServiceFactory interface of com.sun.star.script.Invocation service
// tc XTypeConverter interface of com.sun.star.script.Converter service

PyObject* PyUNO_new (Any targetInterface,
 Reference<XSingleServiceFactory> ssf,
 Reference<XTypeConverter> tc)

 ...
 Sequence<Any> arguments (1);
 Reference<XInterface> tmp_interface;
 ...
 // put the target object into a sequence of Any for the call to
 // ssf->createInstanceWithArguments()
 // ssf is the XSingleServiceFactory interface of the com.sun.star.script.Invocation service
 arguments[0] <<= targetInterface;

 // obtain com.sun.star.script.XInvocation2 for target object from Invocation
 // let Invocation create an XInvocation object for the Any in arguments
 tmp_interface = ssf->createInstanceWithArguments (arguments);
 // query XInvocation2 interface
 Reference<XInvocation2 > tmp_invocation (tmp_interface, UNO_QUERY);
 ...

The Python proxy invokes methods, and creates and converts UNO types. This Python specific
and involves the implementation of several functions according to the Python API.

Finally __init__() in UNO.py in the above example uses the PyUNO object to obtain a local
UnoUrlResolver that retrieves the initial object from the office.

5.2.5 Implementation Loader
When you are raising a service by name using the com.sun.star.lang.ServiceManager service,
the service manager decides an implementation name, code location and an appropriate loader to
raise the code. It is commonly reading out of a persistent registry storage, for example, applicat.rdb,
for this purpose. Previously, the regcomp tool has registered components into that registry during

316 OpenOffice.org 1.1 Developer's Guide • June 2003

the OpenOffice.org setup. The tool uses a service called
com.sun.star.registry.ImplementationRegistration for this task.

A loader knows how to load a component from a shared library, a .jar or script file and is able to
obtain the service object factory for an implementation and retrieve information being written to
the registry. A specific loader defines how a component implementer has to package code so that
it is recognized by UNO. For instance in C++, a component is a shared library and in Java it is a .
jar file. In a yet to be developed loader, the implementer of the loader has to decide, what a
component is in that particular language – it might as well be a single script file.

The com.sun.star.loader.XImplementationLoader interface looks like the following:
interface XImplementationLoader: com::sun::star::uno::XInterface
{

 com::sun::star::uno::XInterface activate ([in] string implementationName,
 [in] string implementationLoaderUrl,
 [in] string locationUrl,
 [in] com::sun::star::registry::XRegistryKey xKey)
 raises(com::sun::star::loader::CannotActivateFactoryException);

 boolean writeRegistryInfo ([in] com::sun::star::registry::XRegistryKey xKey,
 [in] string implementationLoaderUrl,
 [in] string locationUrl)
 raises(com::sun::star::registry::CannotRegisterImplementationException);

};

The locationUrl argument describes the location of the implementation file,for example, a jar file
or a shared library. The implementationLoaderUrl argument is not used and is obsolete. The
registry key xKey writes information about the implementations within a component into a persis-
tent storage. Refer to 4.6.4 Writing UNO Components - C++ Component - Write Registration Info Using
Helper Method for additional information.

The method writeRegistryMethod() is called by the regcomp tool to register a component into a
registry.

The activate() method returns a factory com.sun.star.lang.XSingleComponentFactory for a
concrete implementation name.

Chapter 5 Advanced UNO 317

Illustration 48

The loader is often implemented in C/C++. When the loader is instantiated, it is responsible for
starting up the language runtime, for example, Java VM, Python interpreter, through implementa-
tion. After starting up the runtime, the loader starts up the UNO language binding as discussed in
the previous chapter, and bridge the XRegistryKey interface and the initial factory interface.

Shared Library Loader
This section discusses the loader for local components written in C++ that are loaded by the
com.sun.star.loader.SharedLibrary service. Every type safe programming language that
stores its code in shared libraries should implement the bridge with environments and mappings
as discussed in chapters 5.2.1 Advanced UNO - Language Bindings - Implementing UNO Language
Bindings - Overview of Language Bindings and Bridges - UNO Bridge and 5.2.2 Advanced UNO -
Language Bindings - UNO C++ Bridges. These programming languages can reuse the existing loader
without creating a new one.

When the shared library is mapped into the running process, for example, using osl _loadModule
(), the shared library loader retrieves defined C symbols out of the library to determine the
compiler that built the code . This function symbol is called component_getImplementationEnvi-
ronment(). When the code is compiled with the Microsoft Visual C++ compiler, it sets a pointer to
a string called "msci", with gcc 3.0.1 a string "gcc3" which is a UNO environment type name. A
UNO environment is connected with the code that runs in it, for example, the code compiled with
gcc3 runs in the UNO environment with type name gcc3.

In addition to the environment type name, a UNO environment defines a context pointer. The
context pointer and environment type name define a unique UNO environment. Although the
context pointer is mostly null, it is required to identify the environments apart for the same type,
for example, to identify different Java virtual machine environments when running a UNO object
in two different Java virtual machines within the same process. Both environments have the same
type name "java", but different context pointers. In local (C++) code, the context pointer is irrele-
vant , that is, set to null.The type name determines the UNO runtime environment.

When the loader knows the environment the code comes from, it decides if bridging is required.
Bridging is needed if the loader code is compiled with a different compiler, thus running in a
different environment. In this case, the loader raises a bridge to speak UNO with the component
code.

The loader calls on two more functions related to the above XimplementationLoader interface.
All of these symbols are C functions and have the following signatures:
extern "C" void SAL_CALL component_getImplementationEnvironment(

 const sal_Char ** ppEnvTypeName, uno_Environment ** ppEnv);
extern "C" sal_Bool SAL_CALL component_writeInfo(

 void * pServiceManager, void * pRegistryKey);
extern "C" void SAL_CALL component_getFactory(

 const sal_Char * pImplName, void * pServiceManager, void * pRegistryKey);

The latter two functions expect incoming C++-UNO interfaces, therefore the loader needs to
bridge interfaces before calling the functions as stated above.

Bridges
The loader uses the cppu core runtime to map an interface, specifying the UNO runtime environ-
ment that needs the interface mapping. The cppu core runtime raises and connects the appropriate
bridges, and provides a unidirectional mapping that uses underlying bidirectional bridges. Under
Unix, the name of the bridge library follows the naming convention
lib<SourceEnvironment>_<TargetEnvironment>., Under Windows, <SourceEnvironment>_<TargetEn-
vironment>.dll is used. For instance, libgcc3_uno.so is the bridge library for mappings from gcc3 to

318 OpenOffice.org 1.1 Developer's Guide • June 2003

binary UNO,and msci_uno.dll maps from MS Visual C++ to binary UNO. The bridges mentioned
above all bridge to binary UNO. Binary UNO is only used as an intermediate environment. In
general, do not program binary UNO in clients. The purpose is to reduce the number of necessary
bridge implementations. New bridges have to map only to binary UNO instead of all conceivable
bridge combinations.

5.2.6 Help with New Language Bindings
Every UNO language binding is different, therefore only most important points were stressed,
that is, those that are likely to appear in almost every language binding implementation. Object
issues, such as lifetime, object identity, any handling, and bootstrapping were not discussed,
because they are too language dependent. For more information on these issues, subscribe to the
dev@udk.openoffice.org mailing list to discuss these issues for your programming language.

5.3 Differences Between UNO and Corba
This subsection discusses the differences between UNO and CORBA by providing the funda-
mental differences and if the different concepts could be mapped into the world of the other
model. Consider the following feature comparison. The column titled "Mapping possible" states if
a feature could be mapped by a (yet to be developed) generic bridge.

UNO CORBA Mapping
possible

multiple inheritance of interfaces no yes yes

inheritance of structs yes no yes

inheritance of exceptions yes no yes

mandatory base interface for all interfaces yes no yes

mandatory base exception for all exceptions yes no yes

context of methods no yes no

char no yes yes

8 bit string no yes yes

array no yes yes

union no yes yes

assigned values for enum yes no yes

meta type 'type' yes no yes

object identity yes no no

lifetime mechanism yes no no

succession of oneway calls yes no no

in process communication yes no no

thread identity yes no no

customized calls no yes yes

Chapter 5 Advanced UNO 319

UNO CORBA Mapping
possible

less code generation yes no no

• Multiple Inheritance
CORBA supports multiple inheritance of interfaces, whereas UNO only supports single inheri-
tance.
Mapping: Generates an additional interface with all methods and attributes of the inherited
interfaces that must be implemented in addition to the other interfaces.

• Inheritance of Structs
In contrast to CORBA, UNO supports inheritance of struct types. This is useful to define
general types and more detailed subtypes.
Mapping: Generate a struct with all members, plus all members of the inherited structs.

• Inheritance of Exceptions
CORBA does not support inheritance for exceptions, whereas UNO does. Inheritance of excep-
tions allows the specification of a complex exception concept. It is possible to make fine
granular concepts using the detailed exceptions in the layer where they are useful and the base
exception in higher levels. The UNO error handling is based on exceptions and with inheri-
tance of exceptions it is possible to specify 'error classes' with a base exception and more
detailed errors of the same 'error class' that inherit from this base exception. On higher level
APIs it is enough to declare the base exception to specify the 'error class' and it is possible to
support all errors of this 'error class'.
Mapping: Generates an exception with all members, plus all members of the inherited excep-
tions. This is the same solution as for structs.

• Mandatory Base Interfaces
UNO specifies a mandatory base interface for all interfaces. This interface provides acquire()
and release() functions for reference counting. The minimum life time of an object is
managed by means of reference counting.

• Mandatory Base Exception
UNO specifies a mandatory base exception for all exceptions. This base exception contains a
string member Messagethat describes the reason for the exception in readable format. The base
exception makes it also possible to catch all UNO exceptions separately.

• Method Context
CORBA supports a request context. This context consists of a name-value pair which is speci-
fied for methods in UNOIDL. The context is used for describing the current state of the caller
object. A request context provides additional, operation-specific information that may affect the
performance of a request.

• Type char
UNO does not support 8-bit characters. In UNO, char represents a 16-bit unicode character.
Mapping: To support 8-bit characters it is possible to expand the TypeClass enum to support
8-bit characters and strings. The internal representation does not change anything, the Type-
Class is only relevant for mapping.

• 8 bit string
UNO does not support 8-bit strings. In UNO, string represents a 16-bit unicode string.
Mapping: The same possibility as for char.

• Type array
UNO does not support arrays at the moment, but is planned for the future.

320 OpenOffice.org 1.1 Developer's Guide • June 2003

• Type union
UNO does not support unions at the moment, but is planned for the future.

• Assigned Values for enums
UNO supports the assignment of values for enum values in IDL. This means that it is possible
to use these values directly to specify or operate with the required enum value in target
languages supporting this feature, for example, . C, C++.
Mapping: Possible by using the names of the values.

5.4 UNO Design Patterns and Coding Styles
This chapter discusses design patterns and coding recommendations for OpenOffice.org. Possible
candidates are:

• Singleton: global service manager, Desktop, UCB

• Factory: decouple specification and implementation, cross-environment instantiation, context-
specific instances

• Listener: eliminate polling

• Element access: it is arguable if that is a design pattern or just an API

• Properties: solves remote batch access, but incurs the problem of compile- time type indiffer-
ence

• UCB commands: universal dispatching of content specific operations

• Dispatch commands: universal dispatching of object specific operations, chain of responsibility

5.4.1 Double-Checked Locking
The double-checked locking idiom is sometimes used in C/C++ code to speed up creation of a
single-instance resource. In a multi- threaded environment, typical C++ code that creates a single-
instance resource might look like the following example:
#include "osl/mutex.hxx"

T * getInstance1()
{
 static T * pInstance = 0;
 ::osl::MutexGuard aGuard(::osl::Mutex::getGlobalMutex());
 if (pInstance == 0)
 {
 static T aInstance;
 pInstance = &aInstance;
 }
 return pInstance;
}

A mutex guards against multiple thread s simultaneously updating pInstance, and the nested
static aInstance is guaranteed to be created only when first needed, and destroyed when the
program terminates.

The disadvantage of the above function is that it must acquire and release the mutex every time it
is called. The double-checked locking idiom was developed to reduce the need for locking, leading
to the following modified function. Do not use.:
#include "osl/mutex.hxx"

T * getInstance2()
{

Chapter 5 Advanced UNO 321

 static T * pInstance = 0;
 if (pInstance == 0)
 {
 ::osl::MutexGuard aGuard(::osl::Mutex::getGlobalMutex());
 if (pInstance == 0)
 {
 static T aInstance;
 pInstance = &aInstance;
 }
 }
 return pInstance;
}

This version needs to acquire and release the mutex only when pInstance has not yet been initial-
ized, resulting in a possible performance improvement. The mutex is still needed to avoid race
conditions when multiple threads simultaneously see that pInstance is not yet initialized, and all
want to update it at the same time. The problem with getInstance2 is that it does not work.

Assume that thread 1 calls getInstance2 first, finding pInstance uninitialized. It acquires the
mutex, creates aInstance that results in writing data into aInstance's memory, updates
pInstance that results in writing data into pIntance's memory, and releases the mutex. Some
hardware memory models a write the operations that transfer aInstance's and pInstance's data
to main memory to be re-ordered by the processor executing thread 1. Now, if thread 2 enters
getInstance2 when pInstance's data has already been written to main memory by thread 1, but
aInstance's data has not been written yet (remember that write operations may be done out of
order), then thread 2 sees that pInstance has already been initialized and exits from getIn-
stance2 directly. Thread 2 dereferences pInstance thereafter, accessing aInstance's memory
that has not yet been written into. Anything may happen in this situation.

In Java, double-checked locking can never be used, because it is broken and cannot be fixed.

In C and C++, the problem can be solved, but only by using platform- specific instructions, typi-
cally some sort of memory- barrier instructions. There is a macro
OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER in osl/doublecheckedlocking.h that uses the double-
checked locking idiom in a way that actually works in C and C++.
#include "osl/doublecheckedlocking.h"
#include "osl/mutex.hxx"

T * getInstance3()
{
 static T * p = 0;
 T * pInstance = p;
 if (p == 0)
 {
 ::osl::MutexGuard aGuard(osl::Mutex::getGlobalMutex());
 p = pInstance;
 if (p == 0)
 {
 static T aInstance;
 p = &aInstance;
 OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER();
 pInstance = p;
 }
 }
 else
 OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER();
 return p;
}

The first (inner) use of OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER ensures that aInstance's
data has been written to main memory before pInstance's data is written, therefore a thread can
not see pInstance to be initialized when aInstance's data has not yet reached main memory.
This solves the problem described above.

The second (outer) usage of OSL_DOUBLE_CHECKED_LOCKING_MEMORY_BARRIER is required to solve
a problem concerning the reordering on Alpha processors.

322 OpenOffice.org 1.1 Developer's Guide • June 2003

For more information about this problem, see Reordering on an Alpha processor by Bill Pugh
(www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html) and Pattern-Oriented Software Architecture,
Volume 2: Patterns for Concurrent and Networked Objects by Douglas C. Schmidt et al (Wiley, 2000). Also see the
Usenet article Re:Talking about volatile and threads synchronization by Davide Butenhof (October 2002) on why
the outer barrier can be moved into an else clause.

If you are coding in C++, there is an easier way to use double-checked locking without worrying
about the fine points. Use the rtl_Instance template from rtl/instance.hxx:
#include "osl/getglobalmutex.hxx"
#include "osl/mutex.hxx"
#include "rtl/instance.hxx"

namespace {
 struct Init()
 {
 T * operator()()
 {
 static T aInstance;
 return &aInstance;
 }
 };
}

T * getInstance4()
{
 return rtl_Instance< T, Init, ::osl::MutexGuard, ::osl::GetGlobalMutex >::create(
 Init(), ::osl::GetGlobalMutex());
}

Note that an extra function class is required in this case. The documentation of rtl_Instance
contains further examples of how this template can be used.

If you are looking for more general information, the article The "Double-Checked Locking is Broken" Declaration (
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html) is a good source on double-
checked locking, while Computer Architecture: A Quantitative Approach, Third Edition by John L. Hennessy
and David A. Patterson (Morgan Kaufmann, 2002) and UNIX® Systems for Modern Architectures: Symmetric
Multiprocessing and Caching for Kernel Programmers by Curt Schimmel (Addison- Wesley, 1994) offer detailed
information about hardware memory models.

Chapter 5 Advanced UNO 323

6 Office Development

This chapter describes the application environment of the OpenOffice.org application. It assumes
that you have read the chapter 2 First Steps, and that you are able to connect to the office and load
documents.

In most cases, developers use the functionality of OpenOffice.org by opening and modifying
documents. The interfaces and services common to all document types and how documents are
embedded in the surrounding application environment are discussed.

It is also possible to extend the functionality of OpenOffice.org by replacing the services
mentioned here by intercepting the communication between objects or by creating your own docu-
ment type and integrating it into the desktop environment. All these things are discussed in this
chapter.

6.1 OpenOffice.org Application Environment

6.1.1 Overview
The OpenOffice.org application environment is made up of the desktop environment and the frame-
work API.

325

 Illustration 49: OpenOffice.org Application Environment

The desktop environment consists of the desktop and auxiliary objects. It employs the framework
API to carry out its functions. The framework API currently has two parts: the component frame-
work and dispatch framework. The component framework follows a special Frame-Controller-Model
paradigm to manage components viewable in OpenOffice.org. The dispatch framework handles
command requests sent by the GUI.

Desktop Environment
The com.sun.star.frame.Desktop service is the central management instance for the
OpenOffice.org application framework. All OpenOffice.org application windows are organized in
a hierarchy of frames that contain viewable components. The desktop is the root frame for this
hierarchy. From the desktop you can load viewable components, access frames and components,
terminate the office, traverse the frame hierarchy and dispatch command requests.

The name of this service originates at StarOffice 5.x, where all document windows were
embedded into a common application window that was occupied by the StarOffice desktop,
mirroring the Windows desktop. The root frame of this hierarchy was called the desktop frame .
The name of this service and the interface name com.sun.star.frame.XDesktop were kept for
compatibility reasons.

The desktop object and frame objects use auxiliary services, such as the
com.sun.star.document.TypeDetection service and other, opaque implementations that
interact with the UNO-based office, but are not accessible through the OpenOffice.org API. Exam-
ples for the latter are the global document event handling and its user interface (Tools –
Configure – Events), and the menu bars that use the dispatch API without being UNO services
themselves. The desktop service, together with these surrounding objects, is called the desktop
environment.

The viewable components managed by the desktop can be three different kinds of objects: full-
blown office documents with a document model and controllers, components with a controller but
no model, such as the bibliography and database browser, or simple windows without API-
enabled controllers, for example, preview windows. The commonality between these types of
components is the com.sun.star.lang.XComponent interface. Components with controllers are
also called office components, whereas simple window components are called trivial components.

326 OpenOffice.org 1.1 Developer's Guide • June 2003

 Illustration 50: The Desktop terminates the office and manages components and frames

Frames in the OpenOffice.org API are the connecting link between windows, components and the
desktop environment. The relationship between frames and components are discussed in the next
section 6.1.1 Office Development - OpenOffice.org Application Environment - Overview - Framework API.

Like all other services, the com.sun.star.frame.Desktop service can be exchanged by another
implementation that extends the functionality of OpenOffice.org. By exchanging the desktop
service it is possible to use different kinds of windows or to make OpenOffice.org use MDI instead
of SDI. This is not an easy thing to do, but it is possible without changing any code elsewhere in
OpenOffice.org.

Framework API
The framework API does not define an all-in-one framework with strongly coupled interfaces, but
defines specialized frameworks that are grouped together by implementing the relevant interfaces
at OpenOffice.org components. Each framework concentrates on a particular aspect, so that each
component decides the frameworks it wants to participate in.

Currently, there are two of these frameworks: the component framework that implements the frame-
controller-model paradigm and the dispatch framework that handles command requests from and to
the application environment. The controller and frame implementations form the bridge between
the two frameworks, because controllers and frames implement interfaces from the component
framework and dispatch framework.

The framework API is an abstract specification. Its current implementation uses the Abstract
Window Toolkit (AWT) specified in com.sun.star.awt, which is an abstract specification as well.
The current implementation of the AWT is the Visual Component Library (VCL), a cross-platform
toolkit for windows and controls written in C++ created before the specification of
com.sun.star.awt and adapted to support com.sun.star.awt.

Frame-Controller-Model Paradigm in OpenOffice.org
The well known Model-View-Controller (MVC) paradigm separates three application areas: docu-
ment data (model), presentation (view) and interaction (controller). OpenOffice.org has a similar
abstraction, called the Frame-Controller-Model (FCM) paradigm. The FCM paradigm shares
certain aspects with MVC , but it has different purposes, therefore it is best to approach FCM inde-
pendently from MVC. The model and controller in MVC and FCM are quite different things.

The FCM paradigm in OpenOffice.org separates three application areas: document object (model),
screen interaction with the model (controller) and controller-window linkage (frame).

• The model holds the document data and has methods to change these data without using a
controller object. Text, drawings, and spreadsheet cells are accessed directly at the model.

• The controller has knowledge about the current view status of the document and manipulates
the screen presentation of the document, but not the document data. It observes changes made
to the model, and can be duplicated to have multiple controllers for the same model.

• The frame contains the controller for a model and knows the windows that are used with it, but
does not have window functionality.

The purpose of FCM is to have three exchangeable parts that are used with an exchangeable
window system:

It is possible to write a new controller that presents an existing model in a different manner
without changing the model or the frame. A controller depends on the model it presents, therefore
a new controller for a new model can be written.

Chapter 6 Office Development 327

Developers can introduce new models for new document types without taking care of the frame
and underlying window management system. However, since there is no default controller, it is
necessary to write a suitable controller also.

By keeping all window- related functionality separate from the frame, it is possible to use one
single frame implementation for every possible window in the entire OpenOffice.org application.
Thus, the presentation of all visible components is customized by exchanging the frame imple-
mentation. At runtime you can access a frame and replace the controller, together with the model
it controls, by a different controller instance.

Frames

Linking Components and Windows

The main role of a frame in the Frame-Controller-Model paradigm is to act as a liaison between
viewable components and the window system.

Frames can hold one component, or a component and one or more subframes. The following
diagrams: Illustration 49: OpenOffice.org Application Environment and Illustration 52: Frame
containing a component and a sub-frame depict both possibilities. The first illustration 49 shows a
frame containing only a component. It is connected with two window instances: the container
window and component window.

When a frame is constructed, the frame must be initialized with a container window using
com.sun.star.frame.XFrame:initialize(). This method expects the
com.sun.star.awt.XWindow interface of a surrounding window instance, which becomes the
container window of the frame. The window instance passed to initialize() must also support
com.sun.star.awt.XTopWindow to become a container window. The container window must
broadcast window events, such as windowActivated(), and appear in front of other windows or
be sent to the background. The fact that container windows support
com.sun.star.awt.XTopWindow does not mean the container window is an independent window
of the underlying window system with a title bar and a system menu. An XTopWindow acts as a
window if necessary, but it can also be docked or depend on a surrounding application window.

After initializing the frame, a component is set into the frame by a frame loader implementation
that loads a component into the frame. It calls com.sun.star.frame.XFrame:setComponent()
that takes another com.sun.star.awt.XWindow instance and the
com.sun.star.frame.XController interface of a controller.Usually the controller is holding a
model, therefore the component gets a component window of its own, separate from the container
window .

A frame with a component is associated with two windows: the container window which is an
XTopWindow and the component window, which is the rectangular area that displays the compo-
nent and receives GUI events for the component while it is active. When a frame is initialized with
an instance of a window in a call to initialize(), this window becomes its container window.
When a component is set into a frame using setComponent(), another
com.sun.star.awt.XWindow instance is passed becoming the component window.

328 OpenOffice.org 1.1 Developer's Guide • June 2003

 Illustration 51: Frame containing a component

When a frame is added to the desktop frame hierarchy, the desktop becomes the parent frame of
our frame. For this purpose, the com.sun.star.frame.XFramesSupplier interface of the desktop
is passed to the method setCreator() at the XFrame interface. This happens internally when the
method append() is called at the com.sun.star.frame.XFrames interface supplied by the
desktop.

 A component window can have sub-windows, and that is the case with all documents in OpenOffice.org. For
instance, a text document has sub-windows for the toolbars and the editable text. Form controls are sub-
windows, as well, however, these sub-windows depend on the component window and do not appear in the
Frame-Controller-Model paradigm, as discussed above.

The second diagram shows a frame with a component and a sub-frame with another component.
Each frame has a container window and component window.

In the OpenOffice.org GUI, sub-frames appear as dependent windows. The sub-frame in Illustra -
tion 52 could be a dockable window, such as the beamer showing the database browser or a
floating frame in a document created with Insert – Frame.

Note that a frame with a component and sub-frame is associated with four windows. The frame
and the sub-frame have a container window and a component window for the component.

When a sub-frame is added to a surrounding frame, the frame becomes the parent of the sub-
frame by a call to setCreator() at the sub-frame. This happens internally when the method
append() is called at the com.sun.star.frame.XFrames interface supplied by the surrounding
frame.

Chapter 6 Office Development 329

 Illustration 52: Frame containing a component and a sub-frame

The section 6.1.4 Office Development - OpenOffice.org Application Environment - Creating Frames
Manually shows examples for the usage of the XFrame interface that creates frames in the desktop
environment, constructs dockable and standalone windows, and inserts components into frames.

Communication through Dispatch Framework

Besides the main role of frames as expressed in the com.sun.star.frame.XFrame interface,
frames play another role by providing a communication context for the component they contain,
that is, every communication from a controller to the desktop environment, and the user interface
and conversely is done through the frame. This aspect of a frame is published through the
com.sun.star.frame.XDispatchProvider interface, that uses special command requests to
trigger actions.

The section 6.1.6 Office Development - OpenOffice.org Application Environment - Using the Dispatch
Framework discusses the usage of the dispatch API.

Components in Frames

The desktop environment section discussed the three kinds of viewable components that can be
inserted into a frame. If the component has a controller and a model like a document, or if it has
only a controller, such as the bibliography and database browser, it implements the
com.sun.star.frame.Controller service represented by the interface
com.sun.star.frame.XController. In the call to com.sun.star.frame.XFrame:setComponent
(), the controller is passed with the component window instance. If the component has no
controller, it directly implements com.sun.star.lang.XComponent and
com.sun.star.awt.XWindow. In this case, the component is passed as XWindow parameter, and the
XController parameter must be an XController reference set to null.

If the viewable component is a trivial component (implementing XWindow only), the frame holds a
reference to the component window, controls the lifetime of the component and propagates
certain events from the container window to the component window. If the viewable component
is an office component (having a controller), the frame adds to these basic functions a set of features
for integration of the component into the environment by supporting additional command URLs
for the component at its com.sun.star.frame.XDispatchProvider interface.

Controllers
Controllers in OpenOffice.org are between a frame and document model. This is their basic role as
expressed in com.sun.star.frame.XController, which has methods getModel() and getFrame
(). The method getFrame() provides the frame the controller is attached to. The method
getModel() returns a document model, but it may return an empty reference if the component
does not have a model.

Usually the controller objects support additional interfaces specific to the document type they
control, such as com.sun.star.sheet.XSpreadsheetView for Calc document controllers or
com.sun.star.text.XTextViewCursorSupplier for Writer document controllers.

330 OpenOffice.org 1.1 Developer's Guide • June 2003

There can be more than one controller instance with frames of their own controlling the same
document model simultaneously. Multiple controllers and frames are created by OpenOffice.org
when the user clicks Window – New Window .

Windows
Windows in the OpenOffice.org API are rectangular areas that are positioned and resized, and
inform listeners about UI events (com.sun.star.awt.XWindow). They have a platform- specific
counterpart that is wrapped in the com.sun.star.awt.XWindowPeer interface, which is invali-
dated (redrawn), and sets the system pointer and hands out the toolkit for the window. The usage
of the window interfaces is outlined in the section 6.1.3 Office Development - OpenOffice.org Applica-
tion Environment - Using the Component Framework - Window Interfaces below.

Dispatch Framework
The dispatch framework is designed to provide a uniform access to components for a GUI by
using command URLs that mirror menu items, such as Edit – Select All with various document
components. Only the component knows how to execute a command. Similarly, different docu-
ment components trigger changes in the UI by common commands. For example, a controller
might create UI elements like a menu bar, or open a hyperlink.

Command dispatching follows a chain of responsibility. Calls to the dispatch API are moderated
by the frame, so all dispatch API calls from the UI to the component and conversely are handled
by the frame. The frame passes on the command until an object is found that can handle it. It is
possible to restrict, extend or redirect commands at the frame through a different frame imple-
mentation or through other components connecting to the frame.

It has already been discussed that frames and controllers have an interface
com.sun.star.frame.XDispatchProvider. The interface is used to query a dispatch object for a
command URL from a frame and have the dispatch object execute the command. This interface is
one element of the dispatch framework.

By offering the interception of dispatches through the interface
com.sun.star.frame.XDispatchProviderInterception, the Frame service offers a method to

Chapter 6 Office Development 331

 Illustration 53: Controller with Model and Frame

modify a component's handling of GUI event s while keeping its whole API available simultane-
ously.

 Normally, command URL dispatches go to a target frame which decides what to do with it. A component
can use globally accessible objects like the desktop service to bypass restrictions set by a frame, but this is not
recommended. It is impossible to prevent a implemention of components against the design principles,
because the framework API is made for components that adhere to its design.

The usage of the Dispatch Framework is described in the section 6.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework.

332 OpenOffice.org 1.1 Developer's Guide • June 2003

6.1.2 Using the Desktop

Chapter 6 Office Development 333

 Illustration 54: Desktop Service and Component Framework

The com.sun.star.frame.Desktop service available at the global service manager includes the
service com.sun.star.frame.Frame. The Desktop service specification provides three interfaces:
com.sun.star.frame.XDesktop, com.sun.star.frame.XComponentLoader and
com.sun.star.document.XEventBroadcaster, as shown in the following UML chart:

The interface com.sun.star.frame.XDesktop provides access to frames and components, and
controls the termination of the office process. It defines the following methods:

com::sun::star::frame::XFrame getCurrentFrame ()
com::sun::star::container::XEnumerationAccess getComponents ()
com::sun::star::lang::XComponent getCurrentComponent ()
boolean terminate ()
void addTerminateListener ([in] com::sun::star::frame::XTerminateListener xListener)
void removeTerminateListener ([in] com::sun::star::frame::XTerminateListener xListener)

The methods getCurrentFrame() and getCurrentComponent() distribute the active frame and
document model, whereas getComponents() returns a
com.sun.star.container.XEnumerationAccess to all loaded documents. For documents loaded
in the desktop environment the methods getComponents() and getCurrentComponent() always
return the com.sun.star.lang.XComponent interface of the document model.

 If a specific document component is required, but are not sure whether this component is the current compo-
nent, use getComponents() to get an enumeration of all document components, check each for the exis-
tence of the com.sun.star.frame.XModel interface and use getURL() at XModel to identify your docu-
ment. Since not all components have to support XModel, test for XModel before calling getURL().

The office process is usually terminated when the user selects File - Exit or after the last applica-
tion window has been closed. Clients can terminate the office through a call to terminate()and
add a terminate listener to veto the shutdown process.

As long as the Windows quickstarter is active, the soffice executable is not terminated.

The following sample shows an com.sun.star.frame.XTerminateListener implementation that
prevents the office from being terminated when the class TerminationTest is still active:
import com.sun.star.frame.TerminationVetoException;
import com.sun.star.frame.XTerminateListener;

334 OpenOffice.org 1.1 Developer's Guide • June 2003

 Illustration 55: UML description of the desktop service

public class TerminateListener implements XTerminateListener {

 public void notifyTermination (com.sun.star.lang.EventObject eventObject) {
 System.out.println("about to terminate...");
 }

 public void queryTermination (com.sun.star.lang.EventObject eventObject)
 throws TerminationVetoException {

 // test if we can terminate now
 if (TerminationTest.isAtWork() == true) {
 System.out.println("Terminate while we are at work? No way!");
 throw new TerminationVetoException() ; // this will veto the termination,
 // a call to terminate() returns false
 }
 }

 public void disposing (com.sun.star.lang.EventObject eventObject) {
 }
}

The following class TerminationTest tests the TerminateListener above.
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;

import com.sun.star.frame.XDesktop;
import com.sun.star.frame.TerminationVetoException;
import com.sun.star.frame.XTerminateListener;

public class TerminationTest extends java.lang.Object {

 private static boolean atWork = false;

 public static void main(String[] args) {

 XComponentContext xRemoteContext = null;
 XMultiComponentFactory xRemoteServiceManager = null;
 XDesktop xDesktop = null;

 try {
 // connect and retrieve a remote service manager and component context
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);
 Object initialObject = xUnoUrlResolver.resolve(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 xRemoteServiceManager = xRemoteContext.getServiceManager();

 // get Desktop instance
 Object desktop = xRemoteServiceManager.createInstanceWithContext (
 "com.sun.star.frame.Desktop ", xRemoteContext);
 xDesktop = (XDesktop)UnoRuntime.queryInterface(XDesktop.class, desktop);

 TerminateListener terminateListener = new TerminateListener ();
 xDesktop.addTerminateListener (terminateListener);

 // try to terminate while we are at work
 atWork = true;
 boolean terminated = xDesktop.terminate ();
 System.out.println("The Office " +
 (terminated == true ? "has been terminated" : "is still running, we are at work"));

 // no longer at work
 atWork = false;
 // once more: try to terminate
 terminated = xDesktop.terminate ();
 System.out.println("The Office " +
 (terminated == true ? "has been terminated" :
 "is still running. Someone else prevents termination, e.g. the quickstarter"));
 }
 catch (java.lang.Exception e){

Chapter 6 Office Development 335

 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }

 }
 public static boolean isAtWork() {
 return atWork;
 }

}

The office freezes when terminate() is called if there are unsaved changes. As a workaround set all
documents into an unmodified state through their com.sun.star.util.XModifiable interface or
store them using com.sun.star.frame.XStorable.

The Desktop offers a facility to load components through its interface
com.sun.star.frame.XComponentLoader. It has one method:

com::sun::star::lang::XComponent loadComponentFromURL ([in] string aURL,
 [in] string aTargetFrameName,
 [in] long nSearchFlags,
 [in] sequence < com::sun::star::beans::PropertyValue aArgs >)

Refer to chapter 6.1.5 Office Development - OpenOffice.org Application Environment - Handling Docu-
ments for details about the loading process.

For versions beyond 641, the desktop also provides an interface that allows listeners to be notified
about certain document events through its interface
com.sun.star.document.XEventBroadcaster.

void addEventListener ([in] com::sun::star::document::XEventListener xListener)
void removeEventListener ([in] com::sun::star::document::XEventListener xListener)

The XEventListener must implement a single method (besides disposing()):
[oneway] void notifyEvent ([in] com::sun::star::document::EventObject Event)

The struct com.sun.star.document.EventObject has a string member EventName that assumes
one of the values specified in com.sun.star.document.Events. The corresponding events are
found on the Events tab of the Tools – Configure dialog when the option OpenOffice.org is
selected.

The desktop broadcasts these events for all loaded documents.

The current version of OpenOffice.org does not have a GUI element as a desktop. The redesign of
the OpenOffice.org GUI in StarOffice 5.x and later resulted in the com.sun.star.frame.Frame
service part of the desktop service is now non-functional. While the XFrame interface can still be
queried from the desktop, almost all of its methods are dummy implementations. The default
implementation of the desktop object in OpenOffice.org is not able to contain a component and
refuses to be attached to it, because the desktop is still a frame that is the root for the common
hierarchy of all frames in OpenOffice.org. The desktop has to be a frame because its
com.sun.star.frame.XFramesSupplier interface must be passed to
com.sun.star.frame.XFrame:setCreator() at the child frames, therefore the desktop becomes
the parent frame. However, the following functionality of com.sun.star.frame.Frame is still in
place:

The desktop interface com.sun.star.frame.XFramesSupplier offers methods to access frames.
This interface inherits from com.sun.star.frame.XFrame, and introduces the following methods:

com::sun::star::frame::XFrames getFrames ()
com::sun::star::frame::XFrame getActiveFrame ()
void setActiveFrame ([in] com::sun::star::frame::XFrame xFrame)

The method getFrames() returns a com.sun.star.frame.XFrames container, that is a
com.sun.star.container.XIndexAccess, with additional methods to add and remove frames:

336 OpenOffice.org 1.1 Developer's Guide • June 2003

void append ([in] com::sun::star::frame::XFrame xFrame)
sequence < com::sun::star::frame::XFrame > queryFrames ([in] long nSearchFlags)
void remove ([in] com::sun::star::frame::XFrame xFrame)

This XFrames collection is used when frames are added to the desktop to become application
windows.

Through getActiveFrame(), you access the active sub-frame of the desktop frame, whereas
setActiveFrame() is called by a sub-frame to inform the desktop about the active sub-frame.

The object returned by getFrames() does not support XTypeProvider, therefore it cannot be used
with OpenOffice.org Basic.

The parent interface of XFramesSupplier, com.sun.star.frame.XFrame is functional by
accessing the frame hierarchy below the desktop. These methods are discussed in the section 6.1.3
Office Development - OpenOffice.org Application Environment - Using the Component Framework -
Frames below:

com::sun::star::frame::XFrame findFrame ([in] string aTargetFrameName, [in] long nSearchFlags);
boolean isTop ();

The generic dispatch interface com.sun.star.frame.XDispatchProvider executes functions of
the internal Desktop implementation that are not accessible through specialized interfaces.
Dispatch functions are described by a command URL. The XDispatchProvider returns a dispatch
object that dispatches a given command URL. A reference of command URLs supported by the
desktop is available on OpenOffice
(http: / / w w w.openoffice.org /files /documents /25 /60 /commands_11beta.html). Through the
com.sun.star.frame.XDispatchProviderInterception, client code intercepts thecommand
dispatches at the desktop. The dispatching process is described in section 6.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework.

6.1.3 Using the Component Framework
The component framework comprises the interfaces of frames, controllers and models used to
manage components in the OpenOffice.org desktop environment. In our context, everything that
"dwells" in a frame of the desktop environment is called a component, because the interface
com.sun.star.lang.XComponent is the common denominator for objects that are loaded into
frames.

Frames, controllers and models hold references to each other. The frame is by definition the
default owner of the controller and the model, that is,. it is responsible to call dispose() on the
controller and model when it is destroyed itself. Other objects that are to hold references to the
frame, controller, or model must register as listeners to be informed when these references become
invalid. Therefore XModel,
XController and XFrame inherit from XComponent:

void dispose ()
void addEventListener ([in] com::sun::star::lang::XEventListener xListener)
void removeEventListener ([in] com::sun::star::lang::XEventListener aListener)

The process to resolve the circular dependencies of the component framework is a complex. For
instance, the objects involved in the process may be in a condition where they may not be
disposed of. Refer to the section 6.1.5 Office Development - OpenOffice.org Application Environment -
Handling Documents - Closing Documents for additional details.

Theoretically every UNO object could exist in a frame, as long as it is willing to let the frame
control its existence when it ends.

A trivial component (XWindow only) is enough for simple viewing purposes, where no activation
of a component and related actions like cursor positioning or user interactions are necessary.

Chapter 6 Office Development 337

If the component participates in more complex interactions, it must implement the controller
service.

Many features of the desktop environment are only available if the URL of a component is known.
For example:

• Presenting the URL or title of the document.

• Inserting the document into the autosave queue.

• Preventing the desktop environment from loading documents twice.

• Allow for participation in the global document event handling.

In this case, com.sun.star.frame.XModel comes into operation, since it has methods to handle
URLs, among others.

So a complete office component is made up of

• a controller object that presents the model or shows a view to the model that implements the
com.sun.star.frame.Controller service, but publishes additional document- specific inter-
faces. For almost all OpenOffice.org document types there are document specific controller
object specifications,such as com.sun.star.sheet.SpreadsheetView, and
com.sun.star.drawing.DrawingDocumentDrawView. For controllers, refer to the section 6.1.3
Office Development - OpenOffice.org Application Environment - Using the Component Framework -
Controllers.

• a model object implementing the com.sun.star.document.OfficeDocument service. Refer to
the section 6.1.3 Office Development - OpenOffice.org Application Environment - Using the Compo-
nent Framework - Models.

Getting Frames, Controllers and Models from Each Other
Usually developers require the controller and frame of an already loaded document model. The
com.sun.star.frame.XModel interface of OpenOffice.org document models gets the controller
that provides access to the frame through its com.sun.star.frame.XController interface. The
following illustration shows the methods that get the controller and frame for a document model
and conversely. From the frame , obtain the corresponding component and container window.

338 OpenOffice.org 1.1 Developer's Guide • June 2003

If the loaded component is a trivial component and implements com.sun.star.awt.XWindow
only, the window and the window peer is reached by querying these interfaces from the
com.sun.star.lang.XComponent returned by loadComponentFromURL().

Frames

Chapter 6 Office Development 339

 Illustration 56: Frame-Controller-Model Organization

 Illustration 57: Frame Service

XFrame

Frame Setup

The main role of a frame is to link components into a surrounding window system. This role is
expressed by the following methods of the frame's main interface com.sun.star.frame.XFrame:

// methods for container window
void initialize ([in] com::sun::star::awt::XWindow xWindow);
com::sun::star::awt::XWindow getContainerWindow ();

// methods for component window and controller
boolean setComponent ([in] com::sun::star::awt::XWindow xComponentWindow,
 [in] com::sun::star::frame::XController xController);
com::sun::star::awt::XWindow getComponentWindow ();
com::sun::star::frame::XController getController ();

The first two methods deal with the container window of a frame, the latter three are about linking
the component and the component window with the frame. The method initialize() expects a
top window that is created by the AWT toolkit that becomes the container window of the frame
and is retrieved by getContainerWindow().

Frame Hierarchies

When frames link components into a surrounding window system, they build a frame hierarchy.
This aspect is covered by the hierarchy- related XFrame methods:

[oneway] void setCreator ([in] com::sun::star::frame::XFramesSupplier xCreator);
com::sun::star::frame::XFramesSupplier getCreator ();
string getName ();
[oneway] void setName ([in] string aName);
com::sun::star::frame::XFrame findFrame ([in] string aTargetFrameName, [in] long nSearchFlags);
boolean isTop ();

The XFrame method setCreator() informs a frame about its parent frame and must be called by a
frames container (com.sun.star.frame.XFrames) when a frame is added to it by a call to
com.sun.star.frame.XFrames:append(). A frames container is provided by frames supporting
the interface com.sun.star.frame.XFramesSupplier. XFramesSupplier is currently supported
by the desktop frame and by the default frame implementation used by OpenOffice.org docu-
ments. It is described below.

The frame has a custom name that is read through getName() and written through setName().
Frames in the desktop hierarchy created by GUI interaction usually do not have names. The
getName() returns an empty string for them, whereas frames that are created for special purposes,
such as the beamer frame or the online help, have names. Developers can set a name and use it to
address a frame in findFrame() calls or when loading a component into the frame. Custom frame
names must not start with an underscore.Leading underscores are reserved for special frame
names.See below.

Every frame in the frame hierarchy is accessed through any other frame in this hierarchy by
calling the findFrame() method. This method searches for a frame with a given name in five
steps: self, children, siblings, parent, and create if not found. The findFrame() checks the called
frame, then calls findFrame() at its children, then its siblings and at its parent frame. The fifth
step in the search strategy is reached if the search makes it to the desktop without finding a frame
with the given name. In this case, a new frame is created and assigned the name that was searched
for. If the top frame is outside the desktop hierarchy, a new frame is not created.

The name used with findFrame() can be an arbitrary string without a leading underscore or one
of the following reserved frame names. These names are for internal use for loading
documents.Some of the reserved names are logical in a findFrame() call, also. A complete list of
reserved frame names can be found in section 6.1.5 Office Development - OpenOffice.org Application
Environment - Handling Documents - Loading Documents - Target Frame.

340 OpenOffice.org 1.1 Developer's Guide • June 2003

_top
Returns the top frame of the called frame, first frame where isTop() returns true when trav -
eling up the hierarchy.

_parent
Returns the next frame above in the frame hierarchy.

_self
Returns the frame itself, same as an empty target frame name. This means you are searching
for a frame you already have, but it is legal to do so.

_blank
Creates a new top- level frame whose parent is the desktop frame.

Calls with "_top" or "_parent" return the frame itself if the called frame is a top frame or has no
parent. This is compatible to the targetting strategies of web browsers.

We have seen that findFrame() is called recursively. To control the recursion, the search flags
parameter specified in the constants group com.sun.star.frame.FrameSearchFlag is used. For
all of the five steps mentioned above, a suitable flag exists (SELF, CHILDREN, SIBLINGS,
PARENT, CREATE). Every search step can be prohibited by deleting the appropriate FrameSearch-
Flag. The search flag parameter can also be used to avoid ambiguities caused by multiple occur-
rences of a frame name in a hierarchy by excluding parts of the frame tree from the search. If
findFrame() is called for a reserved frame name, the search flags are ignored.

 An additional flag can be used to extend a bottom- up search to all OpenOffice.org application windows, no
matter where the search starts. Based on the five flags for the five steps, the default frame search stops
searching when it reaches a top frame and does not continue with other OpenOffice.org windows. Setting
the TASKS flag overrides this.

There are separate frame hierarchies that do not interact with each other. If a frame is created, but
not inserted into any hierarchy, it becomes the top frame of its own hierarchy. This frame and its
contents can not be accessed from other hierarchies by traversing the frame hierarchies through
API calls. , Also, this frame and its content cannot reach frames and their contents in other hierar-
chies. It is the code that creates a frame and decides if the new frame becomes part of an existing
hierarchy, thus enabling it to find other frames ,and making it and its viewable component visible
to the other frames. Examples for frames that are not inserted into an existing hierarchy are
preview frames in dialogs, such as the document preview in the File – New – Templates and
Documents dialog.

This is the only way the current frame and desktop implementation handle this. If one exchanges either or
both of them by another implementation, the treatment of the "_blank" target and the CREATE SearchFlag
may differ.

Frame Actions

Several actions take place at a frame. The context of viewable components can change, a frame
may be activated or the relationship between frame and component may be altered. For instance,
when the current selection in a document has been changed, the controller informs the frame
about it by calling contextChanged(). The frame then tells its frame action listeners that the
context has changed. The frame action listeners are also informed about changes in the relation-
ship between the frame and component, and about frame activation. The corresponding XFrame
methods are:

void contextChanged ();
[oneway] void activate ();
[oneway] void deactivate ();
boolean isActive ();

Chapter 6 Office Development 341

[oneway] void addFrameActionListener ([in] com::sun::star::frame::XFrameActionListener xListener);
[oneway] void removeFrameActionListener ([in] com::sun::star::frame::XFrameActionListener xListener
);

The method activate() makes the given frame the active frame in its parent container. If the
parent is the desktop frame, this makes the associated component the current component .
However, this is not reflected in the user interface by making the corresponding window the top
window. If the container of the active frame is to be the top window, use setFocus() at the
com.sun.star.awt.XWindow interface of the container window.

The interface com.sun.star.frame.XFrameActionListener used with addFrameActionLis-
tener() must implement the following method:

Method of com.sun.star.frame.XFrameActionListener
frameAction() Takes a struct com.sun.star.frame.FrameActionEvent. The struct contains

two members: the source com.sun.star.frame.XFrame Frame and an enum
com.sun.star.frame.FrameActionEvent Action value with one of the
following values:

COMPONENT_ATTACHED: a component has been attached to a frame. This is
almost the same as the instantiation of the component within that frame. The
component is attached to the frame immediately before this event is broadcast.

COMPONENT_DETACHING: a component is detaching from a frame. This is the
same as the destruction of the component which was in that frame. The moment the
event is broadcast the component is still attached to the frame, but in the next
moment it will not be..

COMPONENT_REATTACHED: a component has been attached to a new model. In
this case, the component remains the same, but operates on a new model compo-
nent.

FRAME_ACTIVATED: a component has been activated. Activations are broadcast
from the top component which was not active, down to the innermost component.

FRAME_DEACTIVATING: broadcast immediately before the component is deacti-
vated. Deactivations are broadcast from the innermost component which does not
stay active up to the outermost component which does not stay active.

CONTEXT_CHANGED: a component has changed its internal context, for example,
the selection. If the activation status within a frame changes, this is a context change,
also.

FRAME_UI_ACTIVATED: broadcast by an active frame when it is getting UI
control (tool control).

FRAME_UI_DEACTIVATING: broadcast by an active frame when it is losing UI
control (tool control).

342 OpenOffice.org 1.1 Developer's Guide • June 2003

 At this time, the XFrame methods used to build a frame-controller-model relationship can only be fully util-
ized by frame loader implementations or customized trivial components. Outside a frame loader you can
create a frame, but the current implementations cannot create a standalone controller that could be used with
setComponent(). Therefore, you can not remove components from one frame and add them to another or
create additional controllers for a loaded model using the component framework. This is due to restrictions
of the VCL and the C++ implementation of the current document components.

Currently, the only way for clients to construct a frame and insert a OpenOffice.org document into it, is to
use the com.sun.star.frame.XComponentLoader interface of the com.sun.star.frame.Desktop or
the interfaces com.sun.star.frame.XSynchronousFrameLoader, the preferred frame loader interface,
and the asynchronous com.sun.star.frame.XFrameLoader of the
com.sun.star.frame.FrameLoader service that is available at the global service factory.

The recommended method to get additional controllers for loaded models is to use the OpenNewView prop -
erty with loadComponentFromURL() at the com.sun.star.frame.XComponentLoader interface of the
desktop.

There is also another possibility: dispatch a “.uno:NewWindow” command to a frame that contains that
model.

XFramesSupplier
The Frame interface com.sun.star.frame.XFramesSupplier offers methods to access sub-frames
of a frame. The frame implementation of OpenOffice.org supports this interface. This interface
inherits from com.sun.star.frame.XFrame, and introduces the following methods:

com::sun::star::frame::XFrames getFrames ()
com::sun::star::frame::XFrame getActiveFrame ()
void setActiveFrame ([in] com::sun::star::frame::XFrame xFrame)

The method getFrames() returns a com.sun.star.frame.XFrames container, that is a
com.sun.star.container.XIndexAccess with additional methods to add and remove frames:

void append ([in] com::sun::star::frame::XFrame xFrame)
sequence < com::sun::star::frame::XFrame > queryFrames ([in] long nSearchFlags)
void remove ([in] com::sun::star::frame::XFrame xFrame);

This XFrames collection is used when frames are appended to a frame to become sub-frames. The
append() method implementation must extend the existing frame hierarchy by an internal call to
setCreator() at the parent frame in the frame hierarchy. The parent frame is always the frame
whose XFramesSupplier interface is used to append a new frame.

Through getActiveFrame() access the active sub-frame in a frame with subframes. If there are no
sub-frames or a sub-frame is currently non active, the active frame is null. The setActiveFrame
() is called by a sub-frame to inform the frame about the activation of the sub-frame. In setAc-
tiveFrame(), the method setActiveFrame() at the creator is called, then the registered frame
action listeners are notified by an appropriate call to frameAction() with
com.sun.star.frame.FrameActionEvent:Action set to FRAME_UI_ACTIVATED.

XDispatchProvider and XDispatchProviderInterception
Frame services also support com.sun.star.frame.XDispatchProvider and
com.sun.star.frame.XDispatchProviderInterception. The section 6.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework explains how these interfaces
are used.

XStatusIndicatorFactory
The frame implementation supplies a status indicator through its interface
com.sun.star.task.XStatusIndicatorFactory. A status indicator can be used by a frame

Chapter 6 Office Development 343

loader to show the loading process for a document. The factory has only one method that returns
an object supporting com.sun.star.task.XStatusIndicator:

com::sun::star::task::XStatusIndicator createStatusIndicator ()

The status indicator is displayed by a call to com.sun.star.task.XStatusIndicator:start().
Pass a text and a numeric range, and use setValue() to let the status bar grow until the maximum
range is reached. The method end() removes the status indicator.

Controllers

XController
A com.sun.star.frame.XController inherits from com.sun.star.lang.XComponent and intro-
duces the following methods:

com::sun::star::frame::XFrame getFrame ()
void attachFrame (com::sun::star::frame::XFrame xFrame)
com::sun::star::frame::XModel getModel ()
boolean attachModel (com::sun::star::frame::XModel xModel)
boolean suspend (boolean bSuspend)
any getViewData ()
void restoreViewData (any Data)

The com.sun.star.frame.XController links model and frame through the methods
get/attachModel() and get/attachFrame(). These methods and the corresponding methods in
the com.sun.star.frame.XModel and com.sun.star.frame.XFrame interfaces act together.
calling attachModel() at the controller must be accompanied by a corresponding call of connect-
Controller() at the model, and attachFrame() at the controller must have its counterpart
setComponent() at the frame.

The controller is asked for permission to dispose of the entire associated component by using
suspend(). The suspend() method shows dialogs, for example, to save changes. To avoid the
dialog, close the corresponding frame without using suspend() before. The section 6.1.5 Office
Development - OpenOffice.org Application Environment - Handling Documents - Closing Documents
provides additional information.

Developers retrieve and restore data used to setup the view at the controller by calling
get/restoreViewData(). These methods are usually called on loading and saving the document,
but they also allow developers to manipulate the state of a view from the outside. The exact
content of this data depends on the concrete controller /model pair.

XDispatchProvider
Through com.sun.star.frame.XDispatchProvider, the controller participates in the dispatch
framework. It is described in section 6.1.6 Office Development - OpenOffice.org Application Environ-
ment - Using the Dispatch Framework.

344 OpenOffice.org 1.1 Developer's Guide • June 2003

 Illustration 58: Controller Service

XSelectionSupplier
The optional Controller interface com.sun.star.view.XSelectionSupplier accesses the
selected object and informs listeners when the selection changes:

boolean select ([in] any aSelection)
any getSelection ()
void addSelectionChangeListener ([in] com::sun::star::view::XSelectionChangeListener xListener)
void removeSelectionChangeListener ([in] com::sun::star::view::XSelectionChangeListener xListener)

The type of selection depends on the type of the document and the selected object. It is also
possible to get the current selection in the active or last controller of a model by calling the method
getCurrentSelection() in the com.sun.star.frame.XModel interface.

XContextMenuInterception
The optional Controller interface com.sun.star.ui.XContextMenuInterception intercepts
requests for context menus in the document's window. See chapter 4.7.5 Writing UNO Components
- Integrating Components into OpenOffice.org - Intercepting Context Menus.

Document Specific Controller Services
The com.sun.star.frame.Controller specification is generic and does not describe additional
features required for a fully functional document controller specification, such as the controller
specifications for Writer, Calc and Draw documents. The following table shows the controller
services specified for OpenOffice.org document components.

Once the reference to a controller is retrieved, you can query for these interfaces. Use the
com.sun.star.lang.XServiceInfo interface of the model to ask it for the supported service(s).
The component implementations in OpenOffice.org support the following services. Refer to the
related chapters for additional information about the interfaces you get from the controllers of
OpenOffice.org documents.

Component
and Chapter

Specialized Controller
Service

General Description

Writer 7.5 Text
Documents - Text
Document
Controller

com.sun.star.text.TextDoc
umentView

The text view supplies a text view cursor that has
knowledge about the current page layout and page
number. It can walk through document pages, screen
pages and lines. The selected ruby text is also avail-
able, a special Asian text formatting, comparable to
superscript.

Calc 8.5 Spread-
sheet Documents
- Controlling
Spreadsheet
Documents

com.sun.star.sheet.Spread
sheetView

The spreadsheet view is extremely powerful. It
includes the services
com.sun.star.sheet.SpreadsheetViewPane
and
com.sun.star.sheet.SpreadsheetViewSettin
gs. The view pane handles the currently visible cell
range and provides controllers for form controls in the
spreadsheet. The view settings deal with the visibility
of spreadsheet elements, such as the grid and current
zoom mode. Furthermore, the spreadsheet view
provides access to the active sheet in the view and the
collection of all view panes, allowing to split and
freeze the view, and control the interactive selection of
a cell range.

Chapter 6 Office Development 345

Component
and Chapter

Specialized Controller
Service

General Description

Draw 9.7
Drawing -
Drawing and
Presentation
Document
Controller

com.sun.star.drawing.Draw
ingDocumentDrawView

The drawing document view toggles master page
mode and layer mode, controls the current page and
supplies the currently visible rectangle.

Impress 9.7
Drawing -
Drawing and
Presentation
Document
Controller

com.sun.star.drawing.Draw
ingDocumentDrawView
com.sun.star.presentation
.PresentationView

The presentation view does not introduce presenta-
tion specific features. Running presentations are
controlled by the
com.sun.star.presentation.XPresentationS
upplier interface of the presentation document
model.

DataBaseAccess com.sun.star.sdb.DataSour
ceBrowser

This controller has no published functionality that
would be useful for developers.

Bibliography (no special controller specified) -

Writer (PagePre-
view)

(no special controller specified) -

Writer /Webdoc
ument (Source-
View)

(no special controller specified) -

Calc (PagePre-
view)

(no special controller specified) -

Chart 10.4
Charts - Chart
Document
Controller

(no special controller specified) -

Math (no special controller specified) -

Models
There is not an independent specification for a model service. The interface
com.sun.star.frame.XModel is currently supported by Writer, Calc, Draw and Impress docu-
ment components. In our context, we call objects supporting com.sun.star.frame.XModel, model
objects. All OpenOffice.org document components have the service
com.sun.star.document.OfficeDocument in common. An OfficeDocument implements the
following interfaces:

XModel
The interface com.sun.star.frame.XModel inherits from com.sun.star.lang.XComponent and
introduces the following methods, which handle the model's resource description, manage its
controllers and retrieves the current selection.

string getURL ()
sequence < com::sun::star::beans::PropertyValue > getArgs ()
boolean attachResource ([in] string aURL,
 [in] sequence < com::sun::star::beans::PropertyValue aArgs >)

com::sun::star::frame::XController getCurrentController ()
void setCurrentController (com::sun::star::frame::XController xController)
void connectController (com::sun::star::frame::XController xController)
void disconnectController (com::sun::star::frame::XController xController)
void lockControllers ()

346 OpenOffice.org 1.1 Developer's Guide • June 2003

void unlockControllers ()
boolean hasControllersLocked ()
com::sun::star::uno::XInterface getCurrentSelection ()

The method getURL() provides the URL where a document was loaded from or last stored using
storeAsURL(). As long as a new document has not been saved, the URL is an empty string. The
method getArgs() returns a sequence of property values that report the resource description
according to com.sun.star.document.MediaDescriptor, specified on loading or saving with
storeAsURL. The method attachResource() is used by the frame loader implementations to
inform the model about its URL and MediaDescriptor.

The current or last active controller for a model isretrieved through getCurrentController().
The corresponding method setCurrentController() sets a different current controller at models
where additional controllers are available. However, additional controllers can not be created at
this time for OpenOffice.org components using the component API. The method connectCon-
troller() is used by frame loader implementations and provides the model with a new
controller that has been created for it, without making it the current controller. The disconnect-
Controller() tells the model that a controller may no longer be used. Finally, the model holds
back screen updates using lockControllers() and unlockControllers(). For each call to lock-
Controllers(), there must be a call to unlockControllers() to remove the lock. The method
hasControllersLocked() tells if the controllers are locked.

The currently selected object is retrieved by a call to getCurrentSelection(). This method is an
alternative to getSelection() at the com.sun.star.view.XSelectionSupplier interface
supported by controller services.

XModifiable
The interface com.sun.star.util.XModifiable traces the modified status of a document:

void addModifyListener ([in] com::sun::star::util::XModifyListener aListener)
void removeModifyListener ([in] com::sun::star::util::XModifyListener aListener)
boolean isModified ()
void setModified ([in] boolean bModified)

XStorable
The interface com.sun.star.frame.XStorable stores a document under an arbitrary URL or its
current location. Details about how to use this interface are discussed in the chapter 6.1.5 Office
Development - OpenOffice.org Application Environment - Handling Documents

XPrintable
The interface com.sun.star.view.XPrintable is used to set and get the printer and its settings,
and dispatch print jobs. These methods and special printing features for the various document
types are described in the chapters 7.2.3 Text Documents - Handling Text Document Files - Printing
Text Documents, 8.2.3 Spreadsheet Documents - Handling Spreadsheet Document Files - Printing Spread-
sheet Documents, 9.2.3 Drawing - Handling Drawing Document Files - Printing Drawing Documents
and 9.4.2 Drawing - Handling Presentation Document Files - Printing Presentation Documents.

sequence< com::sun::star::beans::PropertyValue > getPrinter ()
void setPrinter ([in] sequence< com::sun::star::beans::PropertyValue > aPrinter)
void print ([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

XEventBroadcaster
For versions later than 641, the optional interface com.sun.star.document.XEventBroadcaster
at office documents enables developers to add listeners for events related to office documents in

Chapter 6 Office Development 347

general, or for events specific for the individual document type.See 6.2.8 Office Development -
Common Application Features - Document Events).

void addEventListener ([in] com::sun::star::document::XEventListener xListener)
void removeEventListener ([in] com::sun::star::document::XEventListener xListener)

The XEventListener must implement a single method, besides disposing():
[oneway] void notifyEvent ([in] com::sun::star::document::EventObject Event)

The struct com.sun.star.document.EventObject has a string member EventName, that assumes
one of the values specified in com.sun.star.document.Events. These events are also on the
Events tab of the Tools – Configure dialog.

The general events are the same events as those provided at the XEventBroadcaster interface of
the desktop. While the model is only concerned about its own events, the desktop broadcasts the
events for all the loaded documents.

XEventsSupplier
The optional interface com.sun.star.document.XEventsSupplier binds the execution of
dispatch URLs to document events, thus providing a configurable event listener as a simplification
for the more general event broadcaster or listener mechanism of the
com.sun.star.document.XEventBroadcaster interface. This is done programmatically versus
manually in Tools – Configure – Events.

XDocumentInfoSupplier
The optional interface com.sun.star.document.XDocumentInfoSupplier provides access to
document information as described in section 6.2.7 Office Development - Common Application
Features - Document Info.Document information is presented in the File – Properties dialog in the
GUI.

XViewDataSupplier
The optional com.sun.star.document.XViewDataSupplier interface sets and restores view data.

com::sun::star::container::XIndexAccess getViewData ()
void setViewData ([in] com::sun::star::container::XIndexAccess aData)

The view data are a com.sun.star.container.XIndexAccess to sequences of
com.sun.star.beans.PropertyValue structs. Each sequence represents the settings of a view to
the model that supplies the view data.

Document Specific Features
Every service specification for real model objects provides more interfaces that constitute the
actual model functionality For example, a text document service
com.sun.star.text.TextDocument provides text related interfaces. Having received a reference
to a model, developers query for these interfaces. The com.sun.star.lang.XServiceInfo inter -
face of a model can be used to ask for supported services. The OpenOffice.org document types
support the following services:

Document Service Chapter
Calc com.sun.star.sheet.Spreadsheet

Document
8 Spreadsheet Documents

Draw com.sun.star.drawing.DrawingDo
cument

9 Drawing

348 OpenOffice.org 1.1 Developer's Guide • June 2003

Document Service Chapter
Impress com.sun.star.presentation.Pres

entationDocument
9 Drawing

Math com.sun.star.formula.FormulaPr
operties

-

Writer (all Writer
modules)

com.sun.star.text.TextDocument 7 Text Documents

Chart com.sun.star.chart.ChartDocume
nt

10 Charts

Refer to the related chapters for additional information about the interfaces of the documents of
OpenOffice.org.

Window Interfaces
The window interfaces of the component window and container window control the
OpenOffice.org application windows. This chapter provides a short overview.

XWindow
The interface com.sun.star.awt.XWindow is supported by the component and controller
windows. This interface comprises methods to resize a window, control its visibility, enable and
disable it, and make it the focus for input device events. Listeners are informed about window
events.

[oneway] void setPosSize (long X, long Y, long Width, long Height, short Flags);
com::sun::star::awt::Rectangle getPosSize ();
[oneway] void setVisible (boolean Visible);
[oneway] void setEnable (boolean Enable);
[oneway] void setFocus ();
[oneway] void addWindowListener (com::sun::star::awt::XWindowListener xListener);
[oneway] void removeWindowListener (com::sun::star::awt::XWindowListener xListener);
[oneway] void addFocusListener (com::sun::star::awt::XFocusListener xListener);
[oneway] void removeFocusListener (com::sun::star::awt::XFocusListener xListener);
[oneway] void addKeyListener (com::sun::star::awt::XKeyListener xListener);
[oneway] void removeKeyListener (com::sun::star::awt::XKeyListener xListener);
[oneway] void addMouseListener (com::sun::star::awt::XMouseListener xListener);
[oneway] void removeMouseListener (com::sun::star::awt::XMouseListener xListener);
[oneway] void addMouseMotionListener (com::sun::star::awt::XMouseMotionListener xListener);
[oneway] void removeMouseMotionListener (com::sun::star::awt::XMouseMotionListener xListener);
[oneway] void addPaintListener (com::sun::star::awt::XPaintListener xListener);
[oneway] void removePaintListener (com::sun::star::awt::XPaintListener xListener);

The com.sun.star.awt.XWindowListener gets the following notifications. The
com.sun.star.awt.WindowEvent has members describing the size and position of the window.

[oneway] void windowResized ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowMoved ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowShown ([in] com::sun::star::lang::EventObject e)
[oneway] void windowHidden ([in] com::sun::star::lang::EventObject e);

What the other listeners do are evident by their names.

XTopWindow
The interface com.sun.star.awt.XTopWindow is available at container windows. It informs
listeners about top window events, and it can put itself in front of other windows or withdraw
into the background. It also has a method to control the current menu bar:

[oneway] void addTopWindowListener (com::sun::star::awt::XTopWindowListener xListener);
[oneway] void removeTopWindowListener (com::sun::star::awt::XTopWindowListener xListener);

Chapter 6 Office Development 349

[oneway] void toFront ();
[oneway] void toBack ();
[oneway] void setMenuBar (com::sun::star::awt::XMenuBar xMenu);

 Although the XTopWindow interface has a method setMenuBar(), this method is not usable at this time.
The com.sun.star.awt.XMenuBar interface is deprecated.

The top window listener receives the following messages. All methods take a
com.sun.star.awt.WindowEvent with members describing the size and position of the window.

[oneway] void windowOpened ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowClosing ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowClosed ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowMinimized ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowNormalized ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowActivated ([in] com::sun::star::awt::WindowEvent e)
[oneway] void windowDeactivated ([in] com::sun::star::awt::WindowEvent e)

XWindowPeer
Each XWindow has a com.sun.star.awt.XWindowPeer. The com.sun.star.awt.XWindowPeer
interface accesses the window toolkit implementation used to create it and provides the pointer of
the pointing device, and controls the background color. It is also used to invalidate a window or
portions of it to trigger a redraw cycle.

com::sun::star::awt::XToolkit getToolkit ()
[oneway] void setPointer ([in] com::sun::star::awt::XPointer Pointer)
[oneway] void setBackground ([in] long Color)
[oneway] void invalidate ([in] short Flags)
[oneway] void invalidateRect ([in] com::sun::star::awt::Rectangle Rect,
 [in] short Flags)

6.1.4 Creating Frames Manually

Frame Creation
]Every time a frame is needed in OpenOffice.org, the com.sun.star.frame.Frame service is
created. OpenOffice.org has an implementation for this service, available at the global service
manager.

This service can be replaced by a different implementation, for example, your own implementa-
tion in Java, by registering it at the service manager. In special cases, it is possible to use a custom
frame implementation instead of the com.sun.star.frame.Frame service by instantiating a
specific implementation using the implementation name with the factory methods of the service
manager. Both methods can alter the default window and document handling in OpenOffice.org,
thus changing or extending its functionality.

Assigning Windows to Frames
Every frame can be assigned to any OpenOffice.org window. For instance, the same frame imple-
mentation is used to load a component into an application window of the underlying windowing
system or into a preview window of a OpenOffice.org dialog. The com.sun.star.frame.Frame
service implementation does not depend on the type of the window, although the entirety of the
frame and window will be a different object by the user.

If you have a window in your application and want to load a OpenOffice.org document, create a
frame and window object, and put them together by a call to initialize(). A default frame is
created by instantiating an object implementing the com.sun.star.frame.Frame service at the
global service manager. For window creation, the current com.sun.star.awt implementation has

350 OpenOffice.org 1.1 Developer's Guide • June 2003

to be used to create windows in all languages supporting UNO. This toolkit offers a method to
create window objects that wrap a platform specific window, such as a Java AWT window or a
Windows system window represented by its window handle. A Java example is given below.

Two conditions apply to windows that are to be used with OpenOffice.org frames.

The first condition is that the window must be created by the current com.sun.star.awt.Toolkit
service implementation. Not every object implementing the com.sun.star.awt.XWindow interface
is used as an argument in the initialize() method, because it is syntactically correct, but it is
restricted to objects created by the current com.sun.star.awt implementation. The insertion of a
component into a frame only works if all involved windows are .xbl created by the same toolkit
implementation. All internal office components, such as Writer and Calc, are implemented using
the Visual Component Library (VCL), so that they do not work if the container window is not
implemented by VCL. The current toolkit uses this library internally, so all the windows created
by the awt toolkit are passed to a frame.No others work at this time. Using VCL directly is not
recommended. The code has to be rewritten, whenever this complication has incurred by the
current office implementation and is removed, and the toolkit implementation is exchangeable.

The second condition is that if a frame and its component are supposed to get windowActivated
() messages, the window object implements the additional interface
com.sun.star.awt.XTopWindow. This is necessary for editing components, because the
windowActivated event shows a cursor or a selection in the document. As long as this condition is
met, further code is not necessary for the interaction between the frame and window, because the
frame gets all the necessary events from the window by registering the appropriate listeners in the
call to initialize().

When you use the com.sun.star.awt.Toolkit to create windows, supply a
com.sun.star.awt.WindowDescriptor struct to describe what kind of window is required. Set
the Type member of this struct to com.sun.star.awt.WindowClass:TOP and the WindowService-
Name member to "window" if you want to have an application window, or to "dockingwindow" if a
window is need to be inserted in other windows created by the toolkit.

Setting Components into Frame Hierarchies
Once a frame has been initialized with a window, it can be added to a frames supplier , such as the
desktop using the frames container provided by
com.sun.star.frame.XFramesSupplier:getFrames(). Its method
com.sun.star.frame.XFrames:append() inserts the new frame into the XFrames container and
calls setCreator() at the new frame, passing the XFramesSupplier interface of the parent frame.

 The parent frame must be set as the creator of the newly created frame. The current implementation of the
frames container calls setCreator() internally when frames are added to it using append().

The following example creates a new window and a frame, plugs them together, and adds them to
the desktop, thus creating a new, empty OpenOffice.org application window. (OfficeDev/Desk-
topEnvironment /FunctionHelper.java)
 // Conditions: xSMGR = m_xServiceManager
 // Get access to vcl toolkit of remote office to create
 // the container window of new target frame.
 com.sun.star.awt.XToolkit xToolkit =
 (com.sun.star.awt.XToolkit)UnoRuntime.queryInterface(
 com.sun.star.awt.XToolkit.class,
 xSMGR.createInstance("com.sun.star.awt.Toolkit"));

 // Describe the properties of the container window.
 // Tip: It is possible to use native window handle of a java window
 // as parent for this. see chapter "OfficeBean" for further informations
 com.sun.star.awt.WindowDescriptor aDescriptor =
 new com.sun.star.awt.WindowDescriptor();

Chapter 6 Office Development 351

 aDescriptor.Type = com.sun.star.awt.WindowClass.TOP ;
 aDescriptor.WindowServiceName = "window" ;
 aDescriptor.ParentIndex = -1;
 aDescriptor.Parent = null;
 aDescriptor.Bounds = new com.sun.star.awt.Rectangle(0,0,0,0);
 aDescriptor.WindowAttributes =
 com.sun.star.awt.WindowAttribute.BORDER |
 com.sun.star.awt.WindowAttribute.MOVEABLE |
 com.sun.star.awt.WindowAttribute.SIZEABLE |
 com.sun.star.awt.WindowAttribute.CLOSEABLE ;

 com.sun.star.awt.XWindowPeer xPeer = xToolkit.createWindow(aDescriptor) ;

 com.sun.star.awt.XWindow xWindow = (com.sun.star.awt.XWindow)UnoRuntime.queryInterface (
 com.sun.star.awt.XWindow .class, xPeer);

 // Create a new empty target frame.
 // Attention: Before OpenOffice.org build 643 we must use
 // com.sun.star.frame.Task instead of com.sun.star.frame.Frame,
// because the desktop environment accepts only this special frame type
 // as direct children. It will be deprecated from build 643
 xFrame = (com.sun.star.frame.XFrame)UnoRuntime.queryInterface(
 com.sun.star.frame.XFrame.class,
 xSMGR.createInstance ("com.sun.star.frame.Task "));

 // Set the container window on it.
 xFrame.initialize(xWindow) ;
// Insert the new frame in desktop hierarchy.
 // Use XFrames interface to do so. It provides access to the
 // child frame container of the parent node.
 // Note: append(xFrame) calls xFrame.setCreator(Desktop) automaticly.
 com.sun.star.frame.XFramesSupplier xTreeRoot =
 (com.sun.star.frame.XFramesSupplier)UnoRuntime.queryInterface(
 com.sun.star.frame.XFramesSupplier.class,
 xSMGR.createInstance("com.sun.star.frame.Desktop"));
com.sun.star.frame.XFrames xChildContainer = xTreeRoot.getFrames ();
xChildContainer.append(xFrame) ;
// Make some other initializations.
 xPeer.setBackground(0xFFFFFFFF);
 xWindow.setVisible(true);
 xFrame.setName("newly created 1") ;

6.1.5 Handling Documents

Loading Documents
The framework API defines a simple but powerful interface to load viewable components, the
com.sun.star.frame.XComponentLoader. This interface is implemented by the globally acces-
sible com.sun.star.frame.Desktop service,to query the XComponentLoader from the desktop.

352 OpenOffice.org 1.1 Developer's Guide • June 2003

The interface com.sun.star.frame.XComponentLoader has one method:
com::sun::star::lang::XComponent loadComponentFromURL ([in] string aURL,

 [in] string aTargetFrameName,
 [in] long nSearchFlags,
 [in] sequence < com::sun::star::beans::PropertyValue aArgs >)

The use fo this method is demonstrated below in the service
com.sun.star.document.MediaDescriptor.

MediaDescriptor
A call to loadComponentFromURL() receives a sequence of com.sun.star.beans.PropertyValue
structs as a parameter, which implements the com.sun.star.document.MediaDescriptor
service, consisting of property definitions. It describes where a resource or medium should be
loaded from and how this should be done.

The media descriptor is also used for saving a document to a location using the interface
com.sun.star.frame.XStorable. It transports the "where to" and the "how" of the storing proce-
dure. The table below shows the properties defined in the media descriptor.

Some properties are used for loading and saving while others apply to one or the other. If a media
descriptor is used, only a few of the members are specified. The others assume default values.
Strings default to empty strings in general and interface references default to empty references.
For all other properties, the default values are specified in the description column of the table.

Chapter 6 Office Development 353

 Illustration 59: Services Involved in Document Loading

Some properties are tagged deprecated. There are old implementations that still use these proper-
ties. They are supported, but are discouraged to use them. Use the new property that can be found
in the description column of the deprecated property.

To develop a UNO component that uses the media descriptor, note that all the properties are
under control of the framework API. Never create your own property names for the media
descriptor, or name clashes may be induced if the framework defines a property that uses the
same name. Instead, use the ComponentData property to transport document specific information.
ComponentData is specified to be an any, therefore it can be a sequence of property values by
itself. If you do use it. make an appropriate specification available to users of your component.

Properties of com.sun.star.document.MediaDescriptor
AsTemplate boolean. Setting AsTemplate to true creates a new untitled docu-

ment out of the loaded document, even if it has no template exten-
sion.

Loading a template, that is, a document with a template extension,
creates a new untitled document by default, but setting the AsTem-
plate property to false loads a template for editing.

Author string. Only for storing versions in components supporting
versioning: author of version.

CharacterSet string. Defines the character set for document formats that contain
single byte characters, if necessary. Which character set names are
valid depends on the filter implementation, but with the current
filters you can employ the character sets used for the conversion of
byte to unicode strings.

Comment string. Only for storing versions in components supporting
versioning: comment (description) for stored version.

ComponentData any. This is a parameter that is used for any properties specific for a
special office component type.

FileName - deprecated string. Same as URL (added for compatibility reasons)

FilterData any. This is a parameter that is used for any properties specific for a
special filter type.

FilterName string. Name of a filter that should be used for loading or storing the
component. Names must match the names of the typedetection
configuration.Invalid names are ignored. If a name is specified on
loading, it will be verified by a filter detection, but in case of doubt it
will be preferred.

FilterFlags - deprecated string. For compatibility reasons: same as FilterOptions

FilterOptions string. Some filters need additional parameters. Use only together
with property FilterName. Details must be documented by the filter.
This is an old format for some filters. If a string is not enough, filters
can use the property FilterData.

Hidden boolean. Defines if the loaded component is made visible. If this prop-
erty is not specified, the component is made visible by default.
Making a hidden component visible by calling setVisible() at the
container window is not recommended at this time.

354 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.document.MediaDescriptor
InputStream com.sun.star.io.XInputStream. Used when loading a document.

Reading must be done using this stream. If no stream is provided, the
loader creates a stream by itself using the URL, version number,
readonly flag, password, or anything requiredfor stream creation,
given in the media descriptor.

The model becomes the final owner of the stream and usually holds
the reference to lock the file. Therefore, it is not allowed to keep a
reference to this InputStream after loading the component.It is
useless, because an InputStream is only usable once for reading. Even
if it implements the com.sun.star.io.XSeekable interface, do
not interfere with the model's reading process. Consider all the objects
involved in the loading process as temporary.

InteractionHandler com.sun.star.task.XInteractionHandler. Object implementing the
com.sun.star.task.InteractionHandler service that handles
exceptional situations where proceeding with the task is impossible
without additional information or impossible at all.

OpenOffice.org provides a default implementation that can handle
many situations. If no InteractionHandler is set, a suitable exception is
thrown.

It is not allowed to keep a reference to this object, not even in the
loaded or stored components' copy of the MediaDescriptor provided
by its arguments attribute.

JumpMark string. Jump to a marked position after loading. The office document
loaders expect simple strings used like targets in HTML
documents.Do not use a leading # character. The meaning of a jump
mark depends upon the filter, but in Writer, bookmarks can be used,
whereas in Calc cells, cell ranges and named areas are supported.

MediaType (string) string. Type of the medium to load that must match to one of the
types defined in the typedetection configuration, otherwise it is
ignored. The typedetection configuration is found in the
TypeDetection.xml file in the config/registry/instance/org/openoffice/Office
folders of the user or share tree. The MediaType is found in the "type"
entries. Here, it is the second member of the "data" value. This
parameter bypasses the type detection of the desktop environment, so
that passing a wrong MediaType causes load failures.

OpenFlags - deprecated string. For compatibility reasons: string that summarizes some flags
for loading. The string contains capital letters for the flags:

"ReadOnly" - "R"
 "Preview" - "B"
 "AsTemplate" - "T"
 "Hidden" - "H"

Use the corresponding boolean parameters instead.

OpenNewView boolean. Affects the behavior of the component loader when a
resource is already loaded. If true, the loader tries to open a new view
for a document already loaded. For components supporting multiple
views, a second window is opened as if the user clicked Window –
New Window.Other components are loaded one more time. Without
this property, the default behavior of the loader applies, for example,
the loader of the desktop activates a document if the user tries to load
it a second time.

Chapter 6 Office Development 355

Properties of com.sun.star.document.MediaDescriptor
Overwrite boolean. For storing only: overwrite existing files with the same name,

default is true, so an com.sun.star.io.IOException occurs if the
target file already exists. If the default is changed and the file exists,
the UCB throws an exception. If the file is loaded through API, this
exception is transported to the caller or handled by an interaction
handler.

Password string. A password for loading or storing a component, if necessary. If
no password is specified, loading of a password protected document
fails, storing is done without encryption.

PostData reference <XinputStream>. HTTP post data to send to a location
described by the media descriptor to get a result that is loaded as a
component, usually in webforms. Default is: no PostData.

PostString - deprecated string. Same as PostData, but the data is transferred as a string (just
for compatibility).

Preview boolean. Setting this to true tells the loaded component that it is
loaded as a preview, so that it can optimize loading and viewing for
this special purpose. Default is false.

ReadOnly boolean. Tells if a document is to be loaded in a (logical) readonly or
in read /write mode. If opening in the desired mode is impossible, an
error occurs. By default, the loaded content decides what to do. If its
UCB content supports a "readonly" property, the logical open mode
depends on that property, otherwise it is read /write.

This property only affects the UI. Opening a document in read only
mode does not prevent the component from being modified by API
calls, but all modifying functionality in the UI is disabled or removed.

Referer
(the wrong spelling is kept for
compatibility reasons)

string. A URL describing the environment of the request; for
example,. a referrer may be the URL of a document, if a hyperlink
inside this document is clicked to load another document. The
referrer may be evaluated by the addressed UCB content or the
loaded document.

Without a referrer, the processing of URLs that require security
checks is denied, for instance macro: URLs.

StatusIndicator

com.sun.star.task.XStatusIndicator. Object implementing
the com.sun.star.task.XStatusIndicator interface that gives
status information, such as text or progress, for the target frame.

OpenOffice.org provides a default implementation that is retrieved by
calling createStatusIndicator() at the frame you load a compo-
nent into. Usually you do not need this parameter if you do not want
to use any other indicator than the one in the status bar of the docu-
ment window. It is not allowed to keep a reference to this object, not
even in the loaded or stored component's copy of the MediaDe-
scriptor provided by its getArgs() method.

TemplateName string. The logical name of a template to load. Together with the
TemplateRegionName property this is used instead of the URL of the
template. The logical names are the template names you see in the
templates dialog.

TemplateRegionName string. See TemplateName. The template region names are the folder
names you see in the templates dialog.

356 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.document.MediaDescriptor
Unpacked boolean. For storing: Setting this to true means that a zip file is not

used to save the document. Use a folder instead for UCB contents that
support folders, such as file, WebDAV, and ftp. Default is false.

URL string. The location of the component in URL syntax.

Version short. For components supporting versioning: the number of the
version to be loaded or saved. Default is zero and means that no
version is created or loaded, and the main document is processed.

ViewData any. Data to set a special view state after loading. The type depends
on the component and is retrieved from a controller object by its
com.sun.star.document.XViewDataSupplier interface.
Default is: no ViewData.

ViewId short. For components supporting different views: a number to define
the view that should be constructed after loading. Default is: zero,
and this should be treated by the component as the default view.

MacroExecutionMode short. How should the macro be executed - the value should be one
from com.sun.star.document.MacroExecMode constants group

UpdateDocMode short. Can the document be updated depending on links. The value
should be one from com.sun.star.document.UpdateDocMode
constant group

The media descriptor used for loading and storing components is passed as an in /out parameter
to some objects that participate in the loading or storing process, that is, the
com.sun.star.document.TypeDetection service or a
com.sun.star.document.ExtendedTypeDetection service. These objects add additional infor-
mation they have gathered to the media descriptor, so that other objects called later do not have to
reinvestigate this.

The first object that gets the media descriptor might need an input stream, but assume that there is
currently none. The object creates one and uses it. If the stream happens to be seekable (usually it
is), the object puts the stream into the media descriptor, so that it passes it to other objects that
need the stream as well. They do not have to create it again. It is important for streams created for
a remote resource, such as http contents.

If the stream, provided from the outside or created by the first consumer, is not seekable, every
consumer creates one. It creates a buffering stream component that reads in the original stream
and provides a seekable stream for all further consumers. This buffered stream can be put into the
media descriptor.

As previously mentioned, the easiest way to load a document is to call loadComponentFromURL()
at the desktop service, but any other object could implement this interface.

URL Parameter
The URL is part of the media descriptor and also an explicit parameter for loadComponent-
FromURL(). This enables script code to load a document without creating a media descriptor at the
cost of code redundancy. The URL parameter of loadComponentFromURL() overrides a possible
URL property passed in the media descriptor. Aside from valid URLs that describe an existing file,
the following URLs are used to open viewable components in OpenOffice.org:

Component URL
Writer private:factory /swriter

Calc private:factory /scalc

Chapter 6 Office Development 357

Component URL
Draw private:factory /sdraw

Impress private:factory /simpress

Database .component:DB/QueryDesign
.component:DB/TableDesign
.component:DB/RelationDesign
.component:DB/DataSourceBrowser
.component:DB/FormGridView

Bibliography .component:Bibliography /View1

Target Frame
The URL and media descriptor loadComponentFromURL() have two additional arguments, the
target frame name and search flags. The method loadComponentFromURL() looks for a frame in
the frame hierarchy and loads the component into the frame it finds. It uses the same algorithm as
findFrame() at the com.sun.star.frame.XFrame interface, described in section 6.1.3 Office Devel-
opment - OpenOffice.org Application Environment - Using the Component Framework - Frames - XFrame
- Frame Hierarchies.

The target frame name is a reserved name starting with an underscore or arbitrary name. The
reserved names denote frequently used frames in the frame hierarchy or special functions,
whereas an arbitrary name is searched recursively. If a reserved name is used, the search flags are
ignored and set to 0. The following reserved names are supported:

_self
Returns the frame itself. The same as with an empty target frame name. This means to search
for a frame you already have, but it is legal.

_top
Returns the top frame of the called frame .,The first frame where isTop() returns true when
traveling up the hierarchy. If the starting frame does not have a parent frame, the call is treated
as a search for "_self". This behavior is compatible to the frame targeting in a web browser.

_parent
Returns the next frame above in the frame hierarchy. If the starting frame does not have a
parent frame, the call is treated as a search for "_self". This behavior is compatible to the
frame targeting in a web browser.

_blank
Creates a new top-level frame as a child frame of the desktop. If the called frame is not part of
the desktop hierarchy, this call fails. Using the "_blank" target loads open documents again
that result in a read- only document, depending on the UCB content provider for the compo-
nent. If loading is done as a result of a user action, this becomes confusing to theusers, there-
fore the "_default" target is recommended in calls from a user interface, instead of "_blank".
Refer to the next section for a discussion about the _default target..

_default
Similar to "_blank", but the implementation defines further behavior that has to be docu-
mented by the implementer. The com.sun.star.frame.XComponentLoader implemented at
the desktop object shows the following default behavior.

First, it checks if the component to load is already loaded in another top-level frame. If this is
the case, the frame is activated and brought to the foreground. When the OpenNewView prop -
erty is set to true in the media descriptor, the loader creates a second controller to show another
view for the loaded document. For components supporting this, a second window is opened as

358 OpenOffice.org 1.1 Developer's Guide • June 2003

if the user clicked Window – New Window. The other components are loaded one more time,
as if the "_blank" target had been used. Currently, almost all office components implementing
com.sun.star.frame.XModel have multiple controllers, except for HTML and writer docu-
ments in the online view. The database and bibliography components have no model, therefore
they cannot open a second view at all and OpenNewView leads to an exception with them.

Next, the loader checks if the active frame contains an unmodified, empty document of the
same document type as the component that is being loaded. If so, the component is loaded into
that frame, replacing the empty document, otherwise a new top- level frame is created similar
to a call with "_blank".

Names starting with an underscore must not be used as real names for a frame.

If the given frame name is an arbitrary string, the loader searches for this frame in the frame hier-
archy. The search is done in the following order: self, children, siblings, parent, create if not found.
Each of these search steps can be skipped by deleting it from the
com.sun.star.frame.FrameSearchFlag bit vector:

Constants in com.sun.star.frame.FrameSearchFlag group
SELF search current frame

CHILDREN search children recursively

SIBLINGS search frames on the same level

PARENT search frame above the current frame in the hierarchy

CREATE create new frame if not found

TASKS do not stop searching when a top frame is reached, but continue with other top frames

ALL search the frame hierarchy below the current top frame, do not create new frame: SELF |
CHILDREN | SIBLINGS | PARENT

GLOBAL search all frames, do not create new frame: SELF | CHILDREN | SIBLINGS | PARENT |
TASKS

A typical case for a named frame is a situation where a frame is needed to be reused for subse-
quent loading of components, for example, a frame attached to a preview window or a docked
frame, such as the frame in OpenOffice.org that opens the address book when the F4 key is
pressed.

The frame names "_self", "_top" and "_parent" define a frame target relative to a starting
frame. They can only be used if the component loader interface finds the frame and the setCompo-
nent() can be used with the frame. The desktop frame is the root, therefore it does not have a top
and parent frame. The component loader of the desktop cannot use these names, because the
desktop refuses to have a component set into it.. However, if a frame implemented
com.sun.star.frame.XComponentLoader, these names could be used.

OpenOffice.org 1.1 will have a frame implementation that supports XComponentLoader.

The reserved frame names are also used as a targeting mechanism in the dispatch framework with
regard to as far as the relative frame names being resolved. For additional information, see chapter
6.1.6 Office Development - OpenOffice.org Application Environment - Using the Dispatch Framework.

The example below creates a frame, and uses the target frame and search flag parameters of load-
ComponentFromURL() to load a document into it.
(OfficeDev/DesktopEnvironment /FunctionHelper.java)
 // Conditions: sURL = "private:factory/swriter"
 // xSMGR = m_xServiceManager
 // xFrame = reference to a frame

Chapter 6 Office Development 359

 // lProperties[] = new com.sun.star.beans.PropertyValue[0]

 // First prepare frame for loading.
 // We must adress it inside the frame tree without any complications.
 // To do so we set an unambiguous name and use it later.
 // Don't forget to reset the name to the original name after that.

 String sOldName = xFrame.getName();
 String sTarget = "odk_officedev_desk";
 xFrame.setName(sTarget);

 // Get access to the global component loader of the office
 // for synchronous loading of documents.
 com.sun.star.frame.XComponentLoader xLoader =
 (com.sun.star.frame.XComponentLoader)UnoRuntime.queryInterface(
 com.sun.star.frame.XComponentLoader.class,
 xSMGR.createInstance("com.sun.star.frame.Desktop"));

 // Load the document into the target frame by using our unambigous name
 // and special search flags.
 xDocument = xLoader.loadComponentFromURL(
 sURL, sTarget, com.sun.star.frame.FrameSearchFlag.CHILDREN, lProperties);

 // dont forget to restore old frame name ...
 xFrame.setName(sOldName);

The loadComponentFromURL() call returns a reference to a com.sun.star.lang.XComponent
interface. The object belonging to this interface depends on the loaded component. If it is a compo-
nent that only provides a component window, but not a controller, the returned component is this
window. If it is an office component that provides a controller, the returned component is the
controller or its model, if these is one. All Writer, Calc, Draw, Impress or Math documents in
OpenOffice.org support a model, therefore the loadComponentFromURL() call returns it. The data-
base and bibliography components however, return a controller, because they do not have a
model.

Closing Documents
The loadComponentFromURL() returns a com.sun.star.lang.XComponent interface has previ-
ously been discussed. The return value is a reference to a com.sun.star.lang.XComponent inter -
face, the corresponding object is a disposable component, and the caller must take care of lifetime
problems. An XComponent supports the following methods:

void dispose ()
void addEventListener ([in] com::sun::star::lang::XEventListener xListener)
void removeEventListener ([in] com::sun::star::lang::XEventListener aListener)

In principle, there is a simple rule. The documentation of a com.sun.star.lang.XComponent
specifies the objects that can own a component. Normally, a client using an XComponent is the
owner of the XComponent and has the responsibility to dispose of it or it is not the owner. If it is
not the owner, it may add itself as a com.sun.star.lang.XEventListener at the XComponent and
not call dispose() on it. This type of XEventListener supports one method in which a compo-
nent reacts upon the fact that another component is about to be disposed of:

void disposing ([in] com::sun::star::lang::EventObject Source)

However, the frame, controller and model are interwoven tightly, and situations do occur in
which there are several owners, for example, if there is more than one view for one model, or one
of these components is in use and cannot be disposed of, for example, while a print job is running
or a modal dialog is open. Therefore, developers must cope with these situations and remember a
few things concerning the deletion of components.

Closing a document has two aspects. It is possible that someone else wants to close a document
being currently worked on And you may want to close a component someone else is using at the
same time. Both aspects are discussed in the following sections. A code example that closes a
document is provided at the end of this section.

360 OpenOffice.org 1.1 Developer's Guide • June 2003

Reacting Upon Closing
The first aspect is that someone else wants to close a component for which you hold a reference. In
the current version of OpenOffice.org, there are three possibilities.

• If the component is used briefly as a stack variable, you do not care about the component after
loading, or you are sure there will be no interference, it is justifiable to load the component
without taking further measures. If the user is going to close the component, let the reference
go out of scope, or release the reference when no longer required.

• If a reference is used, but it is not necessary to react when it becomes invalid and the object
supports com.sun.star.uno.XWeak, you can hold a weak reference instead of a hard reference.
Weak references are automatically converted to null if the object they reference is going to be
disposed. Because the generic frame implementation, and also the controllers and models of all
standard document types implement XWeak, it is recommended to use it when possible.

• If a hard reference is held or you want to know that the component has been closed and the
new situation has to be accommodated, add a com.sun.star.lang.XEventListener at the
com.sun.star.lang.XComponent interface. In this case, release the reference on a disposing
() notification.

Sometimes it is necessary to exercise more control over the closing process, therefore a new,
optional interface com.sun.star.util.XCloseable has been introduced whichis supported in
versions beyond 641. If the object you are referencing is a com.sun.star.util.XCloseable,
register it as a com.sun.star.util.XCloseListener and throw a
com.sun.star.util.CloseVetoException when prompted to close. Since XCloseable is speci-
fied as an optional interface for frames and models, do not assume that this interface is supported.
It is possible that the code runs with a OpenOffice.org version where frames and models do not
implement XCloseable. Therefore ,be prepared for the case when you receive null when you try
to query XCloseable. The XCloseable interface is described in more detail below.

How to Trigger Closing
The second aspect – to close a view of a component or the entire viewable component yourself – is
more complex. The necessary steps depend on how you want to treat modified documents.
Besides you have to prepare for the new com.sun.star.util.XCloseable interface, which will
be implemented in future versions of OpenOffice.org.

Although XCloseable is not supported in the current version of OpenOffice.org, you already have to check
for this interface to write compatible code. Not checking for XCloseable will be illegal in future versions. If
a component supports this interface, you must not use any closing procedure other than calling close() at
that interface.

The following three diagrams show the decisions to be made when closing a frame or a document
model. The important points are: if you expect modifications, you must either handle them using
com.sun.star.util.XModifiable and com.sun.star.frame.XStorable, or let the user do the
necessary interaction by calling suspend() on the controller. In any case, check if the frame or
model is an XCloseable and prefer com.sun.star.util.XCloseable:close() over a call to
dispose(). The first two diagrams illustrate the separate closing process for frames and models,
the third diagram covers the actual termination of frames and models.

Chapter 6 Office Development 361

362 OpenOffice.org 1.1 Developer's Guide • June 2003

 Illustration 61: Closing a Model

 Illustration 60: Closing a Frame

XCloseable
The dispose mechanism has shortcomings in complex situations, such as the frame-controller-
model interaction. The dispose call cannot be rejected, but as shown above, sometimes it is neces-
sary to prevent destruction of objects due to shared ownership or a state of the documents that
forbids destruction.

A closing mechanism is required that enables all involved objects to negotiate if deletion is
possible and to veto, if necessary. By offering the interface com.sun.star.util.XCloseable, a
component tells it must be destroyed by calling close(). Calling dispose() on an XCloseable
might lead to deadlocks or crash the entire application.

In OpenOffice.org, model or frame objects are possible candidates for implementing the interface
XCloseable, therefore query for that interface before destroying the object. Call dispose()
directly if the model or frame does not support the interface, thus declaring that it handles all the
problems.

An object implementing XCloseable registers close listeners. When a close request is received, all
listeners are asked for permission. If a listener wants to deprecate, it throws an exception derived
from com.sun.star.util.CloseVetoException containing the reason why the component can
not be closed. This exception is passed to the close requester. The XCloseable itself can veto the
destruction by throwing an exception. If there is no veto, the XCloseable calls dispose() on itself
and returns.

The XCloseable handles problems that occur if a component rejects destruction. A script
programmer usually can not cope with a component not used anymore and refuses to be
destroyed. Ensure that the component is destroyed to avoid a memory leak. The close() method
offers a method to pass the responsibility to close the object to any possible close listener that
vetoes closing or to the XCloseable if the initial caller is not able to stay in memory to try again
later. This responsibility is referred to as delivered ownership. The mechanism sets some constraints
on the possible reasons for an objection against a close request.

A close listener that is asked for permission can object for any reason if the close call does not force
it to assume ownership of the closeable object.The close requester is aware of a possible failure. If
the close call forces the ownership, the close listener must be careful. An objection is only allowed
if the reason is temporary. As soon as the reason no longer exists, the owner automatically calls
close on the object that should be closed, now being in the same situation as the initial close
requester.

A permanent reason for objection is not allowed. For example,. the document is modified is not a
valid reason to object, because it is unlikely that the document becomes unmodified by itself.
Consequently, it could never be closed. Therefore, if an API programmer wants to avoid data loss,
he must use the com.sun.star.util.XModifiable and com.sun.star.frame.XStorable inter -

Chapter 6 Office Development 363

 Illustration 62: Terminate Frame/Model

faces of the document. The fact that a model refuses to be closed if it is modified is not depend-
able.

The interface com.sun.star.util.XCloseable inherits from
com.sun.star.util.XCloseBroadcaster and has the following methods:

[oneway] void addCloseListener ([in] com::sun::star::util::XCloseListener Listener);
[oneway] void removeCloseListener ([in] com::sun::star::util::XCloseListener Listener);
void close ([in] boolean DeliverOwnership)

The com.sun.star.util.XCloseListener is notified twice when close() is called on an
XClosable :

void queryClosing ([in] com::sun::star::lang::EventObject Source,
 [in] boolean GetsOwnership)
void notifyClosing ([in] com::sun::star::lang::EventObject Source)

Both com.sun.star.util.XCloseable:close() and
com.sun.star.util.XCloseListener:queryClosing() throw a
com.sun.star.util.CloseVetoException.

In the closing negotiations, an XClosable is asked to close itself. In the call to close(), the caller
passes a boolean parameter DeliverOwnership to tell the XClosable that it will give up owner-
ship in favor of an XCloseListener, or the XCloseable that might have to finish a job first, but
will close the XClosable immediately when the job is completed.

After a call to close(), the XClosable notifies its listeners twice. First, it checks if itcan be closed.
If not, it throws a CloseVetoException, otherwise it uses queryClosing() to see if a listener has
any objections against closing. The value of DeliverOwnership is conveyed in the GetsOwnership
parameter of queryClosing(). If no listener disapproves of closing, the XClosable exercises
notifyClosing() on the listeners and disposes itself. The result of a call to close() on a model is
that all frames, controllers and the model itself are destroyed. The result of a call to close() on a
frame is that this frame is closed, but the model stays alive if there are other controllers.

If an XCloseListener does not agree on closing, it throws a CloseVetoException, and the
XClosable lets the exception pass in close(), so that the caller receives the exception. The
CloseVetoException tells the caller that closing failed. If the caller delegated its ownership in the
call to close() by setting the DeliverOwnership parameter to true, an XCloseListener knows
that it automatically assumes ownership by throwing a CloseVetoException.The caller knows
that someone else is now the owner if it receives a CloseVetoException. The new owner is
compelled to close the XClosable as soon as possible. If the XCloseable was the object that threw
an exception, it is compelled also to close itself as soon as possible.

 No API exists for trivial components. As a consequence, components are not allowed to do anything that
prevents them from being destroyed. For example, since the office crashes when a container window or
component window has an open modal dialog, every component that wants to open a modal dialog must
implement the com.sun.star.frame.XController interface.

If a model object supports XCloseable, calling dispose() on it is forbidden, try to close() the
XCloseable and catch a possible CloseVetoException. Components that cannot cope with a
destroyed model add a close listener at the model. This enables them to object when the model
receives a close() request. They also add as a close listener if they are not already added as an
(dispose) event listener. This can be done by every controller object that uses that model. Tt is also
possible to let the model iterate through its controllers and call their suspend() methods explicitly
as a part of its implementation of the close method. It is only necessary to know that a method
close() must be called to close the model with its controllers. The method the model chooses is
an implementation detail.

The example below closes a loaded document component. It does not save modified documents or
prompts the user to save. (OfficeDev /DesktopEnvironment /FunctionHelper.java)

364 OpenOffice.org 1.1 Developer's Guide • June 2003

// Conditions: xDocument = m_xLoadedDocument
 // Check supported functionality of the document (model or controller).
 com.sun.star.frame.XModel xModel =
 (com.sun.star.frame.XModel)UnoRuntime.queryInterface(
 com.sun.star.frame.XModel.class,xDocument);

 if(xModel!=null)
 {
 // It is a full featured office document.
 // Try to use close mechanism instead of a hard dispose().
 // But maybe such service is not available on this model.
 com.sun.star.util.XCloseable xCloseable =
 (com.sun.star.util.XCloseable)UnoRuntime.queryInterface(
 com.sun.star.util.XCloseable.class,xModel);

 if(xCloseable!=null)
 {
 try
 {
 // use close(boolean DeliverOwnership)
 // The boolean parameter DeliverOwnership tells objects vetoing the close process that they may
 // assume ownership if they object the closure by throwing a CloseVetoException
 // Here we give up ownership. To be on the safe side, catch possible veto exception anyway.
 xCloseable.close(true);
 }
 catch(com.sun.star.util.CloseVetoException exCloseVeto)
 {
 }
 }
 // If close is not supported by this model - try to dispose it.
 // But if the model disagree with a reset request for the modify state
 // we shouldn't do so. Otherwhise some strange things can happen.
 else
 {
 com.sun.star.lang.XComponent xDisposeable =
 (com.sun.star.lang.XComponent)UnoRuntime.queryInterface(
 com.sun.star.lang.XComponent.class,xModel);
 xDisposeable.dispose();
 }
 catch(com.sun.star.beans.PropertyVetoException exModifyVeto)
 {
 }
 }
 }
 }

Storing Documents
After loading an office component successfully, the returned interface cis used to manipulate the
component. Document specific interfaces, such as the interfaces
com.sun.star.text.XTextDocument, com.sun.star.sheet.XSpreadsheetDocument or
com.sun.star.drawing.XDrawPagesSupplier are retrieved using queryInterface().

If the office component supports the com.sun.star.frame.XStorable interface applying to every
component implementing the service com.sun.star.document.OfficeDocument, it can be stored:

void store ()
void storeAsURL ([in] string sURL,
 [in] sequence< com::sun::star::beans::PropertyValue > lArguments)
void storeToURL ([in] string sURL,
 [in] sequence< com::sun::star::beans::PropertyValue > lArguments)
boolean hasLocation ()
string getLocation ()
boolean isReadonly ()

The XStorable offers the methods store(), storeAsURL() and storeToURL() for storing. The
latter two methods are called with a media descriptor.

The method store() overwrites an existing file. Calling this method on a document that was
created from scratch using a private:factory/... URL leads to an exception.

The other two methods storeAsURL() and storeToURL() leave the original file untouched and
differ after the storing procedure. The storeToURL() method saves the current document to the
desired location without touching the internal state of the document. The method storeAsURL sets

Chapter 6 Office Development 365

the Modified attribute of the document, accessible through its com.sun.star.util.XModifiable
interface, to false and updates the internal media descriptor of the document with the parameters
passed in the call. This changes the document URL.

The following example exports a Writer document, Writer /Web document or Calc sheet to HTML.
(OfficeDev/DesktopEnvironment /FunctionHelper.java)
 // Conditions: sURL = "file:///home/target.htm"
 // xDocument = m_xLoadedDocument

 // Export can be achieved by saving the document and using
 // a special filter which can write the desired format.
 // Normally this filter should be searched inside the filter
 // configuration (using service com.sun.star.document.FilterFactory)
 // but here we use well known filter names directly.

 String sFilter = null;

 // Detect document type by asking XServiceInfo
 com.sun.star.lang.XServiceInfo xInfo = (com.sun.star.lang.XServiceInfo)UnoRuntime.queryInterface (
 com.sun.star.lang.XServiceInfo .class, xDocument);

 // Determine suitable HTML filter name for export.
 if(xInfo!=null)
 {
 if(xInfo.supportsService ("com.sun.star.text.TextDocument ") == true)
 sFilter = new String("HTML (StarWriter) ");
 else
 if(xInfo.supportsService ("com.sun.star.text.WebDocument ") == true)
 sFilter = new String("HTML ");
 else
 if(xInfo.supportsService ("com.sun.star.sheet.SpreadsheetDocument ") == true)
 sFilter = new String("HTML (StarCalc) ");
 }

 if(sFilter!=null)
 {
 // Build necessary argument list for store properties.
 // Use flag "Overwrite" to prevent exceptions, if file already exists.

 com.sun.star.beans.PropertyValue[] lProperties =
 new com.sun.star.beans.PropertyValue[2];
 lProperties[0] = new com.sun.star.beans.PropertyValue();
 lProperties[0].Name = "FilterName ";
 lProperties[0].Value = sFilter;
 lProperties[1] = new com.sun.star.beans.PropertyValue();
 lProperties[1].Name = "Overwrite ";
 lProperties[1].Value = new Boolean(true);

 com.sun.star.frame.XStorable xStore = (com.sun.star.frame.XStorable)UnoRuntime.queryInterface (
 com.sun.star.frame.XStorable .class, xDocument);

 xStore.storeAsURL (sURL, lProperties);
 }

If a model is loaded or stored successfully, all parts of the media descriptor not explicitly excluded
according to the media descriptor table in section 6.1.5 Office Development - OpenOffice.org Applica-
tion Environment - Handling Documents - Loading Documents - MediaDescriptor must be provided by
the methods getURL() and getArgs() in thecom.sun.star.frame.XModel interface. The separa -
tion of the URL and the other arguments is used, because the URL is the often the most wanted
part for itsperformance optimized access.

 The XModel offers a method attachResource() that changes the media descriptor of the document, but
this method should only be used in special cases, for example, by the implementer of a new document model
and controller. The method attachResource() does not force reloading of the document. Validation
checks are done when a document is loaded through MediaDescriptor. For example, if the resource is write
protected, add Readonly to the MediaDescriptor and the filter name must match the data. A possible use
for attachResource() could be creating a document from a template, where after loading successfully,
the document's resource is changed to an "unnamed" state by deleting the URL.

366 OpenOffice.org 1.1 Developer's Guide • June 2003

Printing Documents
Printing revolves around the interface com.sun.star.view.XPrintable. Its methods and special
printing features for the various document types are described in the document chapters 7.2.3 Text
Documents - Handling Text Document Files - Printing Text Documents, 8.2.3 Spreadsheet Documents -
Handling Spreadsheet Document Files - Printing Spreadsheet Documents, 9.2.3 Drawing - Handling
Drawing Document Files - Printing Drawing Documents and 9.4.2 Drawing - Handling Presentation
Document Files - Printing Presentation Documents.

6.1.6 Using the Dispatch Framework
The component framework with the Frame-Controller-Model paradigm builds the skeleton of the
global object structure. Other frameworks are defined that enrich the communication between an
office component and the desktop environment. Usually they start at a frame object for the frame
anchors an office component in the desktop environment.

One framework is the dispatch framework. Its main purpose defines interfaces for a generic
communication between an office component and a user interface. This communication process
handles requests for command executions and gives information about the various attributes of an
office component. Generic means that the user interface does not have to know all the interfaces
supported by the office component.The user interfaces sends messages to the office component
and receives notifications.Tthe messages use a simple format. The entire negotiation about
supported commands and parameters can happen at runtime while an application built on the
specialized interfaces of the component are created at compile or interpret time. This generic
approach is achieved by looking at an office component differently, not as objects with method-
based interfaces, but as slot machines that take standardized command tokens.

We have discussed the differences between the different document types. The common function-
ality covers the generic features, that is, an office component is considered to be the entirety of its
controller, its model and many document- specific interfaces. To implement a user interface for a
component, it would be closely bound to the component and its specialized interfaces. If different
components use different interfaces and methods for their implementations, similar functions
cannot be visualized by the same user interface implementation. For instance, an action like Edit –
Select All leads to different interface calls depending on the document type it is sent to. From a
user interface perspective, it would be better to define abstract descriptions of the actions to be
performed and let the components decide how to handle these actions, or not to handle . These
abstract descriptions and how to handle them is specified in the dispatch framework.

Command URL
In the dispatch framework, every possible user action is defined as an executable command, and
every possible visualization as a reflection of something that is exposed by the component is
defined as an attribute. Every executable command and every attribute is a feature of the office
component, and the dispatch framework gives every feature a name called command URL. It is
represented by a com.sun.star.util.URL struct.

Command URLs are strings that follow the protocol_scheme:protocol_specific_part pattern. Public
URL schemes, such as file: or http can be used here.Executing a request with a URL that points to a
location of a document means that this document is loaded. In general, both parts of the command
URL can be arbitrary strings, but a request cannot be executed if there is an object that does not
know how to handle its command URL.

Chapter 6 Office Development 367

Processing Chain
A request is created by any object.User interface objects can create requests. Consider a toolbox
where different functions acting on the office component are presented as buttons. When a button
is clicked, the desired functionality is executed. If the code assigned to the button is provided with
a suitable command URL, it handles the user action by creating the request and finding a compo-
nent that can handle it. The button handler does not require any prior knowledge of the compo-
nent and how it would go about its task.

This situation is handled by the design pattern chain of responsibility. Everything a component
needs to know to execute a request is the last link of a chain of objects capable of executing
requests. If this object gets the request, it checks if it can handle it or passes it to the next chain
member until the request is executed, or the end of the chain is reached.

The chain members in the dispatch framework are objects implementing the interface
com.sun.star.frame.XDispatchProvider. Every frame and controller supports it.In the simplest
case, the chain consists of two members, a frame and its controller, but concatenating several chain
parts on demand of a frame or a controller is possible. A controller once called, passes on the call,
that is, it can use internal frames created by its implementation. A frame also passes the call to
other objects, for example, its parent frame.

The current implementation of the chain is different from a simple chain.A frame is always the
leading chain member and must be called initially, but in the default implementation used in
OpenOffice.org, the frame first(!) asks its controller before it goes on with the request. Other frame
implementations handle this in a different way. Other chain members are inserted into the call
sequence before the controller uses the dispatch interception capability of a frame. The developers
should not rely on any particular order inside the chain.

The dispatch framework uses a generic approach to describe and handle requests with a lose
coupling between the participating objects. To work correctly, it is necessary to follow certain
rules:

1. Every chain starts at a frame, and this object decides if it passes on the call to its controller. The
controller is not called directly from the outside. This is not compulsory for internal usage of
the dispatch API inside an office component implementation. Ther two reasons for this rule
are:

• A frame providesa com.sun.star.frame.XDispatchProviderInterception interface,
where other dispatch providers dock. The frame implementation guarantees that these
interceptors are called before the frame handles the request or passes it to the controller.
This allows a sophisticated customization of the dispatch handling.

• If a component is placed into a context where parts of its functionality are not be exposed to
the outside, a special frame implementation is used to suppress or handle requests before
they are passed to the controller. This frame can add or remove arguments to requests and
exchange them.

2. A command URL isparsed into a com.sun.star.util.URL struct before passing it to a
dispatch provider, because it is assumed that the call is passed on to several objects. Having a
preparsed URL saves parsing the command string repeatedly. Parsing means that the members
Complete, Main, Protocol and at least one more member of the com.sun.star.util.URL
struct, depending on the given protocol scheme have to be set. Additional members are set if
the concrete URL protocol supports them. For well known protocol schemes and protocol
schemes specific to OpenOffice.org, the service com.sun.star.util.URLTransformer is used
to fill the struct from a command URL string. For other protocols, the members are set explic-
itly, but it is also possible to write an extended version of the URLTransformer service to carry
out URL parsing. An extended URLTransformer must support all protocols supported by the

368 OpenOffice.org 1.1 Developer's Guide • June 2003

default URLTransformer implementation, for example, by instantiating the old implementation
by its implementation name and forwarding all known URLs to it, except URLs with new
protocols.

The dispatch framework connects an object that creates a request with another object that reacts on
the request. In addition, it provides feedback to the requester. It can tell if the request is currently
allowed or not. If the request acts on a specific attribute of an object, it c provides the current
status of this attribute. Altogether, this is called status information, represented by a
com.sun.star.frame.FeatureStateEvent struct. This information is reflected in a user interface
by enabling or disabling controls to show their availability, or by displaying the status of objects.
For example, a pressed button for the bold attribute of text, or a numeric value for the text height
in a combo box.

The com.sun.star.frame.XDispatchProvider interface does not handle requests, but delegates
every request to an individual dispatch object implementing com.sun.star.frame.XDispatch.

 This is the concept, but the implementation is not forced and it may decide to return the same object for
every request. It is not recommened to use the dispatch provider object as a dispatch object.

Dispatch Process
This section describes the necessary steps to handle dispatch providers and dispatch objects. The
illustration below shows the services and interfaces of the the Dispatch framework.

Chapter 6 Office Development 369

Getting a Dispatch Object
First, create a command URL that represents the desired functionality ensuring that it is parsed as
described above. Tables with possible command URLs for the default office components of
OpenOffice.org are located in the appendix.

Request the com.sun.star.frame.XDispatchProvider interface of the frame that contains the
office component for a dispatch object for the command URL by calling its queryDispatch()
method.

com::sun::star::frame::XDispatch queryDispatch ([in] com::sun::star::util::URL URL,
 [in] string TargetFrameName,
 [in] long SearchFlags)
sequence< com::sun::star::frame::XDispatch > queryDispatches (
 [in] sequence< com::sun::star::frame::DispatchDescriptor > Requests)

370 OpenOffice.org 1.1 Developer's Guide • June 2003

 Illustration 63: Dispatch Framework

The additional parameters (TargetFrameName, SearchFlags) of this call are only used for
dispatching public URL schemes, because they specify a target frame and frame search mode to
the loading process. Valid target names and search flags are described in the section 6.1.5 Office
Development - OpenOffice.org Application Environment - Handling Documents - Loading Documents -
Target Frame. The targets "_self", "_parent" and "_top" are well defined, so that they can be
used, because a queryDispatch() call starts at a frame object. Using frame names or search flags
with command URLs does not have any meaning in the office components in OpenOffice.org.

You receive a dispatch object that supports at least com.sun.star.frame.XDispatch:
[oneway] void dispatch ([in] com::sun::star::util::URL URL,
 [in] sequence< com::sun::star::beans::PropertyValue > Arguments)
[oneway] void addStatusListener ([in] com::sun::star::frame::XStatusListener Control,
 [in] com::sun::star::util::URL URL)
[oneway] void removeStatusListener ([in] com::sun::star::frame::XStatusListener Control,
 [in] com::sun::star::util::URL URL)

Listening for Status Information
If a dispatch object is received, add a listener for status events by calling its addStatusListener()
method. A com.sun.star.frame.XStatusListener implements:

[oneway] void statusChanged ([in] com::sun::star::frame::FeatureStateEvent Event)

Keep a reference to the dispatch object until you call the removeStatusListener() method,
because it is not sure that any other object will keep it alive. If a status listener is not registered,
because you want to dispatch a command,and are not interested in status events, release all refer-
ences to the dispatch object immediately after usage. If a dispatch object is not received, the
desired functionality is not available. If you have a visual user interface element that represents
that functionality, disable it.

If a status listener is registered and there is status information, a
com.sun.star.frame.FeatureStateEvent is received immediately after registering the listener.
Status information is still received later if the status changes and you are still listening. The
IsEnabled member of the com.sun.star.frame.FeatureStateEvent tells you if the functionality
is currently available, and the State member holds information about a status that could be repre-
sented by UI elements. Its type depends on the command URL. A boolean status information is
visualized in a pressed or not pressed look of a toolbox button. Other types need complex
elements, such as combo boxes or spinfields embedded in a toolbox that show the current font and
font size. If the State member is empty, the action does not have an explicit status, such as the
menu item File – Print. The current status can be ambiguous , because more than one object is
selected and the objects are in a different status, for example. selected text that is partly formatted
bold and partly regular.

A special event is a status event where the Requery flag is set. This is a request to release all refer-
ences to the dispatch object and to ask the dispatch provider for a new object, because the old one
has become invalid. This allows the office components to accommodate internal context changes.
It is possible that a dispatch object is not received, because the desired functionality has become
unavailable.

If you do not get any status information in your statusChanged() implementation, assume that
the functionality is always available, but has no explicit status.

If you are no longer interested in status events, use the removeStatusListener() method and
release all references to the dispatch object. You may get a disposing() callback from the
dispatch object when it is going to be destroyed. It is not necessary to call removeStatusListener
(). Ensure that you do not hold any references to the dispatch object anymore.

Chapter 6 Office Development 371

Listening for Context Changes
Sometimes internal changes, for example, travelling from a text paragraph to a text table, or
selecting a different type of object, force an office component to invalidate all referenced dispatch
objects and provides other dispatch objects, including dispatches for command URLs it could not
handle before. The component then calls the contextChanged() method of its frame, and the
frame broadcasts the corresponding com.sun.star.frame.FrameActionEvent. For this reason,
register a frame action listener using addFrameActionListener() at frames you want dispatch
objects. Refer to section 6.1.3 Office Development - OpenOffice.org Application Environment - Using the
Component Framework - Frames - XFrame - Frame Actions for additional information. If the listener is
called back with a CONTEXT_CHANGED event, release all dispatch objects and query new
dispatch objects for every command URL you require. You can also try command URLs that did
not get a dispatch object before.

If you are no longer interested in context changes of a frame, use the removeFrameActionLis-
tener() method of the frame to deregister and release all references to the frame. If you get a
disposing() request from the frame in between, it is not necessary to call removeFrameAction-
Listener(), but you must release all frame references you are currently holding.

Dispatching a Command
If the desired functionality is available, execute it by calling the dispatch() method of the
dispatch object. This method is called with the same command URL you used to get it, and option-
ally with a sequence of arguments of type com.sun.star.beans.PropertyValue that depend on
the command. It is not redundant that supplied the URL again, because it is allowed to use one
dispatch object for many command URLs. The appendix shows the names and types for the
parameters. However, the command URLs for simple user interface elements, such as menu
entries or toolbox buttons send no parameters. Complex user interface elements use parameters,
for example, a combo box in a toolbar that changes the font height. (OfficeDev /DesktopEnviron-
ment /FunctionHelper.java)
 // Conditions: sURL = "private:factory/swriter"
 // lProperties = new com.sun.star.beans.PropertyValue[0]
 // xSMGR = m_xServiceManager
 // xListener = this
// xFrame = a given frame

 // Query the frame for right interface which provides access to all
 // available dispatch objects.
 com.sun.star.frame.XDispatchProvider xProvider =
 (com.sun.star.frame.XDispatchProvider)UnoRuntime.queryInterface (
 com.sun.star.frame.XDispatchProvider .class, xFrame);
// Create and parse a valid URL
 // Note: because it is an in/out parameter we must use an array of URLs
 com.sun.star.util.XURLTransformer xParser =
 (com.sun.star.util.XURLTransformer)UnoRuntime.queryInterface (
 com.sun.star.util.XURLTransformer .class,
 xSMGR.createInstance("com.sun.star.util.URLTransformer"));

 com.sun.star.util.URL[] aParseURL = new com.sun.star.util.URL[1];
 aParseURL[0] = new com.sun.star.util.URL();
 aParseURL[0].Complete = sURL;

xParser.parseStrict (aParseURL);

 // Ask for dispatch object for requested URL and use it.
 // Force given frame as target "" which means the same like "_self".
 xDispatcher = xProvider.queryDispatch(aParseURL[0],"",0);

if(xDispatcher!=null)
 {
 xDispatcher.addStatusListener (xListener,aParseURL[0]);
 xDispatcher.dispatch (aParseURL[0],lProperties);
 }

372 OpenOffice.org 1.1 Developer's Guide • June 2003

Dispatch Results
Every dispatch object implement optional interfaces. An important extension is the
com.sun.star.frame.XNotifyingDispatch interface for dispatch results. The dispatch() call is
a void method and should be treated as an asynchronous or oneway call, therefore a dispatch
result can not be passed as a return value, rather, a callback interface is necessary. The interface
that provides dispatch results by a callback is the com.sun.star.frame.XNotifyingDispatch
interface:

[oneway] void dispatchWithNotification ([in] com::sun::star::util::URL URL,
 [in] sequence< com::sun::star::beans::PropertyValue > Arguments,
 [in] com::sun::star::frame::XDispatchResultListener Listener)

Its method dispatchWithNotification() takes a
com.sun.star.frame.XDispatchResultListener interface that is called after a dispatched URL
has been executed.

Although the dispatch process is considered to be asynchronous, this is not necessarily so. Therefore, be
prepared to get the dispatch result notification before the dispatch call returns.

The dispatch result is transferred as a com.sun.star.frame.DispatchResultEvent struct in the
callback method dispatchFinished(). The State member of this struct tells if the dispatch was
successful or not, while the Result member contains the value that would be returned if the call
had been executed as a synchronous function call. The appendix shows the types of return values.
If a public URL is dispatched, the dispatch result is a reference to the frame the component was
loaded into. (OfficeDev/DesktopEnvironment /FunctionHelper.java)
 // Conditions: sURL = "private:factory/swriter"
 // lProperties = new com.sun.star.beans.PropertyValue[0]
 // xSMGR = m_xServiceManager
 // xListener = this

 // Query the frame for right interface which provides access to all
 // available dispatch objects.
 com.sun.star.frame.XDispatchProvider xProvider =
 (com.sun.star.frame.XDispatchProvider)UnoRuntime.queryInterface (
 com.sun.star.frame.XDispatchProvider .class, xFrame);
 // Create and parse a valid URL
 // Note: because it is an in/out parameter we must use an array of URLs
 com.sun.star.util.XURLTransformer xParser =
 (com.sun.star.util.XURLTransformer)UnoRuntime.queryInterface(
 com.sun.star.util.XURLTransformer .class,
 xSMGR.createInstance ("com.sun.star.util.URLTransformer "));
 // Ask for right dispatch object for requested URL and use it.
 // Force given frame as target "" which means the same like "_self".
 // Attention: The interface XNotifyingDispatch is an optional one!
 com.sun.star.frame.XDispatch xDispatcher =
 xProvider.queryDispatch (aURL,"",0);

 com.sun.star.frame.XNotifyingDispatch xNotifyingDispatcher =
 (com.sun.star.frame.XNotifyingDispatch)UnoRuntime.queryInterface (
 com.sun.star.frame.XNotifyingDispatch.class , xDispatcher);
 if(xNotifyingDispatcher!=null)
 xNotifyingDispatcher.dispatchWithNotification (aURL, lProperties, xListener);

Dispatch Interception
The dispatch framework described in the last chapter establishes a communication between a user
interfaces and an office component. Both can be OpenOffice.org default components or custom
components. Sometimes it is not necessary to replace a UI element by a new implementation. It
can be sufficient to influence its visualized state or to redirect user interactions to external code.
This is the typical use for dispatch interception.

Chapter 6 Office Development 373

The dispatch communication works in two directions: status information is transferred from the
office component to the UI elements and user requests travel from the UI element to the office
component. Both go through the same switching center that is, an object implementing
com.sun.star.frame.XDispatch. The UI element gets this object by calling queryDispatch() at
the frame containing the office component, and usually receives an object that connects to code
inside the frame, the office component or global services in OpenOffice.org. The frame offers an
interface that is used to return third- party dispatch objects that provide the UI element with status
updates. For example, it is possible to disable a UI element that would not be disabled otherwise.
Another possibility is to write replacement code that is called by the UI element if the user
performs a suitable action.

Dispatch objects are provided by objects implementing the
com.sun.star.frame.XDispatchProvider interface, and that is the interface you are required to
implement. There is an extra step where the dispatch provider must be attached to the frame to
intercept the dispatching communication, therefore the dispatch provider becomes a part of the
chain of responsibility described in the previous section. This is accomplished by implementing
com.sun.star.frame.XDispatchProviderInterceptor.

This chain usually only consists of the frame and the controller of the office component it contains,
but the frame offers the com.sun.star.frame.XDispatchProviderInterception interface where
other providers are inserted. They are called before the frame tries to find a dispatch object for a
command URL, so that it is possible to put the complete dispatch communication in a frame under
external control. More than one interceptor can be registered, thus building a bigger chain.

Routing every dispatch through the whole chain becomes a performance problem, because could
be more than a hundred possible clients asking for a dispatch object. For this reason there is also
an API that limits the routing procedure to particular commands or command groups. This is
described below.

Once the connection is established, the dispatch interceptor decides how requests for a dispatch
object are dealt with. When asked for a dispatch object for a Command URL, it can:

• Return an empty interface that disables the corresponding functionality.

There's a bug in Ooo1.0/SO6.0 that this does not work, so disabling must be done explicitly
(see below). It will be fixed in Ooo1.02/SO6.02.

• Pass the request to the next chain member, called slave dispatcher provider described below if it is
not interested in that functionality.

• Handle the request and return an object implementing com.sun.star.frame.XDispatch. As
described in the previous chapter, client objects may register at this object as status event
listeners. The dispatch object returns any possible status information as long as the type of the
"State" member in the com.sun.star.frame.FeatureStateEvent struct has one of the
expected types, otherwise the client requesting the status information can not handle it prop-
erly. The expected types must be documented together with the existing commands.For
example, if a menu entry wants status information, it handles a void, that is, do nothing special
or a boolean state by displaying a check mark, but nothing else.
The status information could contain a disable directive. Note that a dispatch object returns
status information immediately when a listener registers. Any , events change can be broad-
casted at arbitrary points in time.

• The returned dispatch object is also used by client objects to dispatch the command that
matches the command URL. The dispatch object receiving this request checks if the code it
wants to execute is valid under the current conditions. It is not sufficient to rely on disable
requests, because a client is not forced to register as a status listener if it wants to dispatch a
request.

374 OpenOffice.org 1.1 Developer's Guide • June 2003

The slave dispatch provider and master dispatch provider in the
com.sun.star.frame.XDispatchProviderInterceptor interface are a bit obscure at first. They
are two pointers to chain members in both directions, next and previous, where the first and last
member in the chain have special meanings and responsibilities.

The command dispatching passes through a chain of dispatch providers, starting at the frame. If
the frame is answered to include an interceptor in this chain, the frame inserts the interceptor in
the chain and passes the following chain member to the new chain member, so that calls are
passed along the chain if it does not want to handle them.

If any interceptor is deregistered, the frame puts the lose ends together by adjusting the master
and slave pointer of the chain successor and predecessor of the element that is going to be
removed from the chain. All of them are interceptors, so only the last slave is a dispatch provider.

The frame takes care of the whole chain in the register or deregister of calls in the dispatch
provider interceptor, so that the implementer of an interceptor does not have to be concerned with
the chain construction.

6.1.7 Java Window Integration
This section discusses experiences obtained during the development of Java-OpenOffice.org inte-
gration. Usually, developers use the OfficeBean for this purpose. The following provides back-
ground information about possible strategies to reach this goal.

There are multiple possibilities to integrate local windows with OpenOffice.org windows. This
chapter shows the integration of OpenOffice.org windows into a Java bean environment. Some of
this information maybe helpful with other local window integrations.

The Window Handle
An important precondition is the existence of a system window handle of the own Java window.
For this, use a java.awt.Canvas and the following JNI methods:

• a method to query the window handle (HWND on Windows, X11 ID on UNIX)

• a method to identify the operating system, for example, UNIX, Windows, or Macintosh

For an example, see bean/com/sun/star/beans/LocalOfficeWindow.java

The two methods getNativeWindow() and getNativeWindowSystemType() are declared and
exported, but implemented for windows in
bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c through JNI

 It has to be a java.awt.Cavans. These JNI methods cannot be implemented at a Swing control, because it
does not have its own system window. You can use a java.awt.Canvas in a Swing container environment.

 The handle is not available before the window is visible, otherwise the JNI function does not work. One
possibility is to cache the handle and set it in show() or setVisible().

Using the Window Handle
The window handle create the OpenOffice.org window. There are two ways to accomplish this:

Chapter 6 Office Development 375

A Hack
This option is mentioned because there are situations where this is the only feasible method. The
knowledge of this option can help in other situations.

Add the UNO interface com.sun.star.awt.XWindowPeer so that it is usable for the
OpenOffice.org window toolkit. This interface can have an empty implementation. In
com.sun.star.awt.XToolkit:createWindow(), another interface
com.sun.star.awt.XSystemDependentWindowPeer is expected that queries the HWND. Thus,
XWindowPeer is for transporting and com.sun.star.awt.XSystemDependentWindowPeer queries
the HWND.

This method getsa com.sun.star.awt.XWindow as a child of your own Java window, that is used
to initialize a com.sun.star.frame.XFrame.
(OfficeDev/DesktopEnvironment /FunctionHelper.java)
com.sun.star.awt.XToolkit xToolkit =
 (com.sun.star.awt.XToolkit)UnoRuntime.queryInterface(
 com.sun.star.awt.XToolkit.class,
 xSMGR.createInstance("com.sun.star.awt.Toolkit"));

// this is the canvas object with the JNI methods
 aParentView = ...
 // some JNI methods cannot work before this
aParentView.setVisible(true);

// now wrap the canvas (JavaWindowPeerFake) and add the necessary interfaces
com.sun.star.awt.XWindowPeer xParentPeer =
 (com.sun.star.awt.XWindowPeer)UnoRuntime.queryInterface(
 com.sun.star.awt.XWindowPeer.class,
 new JavaWindowPeerFake(aParentView));

com.sun.star.awt.WindowDescriptor aDescriptor = new com.sun.star.awt.WindowDescriptor();
aDescriptor.Type = com.sun.star.awt.WindowClass.TOP;
aDescriptor.WindowServiceName = "workwindow";
aDescriptor.ParentIndex = 1;
aDescriptor.Parent = xParentPeer;
aDescriptor.Bounds = new com.sun.star.awt.Rectangle(0,0,0,0);
if (aParentView.getNativeWindowSystemType()==com.sun.star.lang.SystemDependent.SYSTEM_WIN32)
 aDescriptor.WindowAttributes = com.sun.star.awt.WindowAttribute.SHOW;
else

 aDescriptor.WindowAttributes = com.sun.star.awt.WindowAttribute.SYSTEMDEPENDENT;

// now the toolkit can create an com.sun.star.awt.XWindow
 com.sun.star.awt.XWindowPeer xPeer = xToolkit.createWindow(aDescriptor);
com.sun.star.awt.XWindow xWindow =
 (com.sun.star.awt.XWindow)UnoRuntime.queryInterface(

 com.sun.star.awt.XWindow.class,
 xPeer);

Legal Solution
The com.sun.star.awt.Toolkit service has a method
com.sun.star.awt.XSystemChildFactory with a method createSystemChild(). This accepts
an any with a wrapped HWND or X Window ID, as long and the system type, such as Windows,
Java, and UNIX directly. Here you create an com.sun.star.awt.XWindow. This method cannot be
used in OpenOffice.org build versions before src642, because the process ID parameter is
unknown to the Java environment. Newer versions do not check this parameter, thus this new,
method works.

 As a user of com.sun.star.awt.XSystemChildFactory:createSystemChild() ensure that your
client (Java application) and your server (OpenOffice.org) use the same display. Otherwise the window
handle is not interchangeable.

(OfficeDev/DesktopEnvironment /FunctionHelper.java)
com.sun.star.awt.XToolkit xToolkit =
 (com.sun.star.awt.XToolkit)UnoRuntime.queryInterface(
 com.sun.star.awt.XToolkit.class,
 xSMGR.createInstance("com.sun.star.awt.Toolkit"));

376 OpenOffice.org 1.1 Developer's Guide • June 2003

// this is the canvas with the JNI functions
 aParentView = ...
 // some JNI funtions will not work withouth this
aParentView.setVisible(true);

// no wrapping necessary, simply use the HWND
com.sun.star.awt.XSystemChildFactory xFac =
 (com.sun.star.awt.XSystemChildFactory)UnoRuntime.queryInterface(
 com.sun.star.awt.XSystemChildFactory.class,
 xToolkit);

Integer nHandle = aParentView.getHWND();
byte[] lIgnoredProcessID = new byte[0];

com.sun.star.awt.XWindowPeer xPeer =
 xFac.createSystemChild(
 (Object)nHandle,
 lIgnoredProcessID,
 com.sun.star.lang.SystemDependent.SYSTEM_WIN32);

com.sun.star.awt.XWindow xWindow =
 (com.sun.star.awt.XWindow)UnoRuntime.queryInterface(
 com.sun.star.awt.XWindow.class,
 xPeer);

 The old method still works and can be used, but it should be considered deprecated. If in doubt, implement
both and try the new method at runtime. If it does not work, try the hack.

Resizing

Another difficulty is resizing the window. Normally, the child window expects resize events of the
parent. The child does not resize it window, because it must know the layout of the parent
window. The VCL, OpenOffice.org's windowing engine creates a special system child window,
thus we can resize windows.

The parent window can be filled "full size" with the child window, but only for UNIX and not for
Windows. The VCL's implementation is system dependent.

The bean deals with this issue by adding another function to the local library. Windows adds arbi-
trary properties to an HWND. You can also subclass the window, that is, each Windows window
has a function pointer or callback to the function that performs the event handling (WindowProce-
dure). Using this, it is possible to treat events by calling your own methods. This is useful when-
ever the window is not created by you and you need to influence the behavior of the window.

In this case, the Java window has not been created by us, but we need to learn about resize events
to forward these to the OpenOffice.org window. Look at the file
bean/native/win32/com_sun_star_beans_LocalOfficeWindow.c, and find the method OpenOfficeWnd-
Proc(). In the first call of the JNI function
Java_com_sun_star_beans_LocalOfficeWindow_getNativeWindow() of this file, the own
handler is applied to the foreign window.

 The old bean implementation had a bug that is fixed in newer versions. If you did not check if the function
pointer was set, and called Java_com_sun_star_beans_LocalOfficeWindow_getNativeWindow()
multiple times, you created a chain of functions that called each other with the result of an endless recursion
leading to a stack overflow. If the own handler is already registered, it is now marked in one of the previ-
ously mentioned properties registered with an HWND:

In the future, VCL will do this sub-classing by itself, even on Windows. This will lead to equal
behavior between Windows and UNIX.

The initial size of the window is a related problem. If a canvas is connected with a [PRODUCT-
NAME] window, set both sizes to a valid, positive value, otherwise the [PRODUCTNAME]
window will not be visible. If you are using a non-product build of OpenOffice.org, you see an
assertion failed "small world isn't it". This might change when the sub-classing is done by VCL in
the future.

Chapter 6 Office Development 377

There is still one unresolved problem. The code mentioned above works with Java 1.3, but not for
Java 1.4. There, the behavior of windows is changed. Where Java 1.3 sends real resize events from
the own WindowProc, Java 1.4 does a re-parenting. The canvas window is destroyed and created
again. This leads to an empty window with no OpenOffice.org window. This problem is under
investigation.

More Remote Problems
There are additional difficulties to window handles and local window handles. Some personal
experiences of one of the OpenOffice.org authors are provided:

• Listeners in Java should be implemented in a thread. The problem is that SolarMutex, a mutex
semaphore of OpenOffice.org, one-way UNO methods and the global Java GUI thread do not
work together.

• The Java applet should release its listeners. If they stay in the containers of OpenOffice.org
after the Java process ends, UNO throws a com.sun.star.lang.DisposedException, which
are not caught correctly. Java does not know destructors, therefore it is a difficult to follow this
advice. One possibility is to register a Thread object at java.Runtime as a ShutDownHook. This
is called even when CTRL-C is pressed on the command line where you can deregister the
listeners. Because listeners are threads, there is some effort.

6.2 Common Application Features

6.2.1 Clipboard
This chapter introduces the usage of the clipboard service
com.sun.star.datatransfer.clipboard.SystemClipboard. The clipboard serves as a data exchange
mechanism between OpenOffice.org custom components, or between custom components and
external applications. It is usually used for copy and paste operations.

 Note: The architecture of the OpenOffice.org clipboard service is strongly conforming to the Java clipboard
specification.

Different platforms use different methods for describing data formats available on the clipboard.
Under Windows, clipboard formats are identified by unique numbers, for example, under X11, a
clipboard format is identified by an ATOM. To have a platform independent mechanism, the
OpenOffice.org clipboard supports the concept of DataFlavors. Each instance of a DataFlavor
represents the opaque concept of a data format as it would appear on a clipboard. A DataFlavor
defined in com.sun.star.datatransfer.DataFlavor has three members:

Members of com.sun.star.datatransfer.DataFlavor
MimeType A string that describes the data. This string must conform to Rfc2045 and

Rfc2046 with one exception. The quoted parameter may contain spaces. In
section 6.2.1 Office Development - Common Application Features - Clipboard -
OpenOffice.org Clipboard Data Formats, a list of common DataFlavors supported
by OpenOffice.org is provided.

HumanPresentableName The human presentable name for the data format that this DataFlavor repre-
sents.

378 OpenOffice.org 1.1 Developer's Guide • June 2003

Members of com.sun.star.datatransfer.DataFlavor
DataType The type of the data. In section 6.2.1 Office Development - Common Application

Features - Clipboard - OpenOffice.org Clipboard Data Formats there is a list of
common DataFlavors supported by OpenOffice.org and their corresponding
DataType.

The carrier of the clipboard data is a transferable object that implements the interface
com.sun.star.datatransfer.XTransferable. A transferable object offers one or many different
DataFlavors.

Using the Clipboard

Pasting Data
The following Java example demonstrates the use of the clipboard service to paste from the clip-
board. (OfficeDev/Clipboard /Clipboard.java)
import com.sun.star.datatransfer.*;
import com.sun.star.datatransfer.clipboard.*;
import com.sun.star.uno.AnyConverter;
...

// instantiate the clipboard service

Object oClipboard =
 xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.datatransfer.clipboard.SystemClipboard",
 xComponentContext);

// query for the interface XClipboard

XClipboard xClipboard = (XClipboard)
 UnoRuntime.queryInterface(XClipboard.class, oClipboard);

//---
// get a list of formats currently on the clipboard
//---

XTransferable xTransferable = xClipboard.getContents();

DataFlavor[] aDflvArr = xTransferable.getTransferDataFlavors();

// print all available formats

System.out.println("Reading the clipboard...");
System.out.println("Available clipboard formats:");

DataFlavor aUniFlv = null;

for (int i=0;i<aDflvArr.length;i++)
{

 System.out.println("MimeType: " +
 aDflvArr[i].MimeType +
 " HumanPresentableName: " +
 aDflvArr[i].HumanPresentableName);

 // if there is the format unicode text on the clipboard save the
 // corresponding DataFlavor so that we can later output the string

 if (aDflvArr[i].MimeType.equals("text/plain;charset=utf-16"))
 {
 aUniFlv = aDflvArr[i];
 }

}

System.out.println("");

try
{

 if (aUniFlv != null)
 {
 System.out.println("Unicode text on the clipboard...");
 Object aData = xTransferable.getTransferData(aUniFlv);
 System.out.println(AnyConverter.toString(aData));
 }

Chapter 6 Office Development 379

}
catch(UnsupportedFlavorException ex)
{

 System.err.println("Requested format is not available");
}

...

Copying Data
To copy to the clipboard, implement a transferable object that supports the interface
com.sun.star.datatransfer.XTransferable. The transferable object offers arbitrary formats
described by DataFlavors.

The following Java example demonstrates the implementation of a transferable object. This trans-
ferable object contains only one format, unicode text.
(OfficeDev/Clipboard /TextTransferable.java)
//---------------------------------------
 // A simple transferable containing only
 // one format, unicode text
 //---------------------------------------

public class TextTransferable implements XTransferable
 {
 public TextTransferable(String aText)
 {
 text = aText;
 }

 // XTransferable methods

 public Object getTransferData(DataFlavor aFlavor) throws UnsupportedFlavorException
 {
 if (!aFlavor.MimeType.equalsIgnoreCase(UNICODE_CONTENT_TYPE))
 throw new UnsupportedFlavorException();

 return text;
 }

 public DataFlavor[] getTransferDataFlavors()
 {
 DataFlavor[] adf = new DataFlavor[1];
 DataFlavor uniflv = new DataFlavor(
 UNICODE_CONTENT_TYPE,
 "Unicode Text",
 new Type(String.class));

 adf[0] = uniflv;

 return adf;
 }

 public boolean isDataFlavorSupported(DataFlavor aFlavor)
 {
 return aFlavor.MimeType.equalsIgnoreCase(UNICODE_CONTENT_TYPE);
 }

 // members
 private final String text;
 private final String UNICODE_CONTENT_TYPE = "text/plain;charset=utf-16";
 }

Everyone providing data to the clipboard becomes a clipboard owner. A clipboard owner is an
object that implements the interface
com.sun.star.datatransfer.clipboard.XClipboardOwner. If the current clipboard owner
loses ownership of the clipboard, it receives a notification from the clipboard service. The clip-
board owner can use this notification to destroy the transferable object that was formerly on the
clipboard. If the transferable object is a self-destroying object, destroying clears all references to
the object. If the clipboard service is the last client, clearing the reference to the transferable object
leads to destruction.

All data types except for text have to be transferred as byte array. The next example shows this for
a bitmap.
public class BmpTransferable implements XTransferable
{
 public BmpTransferable(byte[] aBitmap)
 {
 mBitmapData = aBitmap;
 }

380 OpenOffice.org 1.1 Developer's Guide • June 2003

 // XTransferable methods
 public Object getTransferData(DataFlavor aFlavor) throws UnsupportedFlavorException
 {
 if (!aFlavor.MimeType.equalsIgnoreCase(BITMAP_CONTENT_TYPE))
 throw new UnsupportedFlavorException();

 return mBitmapData;
 }
 public DataFlavor[] getTransferDataFlavors()
 {
 DataFlavor[] adf = new DataFlavor[1];
 DataFlavor bmpflv= new DataFlavor(
 BITMAP_CONTENT_TYPE,
 "Bitmap",
 new Type(byte[].class));
 adf[0] = bmpflv;

 return adf;
 }
 public boolean isDataFlavorSupported(DataFlavor aFlavor)
 {
 return aFlavor.MimeType.equalsIgnoreCase(BITMAP_CONTENT_TYPE);
 }

 // members
 private byte[] mBitmapData;
 private final String BITMAP_CONTENT_TYPE = "application/x-openoffice;windows_formatname="Bitmap"";
}

The following Java example shows an implementation of the interface
com.sun.star.datatransfer.clipboard.XClipboardOwner.
(OfficeDev/Clipboard /ClipboardOwner.java)
...

//--
// A simple clipboard owner implementation
//--

public class ClipboardOwner implements XClipboardOwner
{

 public void lostOwnership(
 XClipboard xClipboard,
 XTransferable xTransferable)
 {
 System.out.println("");
 System.out.println("Lost clipboard ownership...");
 System.out.println("");

 isowner = false;
 }

 public boolean isClipboardOwner()
 {
 return isowner;
 }

 private boolean isowner = true;
}

...

The last two samples combined show how it is possible to copy data to the clipboard as demon-
strated in the following Java example. (OfficeDev/Clipboard /Clipboard.java)
import com.sun.star.datatransfer.*;
 import com.sun.star.datatransfer.clipboard.*;
 import com.sun.star.uno.AnyConverter;
...

// instantiate the clipboard service

Object oClipboard =
 xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.datatransfer.clipboard.SystemClipboard",
 xComponentContext);

// query for the interface XClipboard

XClipboard xClipboard = (Xclipboard)UnoRuntime.queryInterface(XClipboard.class, oClipboard);
//---
 // becoming a clipboard owner
 //---

Chapter 6 Office Development 381

System.out.println("Becoming a clipboard owner...");
 System.out.println("");
ClipboardOwner aClipOwner = new ClipboardOwner();

 xClipboard.setContents(new TextTransferable("Hello World!"), aClipOwner);
while (aClipOwner.isClipboardOwner())
 {
 System.out.println("Still clipboard owner...");
 Thread.sleep(1000);
 }
...

Becoming a Clipboard Viewer
It is useful to listen to clipboard changes. User interface controls may change their visible appear-
ance depending on the current clipboard content. To avoid polling on the clipboard, the clipboard
service supports an asynchronous notification mechanism. Every client that needs notification
about clipboard changes implements the interface
com.sun.star.datatransfer.clipboard.XClipboardListener and registers as a clipboard
listener.
Implementing the interface com.sun.star.datatransfer.clipboard.XClipboardListener is
simple as the next Java example demonstrates. (OfficeDev/Clipboard /ClipboardListener.java)
//----------------------------
 // A simple clipboard listener
 //----------------------------
public class ClipboardListener implements XClipboardListener
 {
 public void disposing(EventObject event)
 {
 }

 public void changedContents(ClipboardEvent event)
 {
 System.out.println("");
 System.out.println("Clipboard content has changed!");
 System.out.println("");
 }
 }

If the interface was implemented by the object, it registers as a clipboard listener. A clipboard
listener deregisters if clipboard notifications are no longer necessary. Both aspects are demon-
strated in the next example. (OfficeDev /Clipboard /Clipboard.java)
// instantiate the clipboard service
Object oClipboard =
 xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.datatransfer.clipboard.SystemClipboard",
 xComponentContext);
// query for the interface XClipboard
XClipboard xClipboard = (XClipboard)
 UnoRuntime.queryInterface(XClipboard.class, oClipboard);
//---
 // registering as clipboard listener
 //---
XClipboardNotifier xClipNotifier = (XClipboardNotifier)
 UnoRuntime.queryInterface(XClipboardNotifier.class, oClipboard);
ClipboardListener aClipListener= new ClipboardListener();
xClipNotifier.addClipboardListener(aClipListener);
...
//---
 // unregistering as clipboard listener
 //---
xClipNotifier.removeClipboardListener(aClipListener);
...

OpenOffice.org Clipboard Data Formats
This section describes common clipboard data formats that OpenOffice.org supports and their
corresponding DataType.
As previously mentioned, data formats are described by DataFlavors. The important characteris-

382 OpenOffice.org 1.1 Developer's Guide • June 2003

tics of a DataFlavor are the MimeType and DataType. The OpenOffice.org clipboard service uses a
standard MimeType for different data formats if there is one registered at Iana . For example, for
HTML text, the MimeType "text/html" is used, Rich Text uses the MimeType
"text/richtext", and text uses "text/plain". If there is no corresponding MimeType regis-
tered at Iana, OpenOffice.org defines a private MimeType. Private OpenOffice.org MimeType
always has the MimeType "application/x-openoffice". Each private OpenOffice.org Mime-
Type has a parameter "windows_formatname" identifying the clipboard format name used under
Windows. The used Windows format names are the format names used with older
OpenOffice.org versions. Common Windows format names are "Bitmap", "GDIMetaFile", "File-
Name", "FileList", and "DIF".
The DataType of a DataFlavor identifies how the data are exchanged. There are only two
DataTypes that can be used. The DataType for Unicode text is a string, and in Java, String.class,
For all other data formats, the DataType is a sequence of bytes in Java byte[].class.

The following table lists common data formats, and their corresponding MimeType and
DataTypes:

Form MimeType DataType (in Java) Description
Unicode Text text/plain;charset=utf-16 String.class Unicode Text

Richtext text/richtext byte[].class Richtext

Bitmap application/x-
openoffice;windows_formatname="Bit
map"

byte[].class A bitmap in
OpenOffice bitmap
format.

HTML Text text/html byte[].class HTML Text

6.2.2 Internationalization
The I18N framework provides interfaces to access locale-dependent data (e.g. calendar data,
currency) and methods (e.g. collation and transliteration). The I18N framework offers full-featured
internationalization functionality that covers a range of geographic locations that include South
Asia (China, Japan, and Korea, or CJK), Europe, Middle East (Hebrew, Arabic) and South-East
Asia (Thai, Indian). Also, the I18N framework builds on the component model UNO, thus making
the addition of new internationalization components easy.

Introduction
The I18N framework contains a lot of data and many interfaces and methods not important to
developers of external code using the OpenOffice.org API, but only for developers of the
OpenOffice.org application itself. This chapter is split into two parts, one that gives a short over-
view on using the API and is restricted to what is useful to external developers, and a second part
that focuses on how to implement a new locale supporting the API (Note that this section does not
cover how to translate and localize the OpenOffice.org resources).

Chapter 6 Office Development 383

Overview and Using the API

XLocaleData
The com.sun.star.i18n.XLocaleData interface provides access to locale-specific information,
such as decimal separators, group (thousands) separators, currency information, calendar data,
and number format codes. No further functionality is discussed.

XCharacterClassification
The com.sun.star.i18n.XCharacterClassification interface is used to determine the Unicode
type of a character (such as uppercase, lowercase, letter, digit, punctuation) or the script type . It
also provides methods to perform simple uppercase to lowercase and lowercase to upper case
conversions that are locale-dependent but do not need real transliteration. An example of locale-
dependent case conversion is the Turkish lowercase i to uppercase I-dot and lowercase i-dotless to
uppercase I conversion, as opposed to the western lowercase i to uppercase I conversion.

There was a bug in OpenOffice.org 1.0.2 that prevents this special example of Turkish case conversion to
work properly. The issue is resolved for OpenOffice.org 1.1.

Another provided functionality is parsing methods to isolate and determine identifiers, numbers,
and quoted strings in a given string. See the description of
com.sun.star.i18n.XCharacterClassification methods parseAnyToken() and parsePrede-
finedToken(). The parser uses com.sun.star.i18n.XLocaleData to obtain the locale-dependent
decimal and group separators.

XCalendar
The com.sun.star.i18n.XCalendar interface enables the application to use any calendar avail-
able for a given locale, not being restricted to the Gregorian calendar . You may query the interface
for the available calendars for a given locale with method getAllCalendars() and load one of the
available calendars using method loadCalendar(), or you may use the default calendar loaded
with method loadDefaultCalendar(). Normally, a Gregorian calendar is available with the
name "gregorian" in the Name field of com.sun.star.i18n.Calendar even if the default
calendar is not a Gregorian calendar, but this is not mandatory. Available calendars are obtained
through the com.sun.star.i18n.XLocaleData interface.

You must initially load a calendar before using any of the interface methods that perform calendar calcula-
tions.

XExtendedCalendar
The com.sun.star.i18n.XExtendedCalendar interface was introduced with OpenOffice.org 1.1
and provides additional functionality to display locale and calendar dependent calendar values.
This interface is derived from com.sun.star.i18n.XCalendar. The interface provides a method
to obtain display strings of date parts for specific calendars of a specific locale.

XNumberFormatCode
The com.sun.star.i18n.XNumberFormatCode interface provides access to predefined number
format codes for a given locale, which in turn are obtained through the
com.sun.star.i18n.XLocaleData interface. Normally you do not need to bother with it because
the application's number formatter 6.2.5 Office Development - Common Application Features - Number

384 OpenOffice.org 1.1 Developer's Guide • June 2003

Formats manages the codes. It just might serve to get the available codes and determine default
format codes of a specific category.

XNativeNumberSupplier
The com.sun.star.i18n.XNativeNumberSupplier interface was introduced with OpenOffice.org
1.1 and provides functionality to convert between ASCII Arabic digits /numeric strings and native
numeral strings, such as Korean number symbols.

XCollator
The com.sun.star.i18n.XCollator interface provides locale-dependent collation algorithms for
sorting purposes. There is at least one collator algorithm available per locale, though there may be
more than one, for example dictionary and telephone algorithms, or stroke, radical, pinyin
in Chinese locales. There is always one default algorithm for each locale that may be loaded using
method loadDefaultCollator(), and all available algorithms may be queried with method
listCollatorAlgorithms() of those a selected algorithm may be loaded using loadCollatorAl-
gorithm(). The available collator implementations and options are obtained through the
com.sun.star.i18n.XLocaleData interface.

You must initially load an algorithm prior to using any of the compare...() methods, otherwise the result
will be 0 indicating any comparison being equal.

Since collation may be a very time consuming procedure, use it only for user-visible data, for example for
sorted lists. If, for example, you only need a case insensitive comparison without displaying the results to the
user, use the com.sun.star.i18n.XTransliteration interface instead.

XTransliteration
The com.sun.star.i18n.XTransliteration interface provides methods to perform locale-
dependent character conversions, such as case conversions, conversions between Hiragana and
Katakana, and Half-width and Full-width. Transliteration is also used by the collators if, for
example, a case insensitive sort is to be performed. The available transliteration implementations
are obtained through the com.sun.star.i18n.XLocaleData interface.

You must initially load a transliteration module prior to using any of the transliterating or comparing
methods, otherwise the result is unpredictable.

If you only need to determine if two strings are equal for a specific transliteration (for example a case insensi-
tive comparison) use the equals() method instead of the compare...() methods, it may have a faster
implementation.

XBreakIterator
The com.sun.star.i18n.XBreakIterator interface may be used to traverse the text in character
mode or word mode, to jump to the beginning or to the end of a sentence, to find the beginning or
the end of a given script type, and, as the name suggests, to determine a line break position,
optionally using a com.sun.star.linguistic2.XHyphenator. The service implementation
obtains lists of forbidden characters (characters that are not allowed at the beginning or the end of
a line in certain locales) through the com.sun.star.i18n.XLocaleData interface. The XBreakIt-
erator interface also offers methods to determine the script type of a character or to find the
beginning or end of a script type along a sequence of characters.

Chapter 6 Office Development 385

XIndexEntrySupplier
The com.sun.star.i18n.XIndexEntrySupplier interface may be used to obtain information on
index entries to generate a "table of alphabetical index" for a given locale. Since not all languages
are alphabetical in the western sense (for example, CJK languages), different methods are needed.

XExtendedIndexEntrySupplier
The com.sun.star.i18n.XExtendedIndexEntrySupplier interface was introduced with
OpenOffice.org 1.1 and provides additional functionality to generate index entries for languages
that need phonetically sorted indexes, such as Japanese. The interface is derived from
com.sun.star.i18n.XIndexEntrySupplier.

XInputSequenceChecker
The com.sun.star.i18n.XInputSequenceChecker interface was introduced with OpenOffice.org
1.1 and provides input sequence checking for Thai and Hindi .

Implementing a New Locale
The procedures, directory layout, and file contents described here reflect the structure of the i18npool
module as of OpenOffice.org version 1.1, and not the i18n module for OpenOffice.org 1.0.2.

XLocaleData
One of the most important tasks in implementing a new locale is to define all the locale data to be
used, listed in the following table as types returned by the com.sun.star.i18n.XLocaleData
interface methods:

Type Count
com.sun.star.i18n.LanguageCountryInfo exactly 1

com.sun.star.i18n.LocaleDataItem exactly 1

sequence<com.sun.star.i18n.Calendar> 1 or more

sequence<com.sun.star.i18n.Currency> 1 or more

sequence<com.sun.star.i18n.FormatElement> at least all
com.sun.star.i18n.NumberFormatIndex
format codes (see below)

sequence<com.sun.star.i18n.Implementation> collator
implementations

0 or more, if none specified the ICU collator
will be called for the language given in
<LanguageCountryInfo>

sequence<string> search options (transliteration modules) 0 or more

sequence<string> collation options (transliteration modules) 0 or more

sequence<string> names of supported transliterations
(transliteration modules)

0 or more

com.sun.star.i18n.ForbiddenCharacters exactly 1, though may have empty elements

sequence<string> reserved words all words of com.sun.star.i18n.reservedWords

386 OpenOffice.org 1.1 Developer's Guide • June 2003

Type Count
sequence<com.sun.star.beans.PropertyValues> numbering
levels

(no public XLocaleData API method available, used by and
accessible through
com.sun.star.text.XDefaultNumberingProvider method
getDefaultContinuousNumberingLevels() implemented in
i18npool)

exactly 8 <NumberingLevel> entities

sequence<com.sun.star.container.XIndexAccess> outline
styles

(no public XLocaleData API method available, used by and
accessible through
com.sun.star.text.XDefaultNumberingProvider method
getDefaultOutlineNumberings() implemented in i18npool)

exactly 8 <OutlineStyle> entities consisting of
5 <OutlineNumberingLevel> entities each

Locale data is defined in an XML file. It is translated into a C++ source file during the build
process, which is compiled and linked together with other compiled locale data files into shared
libraries. The contents of the XML file, their elements, and how they are to be defined are
described in i18npool/source/localedata/data/locale.dtd. The latest revision available for a specific CVS
branch of that file provides up- to-date information about the definitions, as well as additional
information.

If the language- country combination is not already listed in tools/inc/lang.hxx and
tools/source/intntl/isolang.cxx and svx/source/dialog/langtab.src, OpenOffice.org is probably not
prepared to deal with your specific locale. For assistance, you can consult
http://l10n.openoffice.org/adding_language.html#step1 (Add the New Language to the Resource
System) and join the dev@l10n.openoffice.org mailing list (see also
http://l10n.openoffice.org/servlets/ProjectMailingListList).

In order to conform with the available build infrastructure, the name of your locale data file
should follow the conventions used in the i18npool/source/localedata/data directory:
<language>_<country>.xml, where language is a lowercase, two letter ISO-639 code, and country is
an uppercase two letter ISO-3166 code. Start by copying the en_US.xml file to your
<language>_<country>.xml file and adopt the entries to suit your needs. Add the corresponding
*.cxx and *.obj target file name to the i18npool/source/localedata/data/makefile.mk. Note that there is an
explicit rule defined, so that you do not need to add the *.xml file name anywhere. You must also
add the locale to the aDllsTable structure located in i18npool/source/localedata/data/localedata.cxx.
Make sure to specify the correct library name, since it must correspond to the library name used in
the makefile. Finally, the public symbols to be exported must be added to the linker map file corre-
sponding to the library. You can use the i18npool/source/localedata/data/linkermapfile-check.awk script
to assist you. Instructions for how to use the script are located the header comments of the file.

<LC_FORMAT><FormatElement>
To be able to load documents of versions up to and including StarOffice 5.2 (old binary file
format), each locale must define all number formats mentioned in
com.sun.star.i18n.NumberFormatIndex and assign the proper formatindex="..."
attribute.
Failing to do so may result in data not properly displayed or not displayed at all if a built-in
"System" or "Default" format code was used (as generally done by the average user) and the
document is loaded under a locale not having those formats defined. Since old versions did
merge some format information of the [Windows] Regional Settings, it might be necessary to
define some duplicated codes to fill all positions. To verify that all necessary elements are
defined, use a non-product build of OpenOffice.org and open a number formatting dialog, and
select your locale from the Language list box. An assertion message box appears if there are

Chapter 6 Office Development 387

any missing elements. The errors are only shown the very first time the locale is selected in a
given document.

<LC_FORMAT><FormatElement><FormatCode>
In general, definition of number format codes follows the user visible rules, apart from that any
non-ASCII character must be entered using UTF-8 encoding. For a detailed description of codes
and a list of possible keywords please consult the OpenOffice.org English online help on
section "number format codes".
Be sure to use the separators you declared in the <LC_CTYPE> section in the number format
codes, for example <DecimalSeparator>, <ThousandSeparator>, otherwise the number
formatter generates incorrect formats.
Verify the defined codes again by using the number formatter dialog of a non-product
OpenOffice.org build. If anything is incorrect, an assertion message box appears containing
information about the error.
The format indices 1..49 are reserved and, for backward compatibility, must be used as stated in
offapi/com/sun/star/i18n/NumberFormatIndex.idl. Note that 48 and 49 are used internally and must
not be used in locale data XML files. All other formats must be present.

<FormatCode usage="DATE"> and <FormatCode usage="DATE_TIME">
Characters of date and time keywords, such as YYYY for year, had previously been localized
for a few locales (for example, JJJJ in German). The new I18N framework no longer follows that
approach, because it may lead to ambiguous and case insensitive character combinations that
cannot be resolved at runtime. Localized keyword support is only given for some old locales,
other locales must define their codes using English notation.
The table below shows the localized keyword codes:

DayOfWeek Era Year Month Day Hour
English (and all other locales not
mentioned) A G Y M D H

de_AT, de_CH, de_DE, de_LI,
de_LU J T

nl_BE, nl_NL J U

fr_BE, fr_CA, fr_CH, fr_FR, fr_LU,
fr_MC O A J

it_CH, it_IT O X A G

pt_BR, pt_PT O A

es_AR, es_BO, es_CL, es_CO,
es_CR, es_DO, es_EC, es_ES,
es_GT, es_HN, es_MX, es_NI,
es_PA, es_PE, es_PR, es_PY, es_SV,
es_UY, es_VE

O A

da_DK T

nb_NO, nn_NO, no_NO T

sv_FI, sv_SE T

fi_FI V K P T

<FormatCode usage="DATE" formatindex="21"> and
<FormatCode usage="DATE_TIME" formatindex="47">

The formatindex="21" com.sun.star.i18n.NumberFormatIndex DATE_SYS_DDMMYYYY format
code is used to edit date formatted data. It represents a date using the most detailed informa-
tion available, for example, a 4-digit year and instead of a 2-digit year. The YMD default order

388 OpenOffice.org 1.1 Developer's Guide • June 2003

(how a date is assembled) is determined from the order encountered in this format.
Similarly, the formatindex="47" com.sun.star.i18n.NumberFormatIndex
DATETIME_SYS_DDMMYYYY_HHMMSS format code is used to edit date- time data. Both format
codes must display data in a way that is parable by the application, in order to be able to reas-
semble edited data. This generally means using only YYYY,MM,DD,HH,MM,SS keywords and
<DateSeparator> and <TimeSeparator>.

<FormatCode usage="CURRENCY">
The [$xxx-yyy] notation is needed for compatibility reasons. The xxx part denotes the currency
symbol, and the yyy part specifies the locale identifier in Microsoft Language ID hexadecimal
notation. For example, having “409” as the locale identifier (English-US) and “$” as the
currency symbol results in [$$-409]. A list of available Language IDs known to the
OpenOffice.org application can be found at project util module tools in file tools/inc/lang.hxx .
Format indices 12, 13, 14, 15, 17 with [$xxx-yyy] notation must use the xxx currency symbol
that has the attribute usedInCompatibleFormatCodes="true" (see element <LC_CURRENCY> in
the locale.dtd file).

XCalendar
The interface com.sun.star.i18n.XCalendar provides a general calendar service. All calendar
implementations are managed by a class CalendarImpl, the front-end, which dynamically calls a
language- specific implementation.

Calendar_gregorian is a wrapper to ICU's Calendar class.

If you need to implement a locale-specific calendar, you can choose to either derive your class
from Calendar_gregorian or to write your own class.

There are three steps needed to create a locale-specific calendar:

1. Name your calendar <name> (for example, 'gengou' for Japanese Calendar) and add it to the
locale data XML file with proper day/month /e ra names.

2. Derive a class either from Calendar_gregorian or XCalendar, name it as Calendar_<name>,
which will be loaded by CalendarImpl when the calendar is specified.

3. Add your new calendar as a service in i18npool/source/registerservices/registerservices.cxx.

If you plan to derive from the Gregorian calendar, you need to know the mapping between your
new calendar and the Gregorian calendar. For example, the Japanese Emperor Era calendar has a
starting year offset to Gregorian calendar for each era. You will need to override the method
Calendar_gregorian::mapToGregorian() and Calendar_gregorian::mapFromGregorian() to
map the Era /Year /Month /Day between the Gregorian calendar and the calendar for your
language.

XCharacterClassification
The interface com.sun.star.i18n.XCharacterClassification provides toUpper(), toLower(),
toTitle() and methods to get various character attributes defined by Unicode. These functions
are implemented by the cclass_unicode class. If you need language specific requirements for
these functions, you can derive a language specific class cclass_<locale_name> from
cclass_unicode and overwrite the methods. In most cases, the attributes are well defined by
Unicode, so you do not need to create your own class.

The class also provides a generic parser. If a particular language needs special number parsing,
detected non-ASCII numbers are fed to the com.sun.star.i18n.NativeNumberSupplier service

Chapter 6 Office Development 389

to obtain the ASCII representation, which in turn is interpreted and converted to a double preci-
sion floating point value.

A manager class CharacterClassificationImpl will handle the loading of language specific
implementations of CharacterClassification on the fly. If no implementation is provided, the
implementation defaults to class cclass_unicode.

XBreakIterator
The interface com.sun.star.i18n.XBreakIterator provides support for Character(Cell) /
Word /Sentence /Line- break services. For example, BreakIterator provides the APIs to iterate a
string by character, word, line and sentence. The interface is used by the Output layer for the
following operations:

• Cursor positioning and selection: Since a character or cell can take more than one code point,
cursor movement cannot be done by simply incrementing or decrementing the index.

• Complex Text Layout Languages (CTL): In CTL languages (such as Thai, Hebrew, Arabic and
Indian), multiple characters can combine to form a display cell. Cursor movement must trav-
erse a display cell instead of a single character.

Line breaking must be highly configurable in desktop publishing applications. The line breaking
algorithm should be able to find a line break with or without a hyphenator. Additionally, it should
be able to parse special characters that are illegal if they occur at the end or beginning of a line.

Both requirements are locale-sensitive.

The BreakIterator components are managed by the class BreakIteratorImpl, which will load
the language- specific component in service name BreakIterator_<language> dynamically.

The base break iterator class BreakIterator_Unicode is a wrapper to the ICU BreakIterator
class. While this class meets the requirements for western languages, it does not meet the require-
ments for other languages, such as those of South Asia (CJK) and South East Asia (Indian, Thai,
Arabic), where enhanced functionality is required, as described previously.

Thus the current BreakIterator base class has two derived classes, BreakIterator_CJK and
BreakIterator_CTL. BreakIterator_CJK provides a dictionary based word break for Chinese
and Japanese, and a forbidden rule driven line break for Chinese, Japanese and Korean. BreakIt-
erator_CTL provides a more specific definition of character /cell /cluster grouping for languages
like Thai and Arabic.

Use the following steps to create a language- specific BreakIterator service:

1. Derive a class either from BreakIterator_CJK or BreakIterator_CTL, name it as BreakIt-
erator_<language>.

2. Add new service in registerservices.cxx
There are three methods for word breaking: nextWord(), previousWord(), getWordBoundary().
You can overwrite them with your own language rules.

BreakIterator_CJK provides input string caching and dictionary searching for longest matching.
You can provide a sorted dictionary (the encoding must be UTF-8) by creating the following file:
i18npool/source/breakiterator/data/<language>.dict.

The utility gendict will convert the file to C code, which will be compiled into a shared library for
dynamic loading.

390 OpenOffice.org 1.1 Developer's Guide • June 2003

All dictionary searching and loading is performed in the xdictionary class. The only thing you
need to do is to derive your class from BreakIterator_CJK and create an instance of the xdic-
tionary with the language name and pass it to the parent class.

XCollator
The interface com.sun.star.i18n.XCollator must be used to provide text collation for the new
locale. There are two types of collations, single level and multiple level collation.

Most European and English locales need multiple level collation. OpenOffice.org uses the ICU
collator to cover these needs.

Most CJK languages only require single level collation. There is a two step lookup table that
performs the collation for these languages. If you have a new language or algorithm in this cate-
gory, you can derive a new service from Collator_CJK and provide index and weight tables. Here
is a sample implementation:
#include <collator_CJK.hxx>
static sal_uInt16 index[] = {
...
};

static sal_uInt16 weight[] = {
...
};

sal_Int32 SAL_CALL Collator_zh_CN_pinyin::compareSubstring(
 const ::rtl::OUString& str1, sal_Int32 off1, sal_Int32 len1,
 const ::rtl::OUString& str2, sal_Int32 off2, sal_Int32 len2)
 throw (::com::sun::star::uno::RuntimeException)
{
 return compare(str1, off1, len1, str2, off2, len2, index, weight);
}

sal_Int32 SAL_CALL Collator_zh_CN_pinyin::compareString(
 const ::rtl::OUString& str1,
 const ::rtl::OUString& str2)
 throw (::com::sun::star::uno::RuntimeException)
{
 return compare(str1, 0, str1.getLength(), str2, 0, str2.getLength(),
 index, weight);
}

Front end implementation Collator will load and cache the language-specific service on the name
Collator_<locale> dynamically.

The steps to add new services:

1. Derive the new service from the above class

2. Provide the index and weight tables

3. Register the new service in registerservices.cxx

4. Add the new service in the collation section in the locale data file.

XTransliteration
The interface com.sun.star.i18n.XTransliteration can be used for string conversion. The
front end implementation TransliterationImpl will load and cache specific transliteration serv-
ices by a predefined enum in com.sun.star.i18n.TransliterationModules or
com.sun.star.i18n.TransliterationModulesNew, or dynamically by implementation name.

Transliterations have been defined in three categories: Ignore, OneToOne and Numeric. All of
them are derived from transliteration_commonclass.

Ignore services are for ignore case, half /full width, and Katakana / Hiragana. You can derive your
new service from it, and overwrite folding /transliteration methods.

Chapter 6 Office Development 391

OneToOne services are for one to one mapping, such as converting lowercase to uppercase. The
class provides two more services, to take a mapping table or mapping function to do folding and
transliteration. You can derive a class from it and provide a table or function for the parent class to
do the transliteration.

Numeric services are used to convert a number to a number string in specific languages. It can be
used to format Date string and other types of strings.

To add a new transliteration

1. Derive a new class from the three classes previously mentioned.

2. Overwrite folding / transliteration methods or provide a table for the parent to perform the
transliteration.

3. Register the new service in registerservices.cxx

4. Add the new service in the transliteration section in the locale data file

XNativeNumberSupplier
The interface com.sun.star.i18n.XNativeNumberSupplier provides the functionality to convert
between ASCII Arabic digit numbers and locale-dependent numeral representations. It performs
the conversion by implementing special transliteration services. The interface also provides a
mechanism to generate attributes to be stored in the XML file format (see the XML file format
documentation, section "Common Data Style Attributes", "number:transliteration- ..."), as well as a
conversion of those XML attributes needed to map back to a specific representation style. If you
add a number transliteration for a specific locale and reuse one of the
com.sun.star.i18n.NativeNumberMode constants, please add the description to
com.sun.star.i18n.NativeNumberMode if your changes are to be added back to the
OpenOffice.org code repository.

XIndexEntrySupplier
The interface com.sun.star.i18n.XIndexEntrySupplier can be used to provide the function-
ality to generate index pages. The main method of this interface is getIndexCharacter(). Front
end implementation IndexEntrySupplier will dynamically load and cache language specific
service based on the name IndexEntrySupplier_<locale>.

Languages to be indexed have been divided into two sets. The first set contains Latin1 languages,
which can be covered by 256 Unicode code points. A one step lookup table is used to generate
index characters. An alphabetic and numeric table has been generated, which covers most Latin1
languages. But if you need another algorithm or have a conflict with the table, you can create your
own table and derive a new class from IndexEntrySupplier_Euro. Here is a sample implementa -
tion:

#include <sal/types.h>
#include <indexentrysupplier_euro.hxx>
#include <indexdata_alphanumeric.h>
OUString SAL_CALL i18n::IndexEntrySupplier_alphanumeric::getIndexCharacter(
 const OUString& rIndexEntry,
 const lang::Locale& rLocale, const OUString& rSortAlgorithm)
 throw (uno::RuntimeException)
{
 return getIndexString(rIndexEntry, idxStr);
}
where idxStr is the table.

392 OpenOffice.org 1.1 Developer's Guide • June 2003

For the languages that could not be covered in the first set, such as CJK, a two step lookup table is
used. Here is a sample implementation:

#include <indexentrysupplier_cjk.hxx>
#include <indexdata_zh_pinyin.h>
OUString SAL_CALL i18n::IndexEntrySupplier_zh_pinyin::getIndexCharacter(
 const OUString& rIndexEntry,
 const lang::Locale& rLocale, const OUString& rSortAlgorithm)
 throw (uno::RuntimeException)
{
 return getIndexString(rIndexEntry, idxStr, idx1, idx2);
}
where idx1 and idx2 are two step tables and idxStr contains all the index keys that will be
returned. If you have a new language or algorithm, you can derive a new service from IndexEn-
trySupplier_CJK and provide tables for the parent class to generate the index.

Note that the index depends on collation, therefore, each index algorithm should have a collation
algorithm to support it.

To add new service:

1. Derive the new service from IndexEntrySupplier_Euro.

2. Provide a table for the lookup

3. Register new service in registerservices.cxx

A Comment on Search and Replace
Search and replace is also locale-dependent because there may be special search options that are
only available for a particular locale. For instance, if the Asian languages support is enabled,
you'll see an additional option for "Sounds like (Japanese)" in the Edit - Find & Replace dialog
box. With this option, you can turn on or off certain options specific to Japanese in the search and
replace process.

Search and replace relies on the transliteration modules for various search options. The translitera-
tion modules are loaded and the search string is converted before the search process.

6.2.3 Linguistics
The Linguistic API provides a set of UNO services used for spell checking, hyphenation or
accessing a thesaurus. Through the Linguistic API, developers add new implementations and inte-
grate them into OpenOffice.org. Users of the Linguistic API call its methods Usually this function-
ality is used by one or more clients, that is, applications or components, to process documents ,
such as text documents or spreadsheets.

Services Overview
The services provided by the Linguistic API are:

• com.sun.star.linguistic2.LinguServiceManager
• com.sun.star.linguistic2.DictionaryList
• com.sun.star.linguistic2.LinguProperties
Also there is at least one or more implementation for each of the following services:

Chapter 6 Office Development 393

• com.sun.star.linguistic2.SpellChecker
• com.sun.star.linguistic2.Hyphenator
• com.sun.star.linguistic2.Thesaurus
The service implementations for spell checker, thesaurus and hyphenator supply the respective
functionality. Each of the implementations support a different set of languages. Refer to
com.sun.star.linguistic2.XSupportedLocales.

For example, there could be two implementations for a spell checker, usually from different
supporting parties: the first supporting English, French and German, and the second supporting
Russian and English. Similar settings occur for the hyphenator and thesaurus.

It is not convenient for each application or component to know all these implementations and to
choose the appropriate implementation for the specific purpose and language, therefore a medi-
ating instance is required.

This instance is the LinguServiceManager. Spell checking, hyphenation and thesaurus function-
ality is accessed from a client by using the respective interfaces from the LinguServiceManager.

The LinguServiceManager dispatches the interface calls from the client to a specific service imple-
mentation,if any, of the respective type that supports the required language.
For example, if the client requires spell checking of a French word, the first spell checker imple-
mentations from those mentioned above are called.

If there is more than one spell checker available for one language, as in the above example for the
English language, the LinguServiceManager starts with the first one that was supplied in the
setConfiguredServices() method of its interface. The thesaurus behaves in a similar manner.
 For more details, refer to the interface description
com.sun.star.linguistic2.XLinguServiceManager.

The LinguProperties service provides, among others, properties that are required by the spell
checker, hyphenator and thesaurus that are modified by the client. Refer to
thecom.sun.star.linguistic2.LinguProperties.
The DictionaryList (see com.sun.star.linguistic2.DictionaryList) provides a set of user
defined or predefined dictionaries for languages that are activated and deactivated. If they are
active, they are used by the spell checker and hyphenator. These are used by the user to override
results from the spell checker and hyphenator implementations, thus allowing the user to
customize spell checking and hyphenation.

In the code snippets and examples in the following chapters, we will use the following members
and interfaces: (OfficeDev/Linguistic /LinguisticExamples.java)
// used interfaces
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.linguistic2.XLinguServiceManager;
import com.sun.star.linguistic2.XSpellChecker;
import com.sun.star.linguistic2.XHyphenator;
import com.sun.star.linguistic2.XThesaurus;
import com.sun.star.linguistic2.XSpellAlternatives;
import com.sun.star.linguistic2.XHyphenatedWord;
import com.sun.star.linguistic2.XPossibleHyphens;
import com.sun.star.linguistic2.XMeaning;
import com.sun.star.linguistic2.XSearchableDictionaryList;
import com.sun.star.linguistic2.XLinguServiceEventListener;
import com.sun.star.linguistic2.LinguServiceEvent;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;
import com.sun.star.uno.XComponentContext;
import com.sun.star.uno.XNamingService;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.lang.EventObject;
import com.sun.star.lang.Locale;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.Any;
import com.sun.star.lang.XComponent;

394 OpenOffice.org 1.1 Developer's Guide • June 2003

//
// members for commonly used interfaces
//

// The MultiServiceFactory interface of the Office
protected XMultiServiceFactory mxFactory = null;

// The LinguServiceManager interface
protected XLinguServiceManager mxLinguSvcMgr = null;

// The SpellChecker interface
protected XSpellChecker mxSpell = null;

// The Hyphenator interface
protected XHyphenator mxHyph = null;

// The Thesaurus interface
protected XThesaurus mxThes = null;

// The DictionaryList interface
protected XSearchableDictionaryList mxDicList = null;

// The LinguProperties interface
protected XPropertySet mxLinguProps = null;

To establish a connection to the office and have our mxFactory object initialized with its XMultiS-
erviceFactory, the following code is used: (OfficeDev/Linguistic /LinguisticExamples.java)
public void Connect(String sConnection)
 throws com.sun.star.uno.Exception,
 com.sun.star.uno.RuntimeException,
 Exception
{
 XComponentContext xContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xContext.getServiceManager();

 Object xUrlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xContext);
 XUnoUrlResolver urlResolver = (XUnoUrlResolver)UnoRuntime.queryInterface(
 XUnoUrlResolver.class, xUrlResolver);
 Object rInitialObject = urlResolver.resolve("uno:" + sConnection +
 ";urp;StarOffice.NamingService");
 XNamingService rName = (XNamingService)UnoRuntime.queryInterface(XNamingService.class,
 rInitialObject);
 if(rName != null)
 {
 Object rXsmgr = rName.getRegisteredObject("StarOffice.ServiceManager");
 mxFactory = (XMultiServiceFactory)
 UnoRuntime.queryInterface(XMultiServiceFactory.class, rXsmgr);
 }
}

And the LinguServiceManager object mxLinguSvcMgr is initialized like similar to the following
snippet: (OfficeDev/Linguistic /LinguisticExamples.java)
/** Get the LinguServiceManager to be used. For example to access spell checker,
 thesaurus and hyphenator, also the component may choose to register itself
 as listener to it in order to get notified of relevant events. */
public boolean GetLinguSvcMgr()
 throws com.sun.star.uno.Exception
{
 if (mxFactory != null) {
 Object aObj = mxFactory.createInstance(
 "com.sun.star.linguistic2.LinguServiceManager");
 mxLinguSvcMgr = (XLinguServiceManager)
 UnoRuntime.queryInterface(XLinguServiceManager.class, aObj);
 }
 return mxLinguSvcMgr != null;
}

The empty list of temporary property values used for the current function call only and the
language used may look like the following:
// list of property values to used in function calls below.
// Only properties with values different from the (default) values
// in the LinguProperties property set need to be supllied.
// Thus we may stay with an empty list in order to use the ones
// form the property set.
PropertyValue[] aEmptyProps = new PropertyValue[0];

// use american english as language

Chapter 6 Office Development 395

Locale aLocale = new Locale("en","US","");

Using temporary property values:

To change a value for the example IsGermanPreReform to a different value for one or a limited
number of calls without modifying the default values, provide this value as a member of the last
function argument used in the examples below before calling the respective functions.
// another list of property values to used in function calls below.
// Only properties with values different from the (default) values
// in the LinguProperties property set need to be supllied.
PropertyValue[] aProps = new PropertyValue[1];
aProps[0] = new PropertyValue();
aProps[0].Name = "IsGermanPreReform";
aProps[0].Value = new Boolean(true);

Replace the aEmptyProps argument in the function calls with aProps to override the value of
IsGermanPreReform from the LinguProperties. Other properties are overridden by adding them
to the aProps object.

Using Spellchecker
The interface used for spell checking is com.sun.star.linguistic2.XSpellChecker. Accessing
the spell checker through the LinguServiceManager and initializing the mxSpell object is done
by: (OfficeDev/Linguistic /LinguisticExamples.java)
/** Get the SpellChecker to be used.
*/
public boolean GetSpell()
 throws com.sun.star.uno.Exception,
 com.sun.star.uno.RuntimeException
{
 if (mxLinguSvcMgr != null)
 mxSpell = mxLinguSvcMgr.getSpellChecker();
 return mxSpell != null;
}

Relevant properties
The properties of the LinguProperties service evaluated by the spell checker are:

Spell- checking Properties of com.sun.star.linguistic2.LinguProperties Description
IsIgnoreControlCharacters Defines if control characters should be ignored or not.
IsUseDictionaryList Defines if the dictionary-list should be used or not.
IsGermanPreReform Defines if the new German spelling rules should be used for German

language text or not.
IsSpellUpperCase Defines if words with only uppercase letters should be subject to

spellchecking or not.
IsSpellWithDigits Defines if words containing digits or numbers should be subject to

spellchecking or not.
IsSpellCapitalization dDefines if the captitalization of words should be checked or not.

Changing the values of these properties in the LinguProperties affect all subsequent calls to the
spell checker. Instantiate a com.sun.star.linguistic2.LinguProperties instance and change it
by calling com.sun.star.beans.XPropertySet:setPropertyValue(). The changes affect the
whole office unless another modifies the properties again. This is done implicitly when changing
the linguistic settings through Tools - Options - Language Settings - Writing Aids.

The following example shows verifying single words:
(OfficeDev/Linguistic /LinguisticExamples.java)
// test with correct word

396 OpenOffice.org 1.1 Developer's Guide • June 2003

String aWord = "horseback";
boolean bIsCorrect = mxSpell.isValid(aWord, aLocale, aEmptyProps);
System.out.println(aWord + ": " + bIsCorrect);

// test with incorrect word
aWord = "course";
bIsCorrect = mxSpell.isValid(aWord, aLocale , aEmptyProps);
System.out.println(aWord + ": " + bIsCorrect);

Tne following example shows spelling a single word and retrieving possible corrections:
aWord = "house";
XSpellAlternatives xAlt = mxSpell.spell(aWord, aLocale, aEmptyProps);
if (xAlt == null)
 System.out.println(aWord + " is correct.");
else
{
 System.out.println(aWord + " is not correct. A list of proposals follows.");
 String[] aAlternatives = xAlt.getAlternatives();
 if (aAlternatives.length == 0)
 System.out.println("no proposal found.");
 else
 {
 for (int i = 0; i < aAlternatives.length; ++i)
 System.out.println(aAlternatives[i]);
 }
}

For a description of the return types interface, refer to
com.sun.star.linguistic2.XSpellAlternatives.

Using Hyphenator
The interface used for hyphenation is com.sun.star.linguistic2.XHyphenator. Accessing the
hyphenator through the LinguServiceManager and initializing the mxHyph object is done by:
(OfficeDev/Linguistic /LinguisticExamples.java)
/** Get the Hyphenator to be used.
*/
public boolean GetHyph()
 throws com.sun.star.uno.Exception,
 com.sun.star.uno.RuntimeException
{
 if (mxLinguSvcMgr != null)
 mxHyph = mxLinguSvcMgr.getHyphenator();
 return mxHyph != null;
}

Relevant properties
The properties of the LinguProperties service evaluated by the hyphenator are:

Hyphenating Properties of com.sun.star.linguistic2.LinguProperties
IsIgnoreControlCharacters Defines if control characters should be ignored or not.
IsUseDictionaryList Defines if the dictionary-list should be used or not.
IsGermanPreReform Defines if the new German spelling rules should be used for German

language text or not.
HyphMinLeading The minimum number of characters of a hyphenated word to remain

before the hyphenation character.
HyphMinTrailing The minimum number of characters of a hyphenated word to remain after

the hyphenation character.
HyphMinWordLength The minimum length of a word to be hyphenated.

Changing the values of these properties in the Lingu-Properties affect all subsequent calls to the
hyphenator.

A valid hyphenation position is a possible one that meets the restrictions given by the HyphMin-
Leading, HyphMinTrailing and HyphMinWordLength values.

Chapter 6 Office Development 397

For example, if HyphMinWordLength is 7, "remove" does not have a valid hyphenation position.
Also, this is the case when HyphMinLeading is 3 or HyphMinTrailing is 5.

The following example shows a word hypenated:
(OfficeDev/Linguistic /LinguisticExamples.java)
// maximum number of characters to remain before the hyphen
// character in the resulting word of the hyphenation
short nMaxLeading = 6;

XHyphenatedWord xHyphWord = mxHyph.hyphenate("horseback", aLocale, nMaxLeading , aEmptyProps);
if (xHyphWord == null)
 System.out.println("no valid hyphenation position found");
else
{
 System.out.println("valid hyphenation pos found at " + xHyphWord.getHyphenationPos()
 + " in " + xHyphWord.getWord());
 System.out.println("hyphenation char will be after char " + xHyphWord.getHyphenPos()
 + " in " + xHyphWord.getHyphenatedWord());
}

If the hyphenator implementation is working correctly, it reports a valid hyphenation position of 4
that is after the 'horse' part. Experiment with other values for nMaxLeading and other words. For
example, if you set it to 4, no valid hyphenation position is found since there is no hyphenation
position in the word 'horseback' before and including the 's'.

For a description of the return types interface, refer
tocom.sun.star.linguistic2.XHyphenatedWord.

The example below shows querying for an alternative spelling. In some languages, for example
German in the old (pre-reform) spelling, there are words where the spelling of changes when they
are hyphenated at specific positions. To inquire about the existence of alternative spellings, the
queryAlternativeSpelling() function is used: (OfficeDev /Linguistic /LinguisticExamples.java)
//! Note: 'aProps' needs to have set 'IsGermanPreReform' to true!
xHyphWord = mxHyph.queryAlternativeSpelling("Schiffahrt",
 new Locale("de","DE",""), (short)4, aProps);
if (xHyphWord == null)
 System.out.println("no alternative spelling found at specified position.");
else
{
 if (xHyphWord.isAlternativeSpelling())
 System.out.println("alternative spelling detectetd!");
 System.out.println("valid hyphenation pos found at " + xHyphWord.getHyphenationPos()
 + " in " + xHyphWord.getWord());
 System.out.println("hyphenation char will be after char " + xHyphWord.getHyphenPos()
 + " in " + xHyphWord.getHyphenatedWord());
}

The return types interface is the same as in the above example
(com.sun.star.linguistic2.XHyphenatedWord).

The next example demonstrates getting possible hyphenation positions. To determine all possible
hyphenation positions in a word, do this: (OfficeDev /Linguistic /LinguisticExamples.java)
XPossibleHyphens xPossHyph = mxHyph.createPossibleHyphens("waterfall", aLocale, aEmptyProps);
if (xPossHyph == null)
 System.out.println("no hyphenation positions found.");
else
 System.out.println(xPossHyph.getPossibleHyphens());

For a description of the return types interface, refer to
com.sun.star.linguistic2.XPossibleHyphens.

Using Thesaurus
The interface used for the thesaurus is com.sun.star.linguistic2.XThesaurus. Accessing the
thesaurus through the LinguServiceManager and initializing the mxThes object is done by:
(OfficeDev/Linguistic /LinguisticExamples.java)
/** Get the Thesaurus to be used.

398 OpenOffice.org 1.1 Developer's Guide • June 2003

*/
public boolean GetThes()
 throws com.sun.star.uno.Exception,
 com.sun.star.uno.RuntimeException
{
 if (mxLinguSvcMgr != null)
 mxThes = mxLinguSvcMgr.getThesaurus();
 return mxThes != null;
}

The properties of the LinguProperties service evaluated by the thesaurus are:

Thesaurus related Properties of com.sun.star.linguistic2.LinguProperties
IsIgnoreControlCharacters Defines if control characters should be ignored or not.
IsGermanPreReform Defines if the new German spelling rules should be used for German

language text or not.

Changing the values of these properties in the LinguProperties affect all subsequent calls to the
thesaurus. The following example about retrieving synonyms shows this:
(OfficeDev/Linguistic /LinguisticExamples.java)
XMeaning[] xMeanings = mxThes.queryMeanings("house", aLocale, aEmptyProps);
if (xMeanings == null)
 System.out.println("nothing found.");
else
{
 for (int i = 0; i < xMeanings.length; ++i)
 {
 System.out.println("Meaning: " + xMeanings[i].getMeaning());
 String[] aSynonyms = xMeanings[i].querySynonyms();
 for (int k = 0; k < aSynonyms.length; ++k)
 System.out.println(" Synonym: " + aSynonyms[k]);
 }
}

The reason to subdivide synonyms into different meanings is becausethere are different synonyms
for some words that are not even closely related. For example, the word 'house' has the synonyms
'home', 'place', 'dwelling', 'family', 'clan', 'kindred', 'room', 'board', and 'put up'.

The first three in the aboce list have the meaning of 'building where one lives' where the next three
mean that of 'a group of people sharing common ancestry' and the last three means that of 'to
provide with lodging'. Thus, having meanings is a way to group large sets of synonyms into
smaller ones with approximately the same definition.

Events
There are several types of events. For example, all user dictionaries
com.sun.star.linguistic2.XDictionary report their status changes as events
com.sun.star.linguistic2.DictionaryEvent to the DictionaryList, which collects and trans-
forms their information into DictionaryList events
com.sun.star.linguistic2.DictionaryListEvent, and passes those on to its own listeners.

Thus, it is possible to register to the DictionaryList as a listener to be informed about relevant
changes in the dictionaries., There is no need to register as a listener for each dictionary.

The spell checker and hyphenator implementations monitor the changes in the LinguProperties
for changes of their relevant properties. If such a property changes its value, the implementation
launches an event com.sun.star.linguistic2.LinguServiceEventthat hints to its listeners that
spelling or hyphenation should be reevaluated. For this purpose, those implementations support
the com.sun.star.linguistic2.XLinguServiceEventBroadcaster interface.

The LinguServiceManager acts as a listener for
com.sun.star.linguistic2.DictionaryListEvent and
com.sun.star.linguistic2.LinguServiceEvent events. The respective interfaces are
com.sun.star.linguistic2.XDictionaryListEventListener] and

Chapter 6 Office Development 399

com.sun.star.linguistic2.XLinguServiceEventListener. The events from the Diction-
aryList are transformed into com.sun.star.linguistic2.LinguServiceEvent events and
passed to the listeners of the LinguServiceManager, along with the received events from the spell
checkers and hyphenators.

Therefore, a client that wants to be notified when spell checking or hyphenation changes, for
example, when it features automatic spell checking or automatic hyphenation, needs to be regis-
tered as com.sun.star.linguistic2.XLinguServiceEventListener to the LinguServiceMan-
ager only.

Implementing the com.sun.star.linguistic2.XLinguServiceEventListener interface is
similar to the following snippet: (OfficeDev /Linguistic /LinguisticExamples.java)
/** simple sample implementation of a clients XLinguServiceEventListener
 * interface implementation
 */
public class Client
 implements XLinguServiceEventListener
{
 public void disposing (EventObject aEventObj)
 {
 //! any references to the EventObjects source have to be
 //! released here now!

 System.out.println("object listened to will be disposed");
 }

 public void processLinguServiceEvent(LinguServiceEvent aServiceEvent)
 {
 //! do here whatever you think needs to be done depending
 //! on the event recieved (e.g. trigger background spellchecking
 //! or hyphenation again.)

 System.out.println("Listener called");
 }
};

After the client has been instantiated, it needs to register as
com.sun.star.linguistic2.XLinguServiceEventListener. For the sample client above, this
looks like: (OfficeDev /Linguistic /LinguisticExamples.java)
XLinguServiceEventListener aClient = new Client();

// now add the client as listener to the service manager to
// get informed when spellchecking or hyphenation may produce
// different results then before.
mxLinguSvcMgr.addLinguServiceManagerListener(aClient);

This enables the sample client to receive com.sun.star.linguistic2.LinguServiceEvents and
act accordingly. Before the sample client terminates, it has to stop listening for events from the
LinguServiceManager:
//! remove listener before programm termination.
//! should not be omitted.
mxLinguSvcMgr.removeLinguServiceManagerListener(aClient);

In the LinguisticExamples.java sample, a property is modified for the listener to be called.

Implementing a Spell Checker
A sample implementation of a spell checker isfound in the
(OfficeDev/Linguistic /SampleSpellChecker.java) file from the examples for linguistics.

The spell checker implements the following interfaces:

• com.sun.star.linguistic2.XSpellChecker
• com.sun.star.linguistic2.XLinguServiceEventBroadcaster
• com.sun.star.lang.XInitialization
• com.sun.star.lang.XServiceDisplayName

400 OpenOffice.org 1.1 Developer's Guide • June 2003

• com.sun.star.lang.XServiceInfo
• com.sun.star.lang.XComponent
and

• com.sun.star.lang.XTypeProvider, to access your add- in interfaces from OpenOffice.org
Basic, otherwise, this interface is not mandatory.

To implement a spell checker of your own, modify the sample in the following ways:

Choose a unique service implementation nameto distinguish your service implementation from
any other. To do this, edit the string in the line
 public static String _aSvcImplName = "com.sun.star.linguistic2.JavaSamples.SampleSpellChecker";

Then, specify the list of languages supported by your service. Edit the
public Locale[] getLocales()

function and modify the
public boolean hasLocale(Locale aLocale)

function accordingly. The next step is to change the
private short GetSpellFailure(...)

as required. This function determines if a word is spelled correctly in a given language. If the
word is OK return -1, otherwise return an appropriate value of the type
com.sun.star.linguistic2.SpellFailure.

Check if you need to edit or remove the
private boolean IsUpper(...)

and
private boolean HasDigits(...)

functions. Consider this only if you are planning to support non-western languages and need
sophisticated versions of those, or do not need them at all. Do not forget to change the code at the
end of
public boolean isValid(...)

accordingly.

Supply your own version of
private XSpellAlternatives GetProposals(...)

It provides the return value for the
public XSpellAlternatives spell(...)

function call if the word was found to be incorrect. The main purpose is to provide proposals for
how the word might be written correctly. Note the list ay be empty.

Next, edit the text in
public String getServiceDisplayName(...)

It should be unique but it is not necessary. If you are developing a set of services, that is, spell-
checker, hyphenator and thesaurus, it should be the same for all of them. This text is displayed in
dialogs to show a more meaningful text than the service implementation name.

Now, have a look in the constructor
public SampleSpellChecker()

Chapter 6 Office Development 401

at the property names. Remove the entries for the properties that are not relevant to your service
implementation. If you make modification, also look in the file PropChgHelper_Spell.java in the
function
public void propertyChange(...)

and change it accordingly.

Set the values of bSCWA and bSWWA to true only for those properties that are relevant to your
implementation, thus avoiding sending unnecessary
com.sun.star.linguistic2.LinguServiceEvent events, that is, avoid triggering spell-checking
in clients if there is no requirement.

Finally, after registration of the service (see [Chapter:Components.Deployment]) it has to be activated
to be used by the LinguServiceManager. After restarting OpenOffice.org, this is done in the
following manner:

Open the dialog Tools – Options – Language Settings – Writing Aids. In the section Writing
Aids, in the box Available Language Modules, a new entry with text of the Service Display Name
that you chose is displayed in the implementation. Check the empty checkbox to the left of that
entry. If you want to use your module, uncheck any other listed entry. If you want to make more
specific settings per language, press the Edit button next to the modules box and use that dialog.

The Context menu of the Writer that pops up when pressing the right-mouse button over an incor-
rectly spelled word currently has a bug that may crash the program when the Java implementa-
tion of a spell checker is used. The spell check dialog is functioning.

Implementing a Hyphenator
A sample implementation of a hyphenator is found in the
(OfficeDev/Linguistic /SampleHyphenator.java) file from the examples for linguistic.

The hyphenator implements the following interfaces:

• com.sun.star.linguistic2.XHyphenator
• com.sun.star.linguistic2.XLinguServiceEventBroadcaster
• com.sun.star.lang.XInitialization
• com.sun.star.lang.XServiceDisplayName
• com.sun.star.lang.XServiceInfo
• com.sun.star.lang.XComponent
and

• com.sun.star.lang.XTypeProvider, if you want to access your add- in interfaces from
OpenOffice.org Basic, otherwise, this interface is not mandatory.

Aside from choosing a new service implementation name, the process of implementing the
hyphenator is the same as implementing the spell checker, except that you need to implement the
com.sun.star.linguistic2.XHyphenator interface instead of the
com.sun.star.linguistic2.XSpellChecker interface.

You can choose a different set of languages to be supported. When editing the sample code,
modify the hasLocale() and getLocales() methods to reflect the set of languages your implementa-
tion supports.

To implement the com.sun.star.linguistic2.XHyphenator interface, modify the functions

402 OpenOffice.org 1.1 Developer's Guide • June 2003

public XHyphenatedWord hyphenate(...)
public XHyphenatedWord queryAlternativeSpelling(...)
public XPossibleHyphens createPossibleHyphens(...)<

in the sample hyphenator source file at the stated positions.

Look in the constructor
public SampleHyphenator()

at the relevant properties and modify the
public void propertyChange(...)

function in the file (OfficeDev/Linguistic/PropChgHelper_Hyph.java) accordingly.

The rest, registration and activation is again the same as for the spell checker.

Implementing a Thesaurus
A sample implementation of a thesaurus is found in the
(OfficeDev/Linguistic /SampleThesaurus.java) file from the examples for linguistic.

The thesaurus implements the following interfaces:

• com.sun.star.linguistic2.XThesaurus
• com.sun.star.lang.XInitialization
• com.sun.star.lang.XServiceDisplayName
• com.sun.star.lang.XServiceInfo
• com.sun.star.lang.XComponent
and

• com.sun.star.lang.XTypeProvider, if you want to access your add- in interfaces from
OpenOffice.org Basic, otherwise, this interface is not mandatory.

For the implementation of the thesaurus, modify the sample thesaurus by following the same
procedure as for the spell checker and thesaurus:

Choose a different implementation name for the service and modify the
public Locale[] getLocales()

and
public boolean hasLocale(...)

functions.

The only function to be modified at the stated position to implement the
com.sun.star.linguistic2.XThesaurus interface is
public XMeaning[] queryMeanings(...)

Look in the constructor
public SampleThesaurus()

to see if there are properties you do not require.

Registration and activation is the same as for the spell checker and hyphenator.

Chapter 6 Office Development 403

6.2.4 Integrating Import and Export Filters
This section explains the implementation of OpenOffice.org import and export filter components,
focussing on filter components. It is intended as a brief introduction for developers who want to
implement OpenOffice.org filters for foreign file formats.

Approaches
They are several ways to get information into or out of OpenOffice.org: You can

• link against the application core

• use the document API

• use the XML file format

Each method has unique advantages and disadvantages, that are summarized briefly:

Using the core data structure and linking against the application core is the traditional way to
implement filters in OpenOffice.org. The advantages of this method are efficiency and direct
access to the document. However, the core implementation provides an implementation centric
view of the applications. Additionally, there are a number of technical disadvantages. Every
change in the core data structures or objects must be followed by corresponding changes in code
that uses them. Consequently, filters need to be recompiled to match the binary layout of the
application core objects. While these are manageable, albeit cumbersome, for closed source appli-
cations, this method is expected to create a maintenance nightmare if application and filters are
developed separately as is customary in open source applications. Simultaneous delivery of a new
application build and the corresponding filters developed by third parties looks challenging.

Using the OpenOffice.org API based on UNO is more advantageous, since it solves the technical
problems indicated in the above paragraph. The idea is to read data from a file on loading and
build up a document using the OpenOffice.org API, and to iterate over a document model and
write the corresponding data to a file on storing. The UNO component technology insulates the
filter from binary layout, and other compiler and version dependent issues. Additionally, the API
is expected to be more stable than the core interfaces, and provides an abstraction from the core
applications. In fact, the example filter implementation of this section makes use of this strategy
and is based on the OpenOffice.org API.

The third is to import and export documents using the XML-based file format. UNO-based XML
import and export components feature all of the advantages of the previous method, but addition-
ally provide the filter implementer with a clean, structured, and fully documented view of the
document. A significant difficulty in conversion between formats is the conceptual mapping from
the one format to the other. From OpenOffice.org 1.1 there are XML filter components that carry
out the mapping at runtime, so that filter implementers can read from XML streams when
exporting and write to XML streams when importing.

The following section describes the second method using the UNO-based API. Further details on
the third method, based on the generic XML format are found in the xml project of OpenOffice.org
under http://xml.openoffice.org/filter/. The third method to create XML based filters is described
afterwards.

Document API Filter Development
First, we provide an overview of the import and export process using a document API, and gain
an understanding of the general concepts.

404 OpenOffice.org 1.1 Developer's Guide • June 2003

Introduction
Inside OpenOffice.org a document is represented by its document service, called model. On disk,
the same document is represented as a file or possibly as a dynamic generated output, for
example, of a database statement. We cannot assign it to a file on disk, so we call it content to
describe it. A filter component is used to convert between these different formats.

If you make use of UNO, this above diagram can be turned into programming reality quite easily.
The three entities in the diagram, content, model, and filter, all have direct counterparts in UNO
services. The services consist of several interfaces that map to a specific implementation, for
example, using C++ or Java.

The filter writer creates a class that implements the com.sun.star.document.ExportFilter or
com.sun.star.document.ImportFilter services, or both. To achieve this, the corresponding
stream or URL is obtained from the com.sun.star.document.MediaDescriptor. The incoming
data is then interpreted and the model is used by calling the appropriate methods. The available
methods depend on the type of document as described by the document service.

For a list of available document services, refer to the section 6.1.3 Office Development -
OpenOffice.org Application Environment - Using the Component Framework - Models - Document
Specific Features.

Filtering Process
Inside OpenOffice.org, the whole process of loading or saving contents is realized as a modular
system that is based on UNO services. It functions generically in many components and is easily
adapted to the developer's needs through the addition of custom modules or the removal of
others.

Chapter 6 Office Development 405

 Illustration 64: Import/Export Filter Process

Loading:
A URL or a stream is passed to com.sun.star.frame.XComponentLoader:loadComponent-
FromURL(). The load properties create a com.sun.star.document.MediaDescriptor that is
filled with the URL or stream, and the load properties. The component loader implementation
passes the information about the resource to the TypeDetection.

The com.sun.star.document.TypeDetection uses the MediaDescriptor to determine a
unique type name that is necessary to create a filter instance at the
com.sun.star.document.FilterFactory.

The TypeDetection also employs the com.sun.star.document.ExtendedTypeDetectionthat
examines the given resource and confirms the unique type name determined by TypeDetec-
tion. The MediaDescriptor is updated, if necessary, and a unique type name is returned.

Finally, the component loader ensures there is a frame, or creates a new one, if necessary, and
asks a frame loader service (com.sun.star.frame.FrameLoader or
com.sun.star.frame.SynchronousFrameLoader) to load the resource into the frame. Its inter-
face com.sun.star.frame.XFrameLoader has a method load() that takes a frame, the Media-
Descriptor and an event listener, and creates a com.sun.star.document.ImportFilter
instance at the FilterFactory to load the resource into the given frame. For this purpose, it
calls createInstance() with the filter implementation name (such as
com.sun.star.comp.Writer.GenericXMLFilter) or createInstanceWithArguments() with the
implementation name and additional arguments used to initialize the filter.

Then, the loader calls setTargetDocument() and filter() on the ImportFilter service. The
ImportFilter creates its results in the given target document.

Storing to a URL:
A URL or a stream is passed to storeToURL() or storeAsURL() in the interface
com.sun.star.frame.XStorable, implemented by office documents. The store properties
create a media descriptor that is filled with the URL or stream, and the store properties. The
TypeDetection provides a unique type name that is used with the FilterFactory to create a
com.sun.star.document.ExportFilter.

The XStorable implementation calls setSourceDocument() and filter() at the filter, which
writes the results to the storage specified in the MediaDescriptor passed to filter().

 Many existing filters are legacy filters. The XStorable implementation does not use the FilterFactory to
create them, but triggers filtering by internal calls.

If a URL or an already open stream takes part in the load or save process of the OpenOffice.org,
the following services and operations are involved:

406 OpenOffice.org 1.1 Developer's Guide • June 2003

In the following, the modules that participate in the loading process are discussed in detail.

MediaDescriptor

The media descriptor is an abstract description of a content specifying the where from and the how
for the handling of the content to be performed. A content is also called a medium . Refer to 6.1.5
Office Development - OpenOffice.org Application Environment - Handling Documents - Loading Docu-
ments - MediaDescriptor for further information. Inside the OpenOffice.org, it is realized as a
sequence of com.sun.star.beans.PropertyValue structs as a parameter.

A descriptor is passed to various methods which are involved in the load and save process.

Every member of the process can use this descriptor and change it to update the information about
the document. This descriptor is used as an [inout] parameter by
com.sun.star.document.XTypeDetection:queryTypeByDescriptor() and
com.sun.star.document.XExtendedFilterDetection:detect(). The MediaDescriptor is [in]
only in com.sun.star.frame.XComponentLoader:loadComponentFromURL(),
com.sun.star.frame.XFrameLoader:load() and com.sun.star.document.XFilter:filter().

Chapter 6 Office Development 407

 Illustration 65: General Filtering Process

With methods that take the MediaDescriptor as [in] parameter only, a manual synchronization
must be done by the outside code. The caller of a method that accepts the MediaDescriptor as [in]
parameter only merges the results, for example, return values, manually into the original
descriptor. The model is not available at loading time. It is the result of the load request.

 It is not allowed to hold a member of this descriptor by reference longer than it is used, especially a possible
stream item. For example, it would not be possible to close a stream that is still referenced by others. It is
only allowed to use it directly or as a copy.

 The stream part of the MediaDescriptor is a special item. If a stream exists, it must be used. Only if a
stream does not exist, is it allowed to open a new one using the URL. The stream should be set in the Media-
Descriptor to provide it for following users of the descriptor.
One rule exists for all: the stream inside the descriptor should be seekable. In case it is not, it makes no sense
to provide it to the other members of the whole process, especially used sub-modules. On the other hand, a
module can be called with a non-seekable stream from outside to perform the operation. For example, for
detection or loading it should be no problem. In case a non-seekable stream comes in, but seeking is impor-
tant, it must be used buffered.
Another central question is: who controls the lifetime of the stream or the stream position ? The lifetime of a
non-seekable stream is controlled by the creator everytime. It has to be deleted after using. Seekable streams
should be added to the MediaDescriptor and will be released by the creator of the MediaDescriptor.
Every (sub-) module must be called with a stream seeked to position 0. Of course, non-seekable streams must
be newly created and unused. Internally it can do anything with this stream. Furthermore it is not necessary
(or even impossible) to restore any positions. The user of the module has to do such things.

TypeDetection

Every content to be loaded must be specified, that is, the type of content represented in the
OpenOffice.org must be well known in OpenOffice.org. The type is usually document
type,.however, the results of active contents, for example, macros, or database contents are also
described here.

A special service com.sun.star.document.TypeDetection is used to accomplish this. It provides
an API to associate, for example, a URL or a stream with the extensions well known to
OpenOffice.org, MIME types or clipboard formats. The resulting value is an internal unique type
name used for further operations by using other services, for example,
com.sun.star.frame.FrameLoaderFactory. This type name can be a part of the already
mentioned MediaDescriptor.

It is not necessary or useful to replace this service by custom implementations.,It works in a
generic method on top of a special configuration. Extending the type detection is done by
changing the configuration and is described later. It is required to make these changes if new
content formats are provided for OpenOffice.org, because this is the reason to integrate custom
filters into the product.

ExtendedTypeDetection

Based on the registered types, flat detection is already possible, that is,. the assignment of types,
for example, to a URL, on the basis of configuration data only. Tlat detection cannot always get a
correct result if you imagine someone modifying the file extension of a text document from .sxw to
.txt.. To ensure correct results, we need deep detection, that is, the content has to be examinedThe
com.sun.star.document.ExtendedTypeDetection service performs this task. It is called detector.
It gets all the information collected on a document and decides the type to assign it to. In the new
modular type detection, the detector is meant as a UNO service that registers itself in the
OpenOffice.org and is requested by the generic TypeDetection mechanism, if necessary.

408 OpenOffice.org 1.1 Developer's Guide • June 2003

To extend the list of the known content types of OpenOffice.org, we suggest implementing a
detector component in addition to a filter. It improves the generic detection of OpenOffice.org and
makes the results more secure.

Inside OpenOffice.org, a detector service is called with an already opened stream that is used to
find out the content type. In case no stream is given, it indicates that someone else uses this
service, for example, outside OpenOffice.org). It is then allowed to open your own stream by
using the URL part of the MediaDescriptor. If the resulting stream is seekable, it should be set
inside the descriptor after its position is reset to 0. If the stream is not seekable, it is not allowed to
set it. Please follow the already mentioned rules for handling streams.

FrameLoader

Frame loaders load a detected type. A visual component is expected as the result. Such visual
components are:

• trivial components only implementing com.sun.star.awt.XWindow
• simple office components implementing the com.sun.star.frame.Controller service

• full featured office components implementing the com.sun.star.document.OfficeDocument
service.

Further details are found in section 6.1.1 Office Development - OpenOffice.org Application Environ-
ment - Overview - Framework API.

A frame loader service exist in different versions:

• com.sun.star.frame.FrameLoader for asynchronous

• com.sun.star.frame.SynchronousFrameLoader for synchronous load processes.

It can be searched or created by another service com.sun.star.frame.FrameLoaderFactorythat
is described below. The synchronous version is optional. Both services can be implemented at the
same component, but the synchronous version is preferred, if it is supported.

There are two ways to extend OpenOffice.org to load a new content format:

• implementing a frame loader that uses its own internal mechanism to create the expected
visual component, for example, . local file access.

• implementing a filter that does the same,but isused by a generic frame loader implementation.

Note that the first method does not work for exporting, because a loader service can not be used at
save timeTo enable a content format for import and export is to provide a filter service. A generic
frame loader implementation already exists in OpenOffice.orgthat uses all well known registered
filters in a uniform way. So the second method is preferred.

Filter
Most of the services described before are used for loading. Normally, they are not necessary for
saving, except the MediaDescriptor. Only filters are fixed members of both processes.

These objects also represent a service. Their task is to import or export the content of a type into or
from a model. Accordingly, import filters are distinguished from export filters. It is possible to
provide both functionality in the same implementation.

A filter is acquired from the factory service com.sun.star.document.FilterFactory. It provides
a low-level access to the configuration that knows all registered filters of OpenOffice.org, supports
search functionality, and creates and initializes filter components. The description of this factory
and its configuration are provided below.

Chapter 6 Office Development 409

If a filter wants to be initialized with its own configuration data or get existing parameters of the
corresponding create request, it implements the interface com.sun.star.lang.XInitialization.
The method initialize() is used directly after creation by the factory and is the first request on
a new filter instance. The parameter list of initialize() uses the following protocol:

• The first item in the list is a sequence of com.sun.star.beans.PropertyValue structs, that
describe the configuration properties of the filter.

• All other items are directly copied from the parameter Arguments of the factory interface
method com.sun.star.lang.XMultiServiceFactory:createWithArguments().

A filter should be initialized, because one generic implementation is registered to handle different
types, it must know which specialization is required. The simplest way to achieve this for the filter
is to know its own configuration data, especially the unique internal name.

This information is used internally then, or it is provided by the interface
com.sun.star.container.XNamed. An owner of a filter uses the provided name to find specific
information about this component by using the FilterFactory service.

 The interface provides functionality for reading and writing of this name. It is not allowed to change an
internal filter name during runtime of OpenOffice.org, because all filter names must be unique and it is not
possible for a filter instance to alter its name. Calls to com.sun.star.container.XNamed:setName()
should be ignored or forwarded to the FilterFactory service, which knows all unique names and can solve
ambigities!

This code snippet initializes a filter instance:
private String m_sInternalName;
public void initialize(Object[] lArguments)
 throws com.sun.star.uno.Exception
 {
 // no arguments – no initialization
 if (lArguments.length<1)
 return;

 // Arguments[0] = own configuration data
 com.sun.star.beans.PropertyValue[] lConfig =
 (com.sun.star.beans.PropertyValue[])lArguments[0];

 // Arguments[1..n] = optional arguments of create request
 for (int n=1; n<lArguments.length; ++n)
 {
 ...
 }

 // analyze own configuration data for our own internal
 // filter name! Important for generic filter services,
 // which are registered more then once. They can use this
 // information to find out, which specialization of it
 // is required.
 for (int i=0; i<lConfig.length; ++i)
 {
 if (lConfig[i].Name.equals("Name"))
 {
 m_sInternalName =
 AnyConverter.toString(lConfig[i].Value);

 // Tip: A generic filter implementation can use this internal
 // name at runtime, to detect which specialization of it is required.
 if (m_sInternalName==”filter_format_1”)
 m_eHandle = E_FORMAT_1;
 else
 if (m_sInternalName==”filter_format_2”)
 ...
 }
 }
 }

Furthermore, depending on its action a filter supports the services
com.sun.star.document.ImportFilter for import or com.sun.star.document.ExportFilter
for export functionality.

410 OpenOffice.org 1.1 Developer's Guide • June 2003

The common interface of both services is com.sun.star.document.XFilter starts or cancels the
filter process. How the cancelling is implemented is an internal detail of the filter implementation,
however a thread is a good solution.

On calling com.sun.star.document.XFilter:filter(), the already mentioned MediaDe-
scriptor is passed to the service. It includes the necessary information about the content, for
example, the URL or the stream, but not the source or the target model for the filter process.

Additional interfaces are part of the service description, com.sun.star.document.XImporter and
com.sun.star.document.XExporter to get this information. These interfaces are used directly
before the filter operation is started. A filter saves the model set by setTargetDocument() and
setSourceDocument(), and uses it inside its filter operation.

 The filter() method does not include any information about the required import or export functionality.
It seems that it is not possible to implement both at the same object. The interfaces XImporter /XExporter are
used to solve this conflict. Only one of them is called for one filter() request. So an internal flag that indi-
cates the using of an interface helps.

This example code detects the required filter operation: (OfficeDev/FilterDevelopment /Ascii-
Filter /AsciiReplaceFilter.java)
private boolean m_bImport;

 // used to tell us: "you will be used for import"
 public void setTargetDocument(
 com.sun.star.lang.XComponent xDocument)
 throws com.sun.star.lang.IllegalArgumentException
 {
 m_bImport = true;
 }

 // used to tell us: "you will be used for export"
 public void setSourceDocument(
 com.sun.star.lang.XComponent xDocument)
 throws com.sun.star.lang.IllegalArgumentException
 {
 m_bImport = false;
 }

 // detect required type of filter operation
 public boolean filter(
 com.sun.star.beans.PropertyValue[] lDescriptor)
 {
 boolean bState = false;
 if (m_bImport==true)
 bState = impl_import(lDescriptor);
 else
 bState = impl_export(lDescriptor);
 return bState;
 }

The MediaDescriptor does not include the model, but it should include the already opened
stream, true for the current implementation in OpenOffice.org. If it is there, it must be used. Only
if a stream does not exist, it indicates that someone else uses this filter service, for example,
outside OpenOffice.org, it creates a stream of your own by using the URL parameter of the
descriptor.

In general, a filter must not change the position of an incoming stream without reading or writing
data. The position inside the stream is 0. Follow the previouslymentioned rules for handling
streams of the section about the MediaDescriptor above. We can make these rules easier, because
currently there are no external filters used inside office. See descriptions of the chapter “MediaDe-
scriptor” before ...)).

Filter Options
It is possible to parameterize a filter component. For example, the OpenOffice.org filter "Text -
txt - csv (StarCalc)" needs a separator used to detect columns. This information is trans-

Chapter 6 Office Development 411

ported inside the MediaDescriptor. A special property named FilterData of type any exists. The
value depends on the filter implementation and is not specified.

 There is another string property named FilterOptions. It should be used if the flexibility of an any is not
required. For historical reasons, a third- string property FilterFlags exists. It is deprecated, so it is not
recommend for use.

A generic UI that uses a filter as one part of a load request does not know about special parame-
ters. Normally, the FilterData are not set inside the media descriptor, therefore a filter should
use default values. It should be possible to prompt the user for better values by registering another
component that implements the service com.sun.star.ui.dialogs.FilterOptionsDialog. It is
called UIComponent. It enables a filter developer to query for user options before the filter opera-
tion is performed. It does not show this dialog inside the filter, because any UI can be suppressed,
for example, an external application uses the API of OpenOffice.org for scripting running in a
hidden mode. The code that uses the filter decides if it is necessary and allowed to use the dialog.
If not, the filter lives with missing parameters and uses default values. If it is not possible to have
defaults, it aborts the filter() request returning false.

The UIComponent provides an interface com.sun.star.beans.XPropertyAccess used to set the
whole MediaDescriptor before executing the dialog using the FilterOptionsDialog interface
com.sun.star.ui.dialogs.XExecutableDialog and retrieves the changes. The user of the
dialog decides if the changes are merged with the original ones or replaced. Using the whole
descriptor provides the informtion about the environment in which the filter works, for example,
the URL or information about preview mode. The parameters of a filter depend on it. Normally a
UIComponent is shown if no FilterData or FilterOptions are part of the descriptor, so that they are
added. In the case where they exist, it is necessary to change it.

 If the filter programmer wants to implement a generic dialog for different filters, then he must know which
of these filters the UIComponent is shown. This information exists inside the MediaDescriptor, called Filter-
Name. The outside code which uses the dialog knows this filter alsoand should set it in the descriptor,
because the implementation name of the component must be known to create the dialog. This information
exists inside the configuration where it is registered for a filter.

Configuring a Filter in OpenOffice.org
As previously discussed, the whole process of loading and saving content works generically in
many components and can be adapted to the needs of a user through the addition of custom
modules or the removal of others. All this information about services and parameters are organ-
ized in a special configuration branch of OpenOffice.org called org.openoffice.Office.TypeDetection.
The principal structure is shown below:

412 OpenOffice.org 1.1 Developer's Guide • June 2003

As shown on the left, the file consists of lists called sets. The list items are described by the struc-
tures shown on the right to which the arrows point. It works similar to 1:n relations in a database.
Every filter, frame loader, detector is registered for one or multiple types. The detection of the
proper type is important for the functionality of the whole system. If the right loader or filter
cannot be found, the load or save request does not produce the right results.

To extend OpenOffice.org to load or save new content formats, a new type entry is added
describing the new content. Furthermore, a filter item is registered for this new type. An optional
and recommended change for a detector can be done.

 It is not a good idea to edit the configuration branch files directly to make these changes. It is better to use the
configuration API to do so, because the format of the file may be changed in the future. The properties
describing the components, such as types and filters, are always the same and are not likely to be changed or
in an incompatible manner. It is better to add entries by specifying their properties using the API only. To
make this easier for external programmers, this manual provides a OpenOffice.org Basic script that is used
for that purpose called regfilter.bas.

The work to be done by the filter programmer is to provide an ini file that includes the properties and start
the basic script inside OpenOffice.org. The script reads the file and uses it to change the configuration
package. These changes are done for the user layer of the configuration, so it is possible to restore the original
state. There is also an example ini file in the samples folder for this manual that can be used for your own
purposes called regfilter.ini.

Chapter 6 Office Development 413

 Illustration 66: Structure of org.openoffice.Office.TypeDetection Configuration Branch

General Notes
In OpenOffice.org, there are services providing a special API to access the underlying configura-
tion repository. Most of these services support container functionality and allow read access
whereas some services offer write access also . During runtime, every configuration item, such as
type, filter, and detector, is represented as a sequence of com.sun.star.beans.PropertyValue
structs. The next sections describe the names and values of those structures.

Necessary Steps
To extend OpenOffice.org by new content formats, use the following steps:

1. Implement a filter component. It must be able to load or save the type it is registered for. For
access to the office, only the API of the document service or universal content provider keeps
the filter compatible with new versions of OpenOffice.org.

2. Provide an implementation of a com.sun.star.document.ExtendedTypeDetection service to
analyze a given content. It must return an internal type name representing the type or an
empty value for unknown formats.

3. Add a filter options dialog if the implemented filter requires additional parameters. Keep it
separate from the filter and change the given MediaDescriptor based on user input.
Document the parameters so that an external script programmer can use this information to
provide proper values to the MediaDescriptor.

4. Register the component libraries as UNO services inside OpenOffice.org. This is done by the
mechanism described in the chapter 4.9 Writing UNO Components - Deployment Options for
Components.

5. Adapt the configuration branch org.openoffice.Office.TypeDetection so that it knows these new
components. Use OpenOffice.org Basic script regfilter.bas that is provided as an additional tool
in this chapter. It requires an ini file that is specified inside the subroutine Main of the script
and has to be adjusted for your own purposes. It is well documented, and uses the names and
value types described in this manual.

Properties of a Type
Every type inside OpenOffice.org is specified by the properties shown in the table below. These
values are accessible at the previously mentioned service
com.sun.star.document.TypeDetection using the interface
com.sun.star.container.XNameAccess. Write access is not available here. All types are
addressed by their internal names.

Properties of a Document Type, available at TypeDetection
Name string. The internal name of a type must be unique and is also used as a list entry. It

contains any special characters, but they must been coded.
UIName string. Displays the type at the user interface under a localized name. You must

assign a value for a language, thus supporting CJK versions. All Unicode characters
are permitted here.

MediaType string. Describes the MIME type of the contents. The reason is that the internal
names can be altered at any time without affecting the process.

ClipboardFormat string. The format is a unique description of this type for use in clipboards.

414 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of a Document Type, available at TypeDetection
URLPattern sequence<string>. Important components of a type are the patterns. They enable

the support of your own URL schemata, for example, in OpenOffice.org
"private:factory /swriter" for opening an empty text document. The wildcards '*' or
'?' are supported here.

Extensions sequence<string>. The type of a content can be derived from its URL by its exten-
sion. In most cases, the flat detection depends on them alone.

Preferred boolean. Since file extensions cannot always be assigned to a unique type, this flag
was introduced. It indicates the preferred type for a group of types with similar
properties, otherwise, the first match is used.

DocumentIconID int. You can assign an icon to a type. To do this, the ID is used as reference to a
resource. This feature is currently not supported in OpenOffice.org.

Properties of an ExtendedTypeDetection Service
In contrast to filters or frame loaders, the ExtendedTypeDetection has no configuration API on top
of its configuration data. The normal configuration API of OpenOffice.org has to be used, as
described in [Chapter:Config]. The configuration set
org.openoffice.Office.TypeDetection/DetectServices could be used, but it is better to use
the already mentioned basic macro regfilter.bas in combination with regfilter.ini. Such detector serv-
ices are used automatically during type detection of content. A detector service is addressed by its
UNO implementation name.

Property Name Description
ServiceName string. This must be a valid UNO implementation name. This field cannot contain

the service name, because this value must be unique, otherwise it would be impos-
sible to distinguish more than one registered entry, for a service name is not
unique. This value is also an entry in the corresponding configuration list.

Types sequence<string>. A list of type names recognized by this service that makes it
possible to write a servicethat detects more than one type.

Properties of a Filter
Every filter is registered for only one type . Multiple registrations are to be done by multiple
configuration entries. One type is handled by more than one filter. Flags also regulate the use of
the preferred filter. A filter is described by the following properties:

Property Name Description
Name string. The internal name of a filter must be unique and is also used as list entry. It

contains special characters, but they must be encoded.
UIName string. A filter should be able to show a localized name in selection dialogs. You

must assign a value for a language, thus supporting CJK versions. All Unicode
characters are permitted here.

Installed boolean. This flag indicates the installation status of a filter. A filter is generally
registered equally for all users. In a network installation you should deactivate this
for certain groups or single users.

Note: A filter works only if the component library has already been registered in
OpenOffice.org.

Chapter 6 Office Development 415

Property Name Description
Order int. This number shows filters in a user defined order. Valid values are greater then

0. If the number is set to 0, sorting is done alphabetically by the UIName property of
the filter. The same applies to filters that have the same Order value.

Type string. A filter must register itself for the type it can handle. Multiple assignments
are not allowed. Multiple configuration entries must be created, one for every
supported type.

DocumentService string. Describes the component for which the filter operates,For example,
"com.sun.star.text.TextDocument", depending upon the use., This is
considered the output or goal of the filter process. A UNO service name is
expected. Note: The implementation name cannot be used here, the generic type of
the document is needed.

FilterService string. This is the UNO implementation name of the filter. It should be clear that
this field can not contain the service name of a filter, otherwise OpenOffice.org
could not distinguish more then one registered filter.

UIComponent string. Describes an implementation of a UI dialog used by the filter to let the user
modify certain properties for filtering. For example, the "Text - txt - csv
(StarCalc)" needs information about the used column separators to load data.
To distinguish between different implementations, it must be the real UNO imple-
mentation name, not a service name.

Flags int. Describes the filter, as shown in the table below. This is where, the organization
into import and export filters takes place. Note that external filters must set the
ThirdParty flag to be detected.

UserData sequence<string>. Some filters need to store more configuration data than usual.
This is realized through this entry. The format of the string list is not restricted.

FileFormatVersion int. Indicates a version number of a document that can be edited by this filter.
TemplateName string. The name of a template file for importing styles. It is a special feature for

importing documents only and not useable for export. Every OpenOffice.org docu-
ment service knows default styles. If this TemplateName is set, it merges these
default styles with the styles of the template, and the template styles are merged
with all styles of a document that is imported by this filter.

Most functionality of a Filter is listed by its flags. They are necessary to prevent a filter from being
displayed in a UI, and to classify import and export, or internal a nd external filters, and prefer
some filters to others. Currently supported flags are:

Name Value Description
Import 0x00000001 h This filter supports the specification of a

com.sun.star.document.ImportFilter and is used for
loading content.

Export 0x00000002 h This filter supports the specification of a
com.sun.star.document.ExportFilter and is used for
saving content.

Template 0x00000004 h These filters are specialized to handle template formats. By
default, a filtered document is used as a template to create a new
document .

Internal 0x00000008 h This filter should never be shown on any UI and not be available.

OwnTemplate 0x00000010 h Templates used with the template API of OpenOffice.org and it
supports the internal template features. For older versions, it is
useable for internal content formats only.

416 OpenOffice.org 1.1 Developer's Guide • June 2003

Name Value Description
Own 0x00000020 h Tag the intrinsic content formats of OpenOffice.org based on

OLE storage or zip packages.

Alien 0x00000040 h A filter with this flag is not fully compatible with the current
document format. It is unclear what document features will be
lost during saving. This flag decides if a warning box on saving
has to be shown.

UsesOptions
 (deprecated)

0x00000080 h This filter could be customized during processing. Older versions
of OpenOffice.org used it to customize the "SaveAs" dialog.
Newer versions uses the filter property "UIComponent" to tell if
a filter provides filter options.

Default 0x00000100 h Mark a filter as the default filter for saving. Only one filter in an
application module, distinguished through the Document-
Service property, has this flag set.

NotInFileDialog 0x00001000 h Suppress display of a filter in file open and save dialogs.

NotInChooser 0x00002000 h Suppress display of a filter in UI elements for choosing filters.

ThirdParty 0x00080000 h These filters are developed by external parties. For historical
reasons, the filter detection of OpenOffice.org differentiates
between old internal and new external ones, because the former
are not UNO based and are used differently.

Preferred 0x10000000 h If more than one filter is registered for the same type, this flag
prefers one of them at loading time if the user does not select a
specific filter. In contrast to the Default flag, it does not depend
on the application module, but there can only be one preferred
filter for a type.

 Besides these filter flags there are other flags existing that are used currently, but are not documented here.
Use documented flags only.

The service com.sun.star.document.FilterFactory provides these data. It supports read access
by using the interface com.sun.star.container.XNameAccess. All items are addressed by their
internal names. The return value is represented as a list of type
com.sun.star.beans.PropertyValue structures. It uses the filter properties shown above.

Another aspect of this service is the factory interface
com.sun.star.lang.XMultiServiceFactory. It creates filter instances using an internal type, or
an internal filter name directly. Using a type name searches for a suitable filter and creates, initial-
izes and returns it. Using a filter name directly follows the algorithm shown in the box below.
Note that creation of filters is possible for external ones only that have set the FilterService
property. Most of the current filters of OpenOffice.org are internal filters, implemented as local
code, but not as a UNO service. They can not be created by this FilterFactory. It is possible to
ask only for their properties.

 Direct creation of a filter instance is only possible using a special argument in the
createInstanceWithArguments() call of the interface XMultiServiceFactory. To do so, a
com.sun.star.beans.PropertyValue FilterName with the internal name of the requested filter as
value must be used. Otherwise, the service specifier, that is, the first argument of the create call, is inter-
preted as an internal type name. It will be used to search a suitable, preferred filter that will be created. It is a
combination of searching and creation. Future implementations will split that to make it clearer. In future
implementations, a registered filter must be searched through the provided query mechanism and created by
using this factory interface.

Chapter 6 Office Development 417

Properties of a FrameLoader
OpenOffice.org distinguishes asynchronous (com.sun.star.frame.FrameLoader) and synchro-
nous (com.sun.star.frame.SynchronousFrameLoader) frame loader implementations, but the
configuration does not recognize that. The interface is supported by the loader is detected at
runtime , the synchronous interface being preferred. The following properties describe a loader:

Properties of a FrameLoader
Name string. This must be a valid UNO implementation name. It should be obvious that this

field can not contain the service name, because this value must be unique. Otherwise
OpenOffice.org could not distinguish more than one registered entry, for there can be
several implementations for a service name. This value is also an entry in the corre-
sponding configuration list.

UIName string. Displays the loader at a localized user interface. You must assign a value for a
language, thus supporting CJK versions. All Unicode characters are permitted.

Types sequence<string>. A list of type names recognized by this service You can also imple-
ment and register loader for groups of types.

The service com.sun.star.frame.FrameLoaderFactory makes this data available. It uses the
same mechanism as the com.sun.star.document.FilterFactory, that is, an interface for data
access, com.sun.star.container.XNameAccess, and another one for creation of such a Frame-
Loader, com.sun.star.lang.XMultiServiceFactory.

There are other properties than the properties described, for example, for the ContentHandler.
They are not necessary for the environment of filters, or loading and saving documents, so they
are not described. Additional information is found at http://framework.openoffice.org.

There is one entry in the configuration, used as a fallback if a registered item is not found, the
generic FrameLoader. It is not necessary for an external developer to provide a frame loader to
add support for an unknown document format to OpenOffice.org. It is enough to register a new
filter component that is used by this special loader in a generic manner.

XML Based Filter Development

Introduction
This chapter outlines the development of XML based filtering components that use the XML filter
adaptor framework. The XML filter adaptor is a generic com.sun.star.document.XFilter imple -
mentation. It has been designed to be reusable, and to supply a standard method of designing and
referencing XML based import and export filters. The XML filter adaptor does not perform any of
the filtering functionality itself, but instead is used to instantiate a filtering component.

The advantage of the XML filter adaptor framework is that you do not have to work with docu-
ment models to create a document from an import file, nor do you have to iterate over a document
model to export it to a different file format. Rather, you can use the OpenOffice.org XML file
format to import and export. When importing, you parse your import file and send
OpenOffice.org XML to the filter adaptor, which creates a document for you in the GUI. When
exporting, the office sends a description of the current document as OpenOffice.org XML, so that
you can export without having to iterate over a document model.

The course of action during export and import can be described as follows: when a user clicks
File-Open , or some UNO code calls loadComponentFromURL(), the office looks in the type detec-
tion configuration to identify an import filter and optionally checks the file format by doing some
deep detection. It instantiates the import filter it finds and uses its method importer() to pass a

418 OpenOffice.org 1.1 Developer's Guide • June 2003

MediaDescriptor for the source, a specialized XML document handler for OpenOffice.org XML,
and user data. The import filter has to read the import source and deliver OpenOffice.org XML to
the document handler received in the call to importer(), emulating a SAX parser that calls the
parser callback functions.

Similarly, the office instantiates an export filter after clicking File-Save (As) or a call to storeXXX
(), and uses its method exporter() to pass a target location and user data. In this case, the office
expects the export filter to be a com.sun.star.xml.sax.XDocumentHandler, which is able to
handle OpenOffice.org XML. The office creates an export stream with OpenOffice.org XML, and
parses this XML so that the export filter receives the SAX callbacks and can translate them to
whatever is necessary, writing the result to the target received in the call to
com.sun.star.xml.XExportFilter:exporter().

Components of a Filter
For a filter of this type to operate, three things are necessary.

1. The XML filter adaptor.

2. A filtering component that implements the required interfaces.

3. A valid filter and type definition.

Both the XML filter adaptor and the filtering component are UNO components that can be instan-
tiated through the com.sun.star.lang.XMultiServiceFactory:createInstance() method.
Since the XML filter adaptor is generic, the filtering component is all that needs to be imple-
mented. Once this has been done, the TypeDetection.xcu file can be expanded to include the newly
created filter definition.

Writing the Filtering Component
The filtering component must implement the following interfaces as described by the
com.sun.star.xml.ImportFilter service and the com.sun.star.xml.ExportFilter service:

Importer:
com.sun.star.xml.XMLImportFilter

Exporter:
com.sun.star.xml.XMLExportFilter and com.sun.star.xml.sax.XDocumentHandler

XImportFilter

The servicecom.sun.star.xml.XMLImportFilter defines an interface with the following method:
boolean importer(
 [in] sequence< com::sun::star::beans::PropertyValue > aSourceData,
 [in] com::sun::star::xml::sax::XDocumentHandler xDocHandler,
 [in] sequence< string > msUserData)

aSourceData is a MediaDescriptor, which can be used to obtain the following information:

• An XInputStream
This is a stream that is attached to the source to be read. This can be a file, or some other data
source.

• Filename
This is the name of the file on the disk, that the input stream comes from.

• Url
This is a url describing the location being read.

Chapter 6 Office Development 419

xDocHandler is a SAX event handler that can be used when parsing an XInputStream, which may
or may not contain OpenOffice.org XML. Before this stream can be read by OpenOffice.org, it will
need to be transformed into OpenOffice.org XML.

msUserData is an array of Strings , that contains the information supplied in the UserData
section of the Filter definition in the TypeDetection.xcu file.

XExportFilter

The com.sun.star.xml.XExportFilter defines an interface with the following method:
boolean exporter(
[in] sequence< com::sun::star::beans::PropertyValue > aSourceData,
[in] sequence< string > msUserData)

aSourceData and msUserData contain the same type of information as in the importer, except that
the MediaDescriptor contains an XOutputStream , which can be used to write to.

XDocumentHandler

When the export takes place, the new Filtering component must also be an XDocumentHandler , to
allow the output based on SAX events to be filtered, if required. For this reason, an XDocumen-
tHandler is not passed to the exporter, and any exporter that is used by the XML filter adaptor
must implement the com.sun.star.xml.sax.XDocumentHandler interface.

The Importer

Evaluating XImportFilter Parameters

The writing of an importer usually starts with extracting the required variables from the Mediade-
scriptor and the userData . These variables are required for the filtering component to operate
correctly. Depending on the requirements of the individual filter, the first thing to do is to extract
the information from the MediaDescriptor, referred to as aSourceData in the interface definition.
This can be achieved as follows:

Get the number of elements in the MediaDescriptor
sal_Int32 nLength = aSourceData.getLength();

Iterate through the MediaDescriptor to find the information needed: an input stream, a file
name, or a URL.
for (sal_Int32 i = 0; i < nLength; i++) {

 if (pValue[i].Name.equalsAsciiL (RTL_CONSTASCII_STRINGPARAM("InputStream")))
 pValue[i].Value >>= xInputStream;

 else if (pValue[i].Name.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("FileName")
 pValue[i].Value >>= sFileName;

 else if (pValue[i].Name.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("URL")))
 pValue[i].Value >>= sURL;
}

The msUserData parameter passed to importer() contains information that defines how the filter
operates, so this information must be referenced as required.

Importer Filtering

An XInputStream implementation has now been obtained that contains all of the information you
want to process. From the filtering perspective, you can just read from this stream and carry out
whatever processing is required in order for the input to be transformed into OpenOffice.org
XML. Once this has been done, however, you need to write the result to where it can be parsed
into OpenOffice.org's internal format. A Pipe can be used to achieve this. A Pipe is a form of
buffer that can be written to and read from. For the importer, read from the XInputStream that

420 OpenOffice.org 1.1 Developer's Guide • June 2003

was extracted from the MediaDescriptor, and once the filtering has taken place, write to a Pipe
that has been created. This Pipe can be read from when it comes to parsing. This is how the Pipe
is created:
Reference <XInterface> xPipe;

// We Create our pipe
xPipe= XflatXml::xMSF->createInstance(OUString::createFromAscii("com.sun.star.io.Pipe"));

// We get an inputStream to our Pipe
Reference< com::sun::star::io::XInputStream > xPipeInput (xPipe,UNO_QUERY);

// We get an OutputStream to our Pipe
Reference< com::sun::star::io::XOutputStream > xTmpOutputStream (xPipe,UNO_QUERY);

The XInputStream can be read from, and the XOutputstream can be written to.

Parsing the Result

Once the desired OpenOffice.org XML has been produced and written to the XOutputStream of
the Pipe, the XinputStream of the Pipe can be parsed with the aid of the XdocumentHandler.
// Create a Parser
const OUString sSaxParser(RTL_CONSTASCII_USTRINGPARAM("com.sun.star.xml.sax.Parser"));
Reference < com::sun::star::xml::sax::XParser > xSaxParser(xMSF->createInstance(sSaxParser), UNO_QUERY);

// Create an InputSource using the Pipe
com::sun::star::xml::sax::InputSource aInput;
aInput.sSystemId = sFileName; // File Name
aInput.aInputStream = xPipeInput; // Pipe InputStream

// Set the SAX Event Handler
xSaxParser->setDocumentHandler(xHandler);

// Parse the result
try {
 xSaxParser->parseStream(aInput);
}
catch(Exception &exc){
 // Perform exception handling
}

Assuming that the XML was valid, no exceptions will be thrown and the importer will return true.
At this stage, the filtering is complete and the imported document will be displayed.

The Exporter

Evaluating XExportFilter Parameters

The exporter() method operates in much the same way as importer(), except that instead of the
exporter using a provided XDocumentHandler, it is itself a
com.sun.star.xml.sax.XDocumentHandler implementation .

When the exporter() method is invoked, the necessary variables need to be extracted for use by
the filter. This is the same thing that happens with the importer, except that the MediaDescriptor
contains an XOutputStream , instead of the importer's XInputStream . Once the variables have
been extracted (and—in some cases—a Pipe has been created) the exporter() method returns. It
does not carry out the filtering at this stage.

The pipe is only necessary if the output needs to be processed further after being processed by the XDocu-
mentHandler. Otherwise, the result from the XDocumentHandler implementation can be written directly
to the XOutputStream provided. For instance, this is the case with a FlatXML filter.

Exporter Filtering

After the exporter() method returns, the XML filter adaptor then invokes the
com.sun.star.xml.sax.XDocumentHandler methods to parse the XML output.

Chapter 6 Office Development 421

For the filtering, the com.sun.star.xml.sax.XDocumentHandler implementation is used. This
consists of a set of SAX event handling methods, which define how particular XML tags are
handled. These methods are:
startDocument(){
}
endDocument(){
}
startElement(){
}
endElement(){
}
charactors(){
}
ignorableWhitespace(){
}
processingInstruction(){
}
setDocumentLocator(){
}

The result of this event handling can be processed and written to the XOutputStream that was
extracted from the MediaDescriptor .

Configuration
For OpenOffice.org to be able to make use of this filtering component, the filter and the type that it
handles must be defined in the TypeDetection.xcu file.

The type section defines certain file types and their extensions. The filter section contains the
actual filter definition.

Below is an example of a type and filter definition in the TypeDetection.xcu file. It describes a Pock-
etWord filter.
<!-- Type section -->
<node oor:name="writer_PocketWord_File" oor:op="replace">
 <prop oor:name="UIName">

<value xml:lang="en-US">Pocket Word</value>
 </prop>
 <prop oor:name="Data">

<value>0,,,,psw,20002,</value>
 </prop>
</node>

<!-- Filter section -->
<node oor:name="PocketWord File" oor:op="replace">
 <prop oor:name="UIName">
 <value xml:lang="en-US">Pocket Word</value>
 </prop>
 <prop oor:name="Data">
 <value>

0,
writer_PocketWord_File,
com.sun.star.text.TextDocument,
com.sun.star.comp.Writer.XmlFilterAdaptor,
524355,
com.sun.star.documentconversion.XMergeBridge;

 classes/pocketword.jar;
 com.sun.star.comp.Writer.XMLImporter;
 com.sun.star.comp.Writer.XMLExporter;
 staroffice/sxw;application/x-pocket-word,

0,
,

</value>
 </prop>
 <prop oor:name="Installed" oor:type="xs:boolean">
 <value>true</value>
 </prop>
</node>

The type section defines a type writer_PocketWord_File with "Pocket Word" as UIName in File -
Open . The file extension of this type is specified as .psw in the Data property.

The filter section defines the same UI name "Pocket Word" for the filter, and a number of settings
in the Data property, simply separated by commas:

422 OpenOffice.org 1.1 Developer's Guide • June 2003

Type
This is the id of the file type definition that defines the type of file that this filter can handle, in
this case "writer_PocketWord_File”. This value refers to the oor:name of the type section.

Office application
This is the application that will be used to open the document, in this case Writer
(“com.sun.star.text.TextDocument”).

Filter Component
This is the component that OpenOffice.org will initialize when importing or exporting, in this
case “com.sun.star.comp.Writer.XmlFilterAdaptor“.

User Data
Section containing the filtering component that the XML filter adaptor will initialize and use
for filtering. In this example
“com.sun.star.documentconversion.XMergeBridge;classes/pocketword.jar;com.sun.s
tar.comp.Writer.XMLImporter;
com.sun.star.comp.Writer.XMLExporter;staroffice/sxw;application/x-pocket-word”

From this example, you see that this Filter uses the XML filter adaptor . When the XML filter
adaptor initializes, it initializes the XMergeBridge that is specified in the UserData section. The
rest of the information in the UserData section has been included for use by the XMergeBridge
filtering component, including the com.sun.star.comp.Writer.XMLImporter, which will be used
by the XML filter adaptor to create the XDocumentHandler when importing.

Sample Filter Component Implementations
There are currently three filtering components which use the XML filter adaptor.

The first one is the XMergeBridge. This has been created as a means of linking the XMerge Small
Device filter framework with OpenOffice.org. This means that any available XMerge plugin, can
also be used as a OpenOffice.org filter. This is currently hosted within the XMerge project in
openoffice cvs at

xml/xmerge/java/org/openoffice/xmerge/xmergebridge

The final two are a Java and a C++ implementation of a Flat OpenOffice.org XML reader and writer.
These are intended to be sample filter component implementations, and offer a skeleton filter
component that can be expanded upon by developers wishing to create their own filtering compo-
nents. These are temporarily hosted in cvs at

xml/xmerge/java/org/openoffice/xmerge/xmergebridge/FlatXml

Additional Components
In order for Java based components to operate effectively, a set of wrapper classes have been
added to the javaunohelper package. These files allow for an XInputStream or an XOutputStream
to be accessed using the same methods as a normal Java InputStream or OutputStream. These
classes are located in the javaunohelper package at

com.sun.star.lib.uno.adapter.XInputStreamToInputStreamAdapter
com.sun.star.lib.uno.adapter.XInputStreamToInputStreamAdapter

For more information on the use of these helper classes, see the flatxmljava example.

XML Filter Detection
The number of XML files that conform to differing DTD specifications means that a single filter
and file type definition is insufficient to handle all of the possible formats available. In order to

Chapter 6 Office Development 423

allow OpenOffice.org to handle multiple filter definitions and implementations, it is necessary to
implement an additional filter detection module that is capable of determining the type of XML
file being read, based on its DocType declaration.

To accomplish this, a filter detection service com.sun.star.document.ExtendedTypeDetection
can be implemented, which is capable of handling and distinguishing between many different
XML based file formats. This type of service supersedes the basic flat detection , which uses the
file's suffix to determine the Type, and instead, carries out a deep detection which uses the file's
internal structure and content to detect its true type.

Requirements for Deep Detection

There are three requirements for implementing a deep detection module that is capable of identi-
fying one or more unique XML types. These include:

• An extended type definition for describing the format in more detail (TypeDetection.xcu).

• A DetectService implementation.

• A DetectService definition (TypeDetection.xcu).

Extending the File Type Definition

Since many different XML files can conform to different DTDs, the type definition of a particular
XML file needs to be extended. To do this, some or all of the DocType information can be
contained as part of the file type definition. This information is held as part of the Clipboard-
Format property of the type node. A unique namespace or preface identifies the String at this
point in the sequence as being a DocType declaration.

Sample Type definition:
<node oor:name="writer_DocBook_File" oor:op="replace">
 <prop oor:name="UIName">

<value XML:lang="en-US">DocBook</value>
 </prop>
 <prop oor:name="Data">

<value> 0,
,
doctype:-//OASIS//DTD DocBook XML V4.1.2//EN,
,

424 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 67

XML,
20002,

</value>
 </prop>
</node>

The ExtendedTypeDetection Service Implementation

In order for the type detection code to function as an ExtendedTypeDetection service, you must
implement the detect() method as defined by the
com.sun.star.document.XExtendedFilterDetection interface definition:
string detect([inout]sequence<com::sun::star::beans::PropertyValue > Descriptor);

This method supplies you with a sequence of ProptertyValues from which you can use to extract
the current TypeName and the URL of the file being loaded:
::rtl::OUString SAL_CALL FilterDetect::detect(com::sun::star::uno::Sequence<
com::sun::star::beans::PropertyValue >& aArguments) throw (com::sun::star::uno::RuntimeException) {
const PropertyValue * pValue = aArguments.getConstArray();
sal_Int32 nLength;
::rtl::OString resultString;
nLength = aArguments.getLength();
for (sal_Int32 i = 0; i < nLength; i++) {

if (pValue[i].Name.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("TypeName"))) {
}
else if (pValue[i].Name.equalsAsciiL(RTL_CONSTASCII_STRINGPARAM("URL"))) {

pValue[i].Value >>= sUrl;
}

}

Once you have the URL of the file, you can then use it to create a ::ucb::Content from which you
can open an XInputStream to the file:
Reference< com::sun::star::ucb::XCommandEnvironment > xEnv;
::ucb::Content aContent(sUrl,xEnv);
xInStream = aContent.openStream();

You can now use this XInputStream to read the header of the file being loaded. Because the exact
location of the DocType information within the file is not known, the first 1000 bytes of informa-
tion will be read:
::rtl::OString resultString;
com::sun::star::uno::Sequence< sal_Int8 > aData;
long bytestRead =xInStream->readBytes (aData, 1000);
resultString=::rtl::OString(
(const sal_Char *)aData.getConstArray(),bytestRead) ;

Once you have this information, you can start looking for a type that describes the file being
loaded. In order to do this, you need to get a list of the types currently supported:
Reference <XNameAccess> xTypeCont(mxMSF->createInstance(OUString::createFromAscii(

"com.sun.star.document.TypeDetection")),UNO_QUERY);
Sequence <::rtl::OUString> myTypes= xTypeCont->getElementNames();
nLength = myTypes.getLength();

For each of these types, you must first determine whether the ClipboardFormat property contains
a DocType:
Loc_of_ClipboardFormat=...;
Sequence<::rtl::OUString> ClipboardFormatSeq;
Type_Props[Loc_of_ClipboardFormat].Value >>=ClipboardFormatSeq ;
while() {

if(ClipboardFormatSeq.match(OUString::createFromAscii("doctype:") {
//if it contains a DocType, start to compare to header

}
}

All of the possible DocType declarations of the file types can be checked to determine a match. If a
match is found, the type corresponding to the match is returned. If no match is found, an empty
string is returned. This will force OpenOffice.org into flat detection mode.

Chapter 6 Office Development 425

TypeDetection.xcu DetectServices Entry

Now that you have created the ExtendedTypeDetection service implementation, you need to tell
OpenOffice.org when to use this service.

First create a DetectServices node, unless one already exists, and then add the information
specific to the detection service that has been implemented, that is, the name of the service and the
file types that use it.
<node oor:name="DetectServices">
<node oor:name="com.sun.star.comp.filters.XMLDetect" oor:op="replace">

<prop oor:name="ServiceName">
<value XML:lang="en-US">com.sun.star.comp.filters.XMLDetect</value>

</prop>
<prop oor:name="Types">

<value>writer_DocBook_File</value>
<value>writer_Flat_XML_File</value>

</prop>
</node>
</node>

6.2.5 Number Formats
Number formats are template strings consisting of format codes defining how numbers or text
appear, for example,, whether or not to display trailing zeroes, group by thousands, separators,
colors, and how many decimals are displayed. This does not include any font attributes, except for
colors. They are found wherever number formats are applied, for example, on the Numbers tab of
the Format – Cells dialog in spreadsheets.

Number formats are defined on the document level. A document displaying formatted values has
a collection of number formats, each with a unique index key within that document. Identical
formats are not necessarily represented by the same index key in different documents.

Managing Number Formats
Documents provide their formats through the interface
com.sun.star.util.XNumberFormatsSupplierthat has one method getNumberFormats() that
returns com.sun.star.util.NumberFormats. Using NumberFormats, developers can read and
modify number formats in documents, and also add new formats.

You have to retrieve the NumberFormatsSupplier as a property at a few objects from their
com.sun.star.beans.XPropertySet interface, for example, from data sources supporting the
com.sun.star.sdb.DataSource service and from database connections supporting the service
com.sun.star.sdb.DatabaseEnvironment, or com.sun.star.sdb.DatabaseAccess. In addi -
tion, all UNO controls offering the service com.sun.star.awt.UnoControlFormattedFieldModel
have a NumberFormatsSupplier property.

NumberFormats Service
The com.sun.star.util.NumberFormats service specifies a container of number formats and
implements the interfaces com.sun.star.util.XNumberFormatTypes and
com.sun.star.util.XNumberFormats.

XNumberFormats

NumberFormats supports the interface com.sun.star.util.XNumberFormats. This interface
provides access to the number formats of a container. It is used to query the properties of a

426 OpenOffice.org 1.1 Developer's Guide • June 2003

number format by an index key, retrieve a list of available number format keys of a given type for
a given locale, query the key for a user-defined format string, or add new format codes into the list
or to remove formats.

com::sun::star::beans::XPropertySet getByKey ([in] long nKey)
sequence< long > queryKeys ([in] short nType,
 [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bCreate)
long queryKey ([in] string aFormat,
 [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bScan)

long addNew ([in] string aFormat, [in] com::sun::star::lang::Locale nLocale)
long addNewConverted ([in] string aFormat, [in] com::sun::star::lang::Locale nLocale,
 [in] com::sun::star::lang::Locale nNewLocale)

void removeByKey ([in] long nKey)
string generateFormat ([in] long nBaseKey, [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bThousands, [in] boolean bRed, [in] short nDecimals, [in] short nLeading)

The important methods are probably queryKey() and addNew(). The method queryKey() finds
the key for a given format string and locale, whereas addNew() creates a new format in the
container and returns its key for immediate use. The bScan is reserved for future use and should
be set to false.
The properties of a single number format are obtained by a call to getByKey() which returns a
[IDL:com.sun.star.util.NumberFormatProperties] service for the given index key.

XNumberFormatTypes

The interface com.sun.star.util.XNumberFormatTypes offers functions to retreive the index
keys of specific predefined number format types. The predefined types are addressed by constants
from com.sun.star.util.NumberFormat.The NumberFormat contains values for predefined
format types, such as PERCENT, TIME, CURRENCY, and TEXT.

long getStandardIndex ([in] com::sun::star::lang::Locale nLocale)
long getStandardFormat ([in] short nType,
 [in] com::sun::star::lang::Locale nLocale)
long getFormatIndex ([in] short nIndex,
 [in] com::sun::star::lang::Locale nLocale)

boolean isTypeCompatible ([in] short nOldType, [in] short nNewType)
long getFormatForLocale ([in] long nKey,
 [in] com::sun::star::lang::Locale nLocale)

In most cases you will need getStandardFormat(). It expects a type constant from the Number-
Format group and the locale t to use, and returns the key of the corresponding predefined format.

Applying Number Formats
To format numeric values, an XNumberFormatsSupplier is attached to an instance of a
com.sun.star.util.NumberFormatter, available at the global service manager. For this purpose,
its main interface com.sun.star.util.XNumberFormatter has a method attachNumberFor-
matsSupplier(). When the XNumberFormatsSupplier is attached, strings and numeric values are
formatted using the methods of the NumberFormatter. To specify the format to apply, you have to
get the unique index key for one of the formats defined in NumberFormats. These keys are avail-
able at the XNumberFormats and XNumberFormatTypes interface of NumberFormats.

Numbers in documents, such as in table cells, formulas, and text fields, are formatted by applying
the format key to the NumberFormat property of the appropriate element.

Chapter 6 Office Development 427

NumberFormatter Service
The service com.sun.star.util.NumberFormatter implements the interfaces
com.sun.star.util.XNumberFormatter and com.sun.star.util.XNumberFormatPreviewer.

XNumberformatter

The interface com.sun.star.util.XNumberFormatter converts numbers to strings, or strings to
numbers, or detects a number format matching a given string.

void attachNumberFormatsSupplier ([in] com::sun::star::util::XNumberFormatsSupplier xSupplier)
com::sun::star::util::XNumberFormatsSupplier getNumberFormatsSupplier ()
long detectNumberFormat ([in] long nKey, [in] string aString)
double convertStringToNumber ([in] long nKey, [in] string aString)
string convertNumberToString ([in] long nKey, [in] double fValue);
com::sun::star::util::color queryColorForNumber ([in] long nKey, [in] double fValue,
 [in] com::sun::star::util::color aDefaultColor)
string formatString ([in] long nKey, [in] string aString);
com::sun::star::util::color queryColorForString ([in] long nKey, [in] string aString,
 [in] com::sun::star::util::color aDefaultColor)

string getInputString ([in] long nKey, [in] double fValue)

XNumberformatPreviewer
string convertNumberToPreviewString ([in] string aFormat, [in] double fValue,
 [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bAllowEnglish)

com::sun::star::util::color queryPreviewColorForNumber ([in] string aFormat, [in] double fValue,
 [in] com::sun::star::lang::Locale nLocale,
 [in] boolean bAllowEnglish,
 [in] com::sun::star::util::color aDefaultColor)

This interface com.sun.star.util.XNumberFormatPreviewerconverts values to strings according
to a given format code without inserting the format code into the underlying
com.sun.star.util.NumberFormats collection.

The example below demonstrates the usage of these interfaces. (OfficeDev /Number_Formats.java)
public void doSampleFunction() throws RuntimeException, Exception
{
 // Assume:
 // com.sun.star.sheet.XSpreadsheetDocument maSpreadsheetDoc;
 // com.sun.star.sheet.XSpreadsheet maSheet;

 // Query the number formats supplier of the spreadsheet document
 com.sun.star.util.XNumberFormatsSupplier xNumberFormatsSupplier =
 (com.sun.star.util.XNumberFormatsSupplier)
 UnoRuntime.queryInterface(
 com.sun.star.util.XNumberFormatsSupplier.class, maSpreadsheetDoc);

 // Get the number formats from the supplier
 com.sun.star.util.XNumberFormats xNumberFormats =
 xNumberFormatsSupplier.getNumberFormats();

 // Query the XNumberFormatTypes interface
 com.sun.star.util.XNumberFormatTypes xNumberFormatTypes =
 (com.sun.star.util.XNumberFormatTypes)
 UnoRuntime.queryInterface(
 com.sun.star.util.XNumberFormatTypes.class, xNumberFormats);

 // Get the number format index key of the default currency format,
 // note the empty locale for default locale
 com.sun.star.lang.Locale aLocale = new com.sun.star.lang.Locale();
 int nCurrencyKey = xNumberFormatTypes.getStandardFormat(
 com.sun.star.util.NumberFormat.CURRENCY, aLocale);

 // Get cell range B3:B11
 com.sun.star.table.XCellRange xCellRange =
 maSheet.getCellRangeByPosition(1, 2, 1, 10);

 // Query the property set of the cell range
 com.sun.star.beans.XPropertySet xCellProp =

428 OpenOffice.org 1.1 Developer's Guide • June 2003

 (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xCellRange);

 // Set number format to default currency
 xCellProp.setPropertyValue("NumberFormat", new Integer(nCurrencyKey));

 // Get cell B3
 com.sun.star.table.XCell xCell = maSheet.getCellByPosition(1, 2);

 // Query the property set of the cell
 xCellProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xCell);

 // Get the number format index key of the cell's properties
 int nIndexKey = ((Integer) xCellProp.getPropertyValue("NumberFormat")).intValue();

 // Get the properties of the number format
 com.sun.star.beans.XPropertySet xProp = xNumberFormats.getByKey(nIndexKey);

 // Get the format code string of the number format's properties
 String aFormatCode = (String) xProp.getPropertyValue("FormatString");
 System.out.println("FormatString: `" + aFormatCode + "'");

 // Create an arbitrary format code
 aFormatCode = "\"wonderful \"" + aFormatCode;

 // Test if it is already present
 nIndexKey = xNumberFormats.queryKey(aFormatCode, aLocale, false);

 // If not, add to number formats collection
 if (nIndexKey == -1)
 {
 try
 {
 nIndexKey = xNumberFormats.addNew(aFormatCode, aLocale);
 }
 catch(com.sun.star.util.MalformedNumberFormatException ex)
 {
 System.out.println("Bad number format code: " + ex);
 nIndexKey = -1;
 }
 }

 // Set the new format at the cell
 if (nIndexKey != -1)
 xCellProp.setPropertyValue("NumberFormat", new Integer(nIndexKey));
}

6.2.6 Document Events
Recurring actions, such as loading, printing or saving, that occur when working with documents,
are document events, and all documents in OpenOffice.org offer an interface that sends notifica-
tions when these events take place.

There are general events common every document, such as loading, printing, or saving, and there
are other events that are specific to a particular document type. Both can be accessed through the
same interface.

In the document events API, these events are represented by an event name. The following table
shows a list of all general document event names :

General Document Event Names
OnNew New Document was created

OnLoad Document has been loaded

OnSaveAs Document is going to be saved under a new name

OnSaveAsDone Document was saved under a new name

OnSave Document is going to be saved

Chapter 6 Office Development 429

General Document Event Names
OnSaveDone Document was saved

OnPrepareUnload Document is going to be removed, but still fully available

OnUnload Document has been removed, document ist still valid, but closing can no longer
be prevented

OnFocus Document was activated

OnUnfocus Document was deactivated

OnPrint Document will be printed

OnModifyChange Modified state of the document has changed

These event names are documented in the com.sun.star.document.Events service. Note that
this service description exceeds the scope of events that happen on the document as a whole—so it
also contains events that can only be accessed by finding the part of the document where the event
occurred, for example, a button in a form. This list of events can also be extended by new events,
so that future versions of OpenOffice.org can support new types of events through the same API.
Therefore, every client that wants to deal with a particular document event must check if this
event is supported, or whether it should be prepared to catch an exception .

Every client that is interested in document events can register for being notified. The necessary
interface for notification is com.sun.star.document.XEventBroadcaster, which is an optional
interface of the servicecom.sun.star.document.OfficeDocument. All document objects in
OpenOffice.org implement this interface. It has two methods to add and remove listeners for
document events:

[oneway] void addEventListener([in] ::com::sun::star::document::XEventListener Listener);
[oneway] void removeEventListener([in] ::com::sun::star::document::XEventListener Listener);

The listeners must implement the interface com.sun.star.document.XEventListener and get a
notification through a call of their method:

[oneway] void notifyEvent([in] ::com::sun::star::document::EventObject Event);

The argument of this call is a com.sun.star.document.EventObject struct, which is derived
from the usual com.sun.star.lang.EventObject and contains two members: the member
Source, which contains an interface pointer to the event source (here the
com.sun.star.document.OfficeDocument service) and the member EventName which can be one
of the names shown in the preceding table.

Both methods in the interface com.sun.star.document.XEventBroadcaster can cause problems
in scripting languages if the object that implements this interface also implements
com.sun.star.lang.XComponent, because it has two very similar methods:

[oneway] void addEventListener([in] ::com::sun::star::lang::XEventListener Listener);
[oneway] void removeEventListener([in] ::com::sun::star::lang::XEventListener Listener);

Unfortunately this applies to all OpenOffice.org documents.

In C++ and Java this is no problem, because the complete signature of a method, including the
arguments, is used to identify it.

In OpenOffice.org Basic, the fully qualified name including the interface can be used from version
1.1:
Sub RegisterListener

 oListener = CreateUnoListener("DocumentListener_","com.sun.star.document.XEventListener")

 ThisComponent.com_sun_star_document_XEventBroadcaster_addEventListener(oListener)
End Sub

430 OpenOffice.org 1.1 Developer's Guide • June 2003

Sub DocumentListener_notifyEvent(o as object)

 IF o.EventName = "OnPrepareUnload" THEN
print o.Source.URL

 ENDIF

end sub

Sub DocumentListener_disposing()
End Sub

But the OLE automation bridge, and possibly other scripting language bindings, are unable to
distinguish between both addEventListener() and removeEventListener() methods based on
the method signature and must be told which interface you want to use.

You must use the core reflection to get access to either method. The following code shows an
example in VBScript, which registers a document event listener at the current document.
set xContext = objServiceManager.getPropertyValue("DefaultContext")
set xCoreReflection = xContext.getValueByName("/singletons/com.sun.star.reflection.theCoreReflection")
set xClass = xCoreReflection.forName("com.sun.star.document.XEventBroadcaster")
set xMethod = xClass.getMethod("addEventListener")

dim invokeargs(0)
invokeargs(0) = myListener

set value = objServiceManager.Bridge_GetValueObject()
call value.InitInOutParam("[]any", invokeargs)
call xMethod.invoke(objDocument, value)

The C++ code below uses OLE Automation. Two helper functions are provided that help to
execute UNO operations.
// helper function to execute UNO operations via IDispatch
HRESULT ExecuteFunc(IDispatch* idispUnoObject,

 OLECHAR* sFuncName,
 CComVariant* params,
 unsigned int count,
 CComVariant* pResult)

{
 if(!idispUnoObject)
 return E_FAIL;

 DISPID id;
 HRESULT hr = idispUnoObject->GetIDsOfNames(IID_NULL, &sFuncName, 1, LOCALE_USER_DEFAULT, &id);
 if(!SUCCEEDED(hr)) return hr;

 DISPPARAMS dispparams= { params, 0, count, 0};

 // DEBUG
 EXCEPINFO myInfo;
 return idispUnoObject->Invoke(id, IID_NULL,LOCALE_USER_DEFAULT, DISPATCH_METHOD,
 &dispparams, pResult, &myInfo, 0);
}

// helper function to execute UNO methods that return interfaces
HRESULT GetIDispByFunc(IDispatch* idispUnoObject,

 OLECHAR* sFuncName,
 CComVariant* params,
 unsigned int count,
 CComPtr<IDispatch>& pdispResult)

{
 if(!idispUnoObject)
 return E_FAIL;

 CComVariant result;
 HRESULT hr = ExecuteFunc(idispUnoObject, sFuncName, params, count, &result);
 if(!SUCCEEDED(hr)) return hr;

 if(result.vt != VT_DISPATCH || result.pdispVal == NULL)
 return E_FAIL;

 pdispResult = CComPtr<IDispatch>(result.pdispVal);

 return S_OK;
}

// it's assumed that pServiceManager (by creating it as a COM object), pDocument (f.e. by loading it) //
and pListener (the listener we want to add) are passed as parameters

HRESULT AddDocumentEventListener(
 CComPtr<IDispatch> pServiceManager, CComPtr<IDispatch> pDocument, CComPtr<IDispatch> pListener)

Chapter 6 Office Development 431

{
 CComPtr<IDispatch> pdispContext;
 hr = GetIDispByFunc(pServiceManager, L"getPropertyValue", &CComVariant(L"DefaultContext"), 1,

pdispContext);
 if(!SUCCEEDED(hr)) return hr;

 CComPtr<IDispatch> pdispCoreReflection;
 hr = GetIDispByFunc(pdispContext,

 L"getValueByName",
 &CcomVariant(L"/singletons/com.sun.star.reflection.theCoreReflection"),
 1,
 pdispCoreReflection);

 if(!SUCCEEDED(hr)) return hr;

 CComPtr<IDispatch> pdispClass;
 hr = GetIDispByFunc(pdispCoreReflection,

 L"forName",
 &CComVariant(L"com.sun.star.document.XEventBroadcaster"),
 1,
 pdispClass);

 if(!SUCCEEDED(hr)) return hr;

 CComPtr<IDispatch> pdispMethod;
 hr = GetIDispByFunc(pdispClass, L"getMethod", &CComVariant(L"addEventListener"), 1, pdispMethod);
 if(!SUCCEEDED(hr)) return hr;

 CComPtr<IDispatch> pdispListener;
 CComPtr<IDispatch> pdispValueObj;
 hr = GetIDispByFunc(mpDispFactory, L"Bridge_GetValueObject", NULL, 0, pdispValueObj);
 if(!SUCCEEDED(hr)) return hr;

 CComVariant pValParams[2];
 pValParams[1] = CComVariant(L"com.sun.star.document.XEventListener");
 pValParams[0] = CComVariant(pdispListener);
 CComVariant dummyResult;
 hr = ExecuteFunc(pdispValueObj, L"Set", pValParams, 2, &dummyResult);
 if(!SUCCEEDED(hr)) return hr;

 SAFEARRAY FAR* pPropVal = SafeArrayCreateVector(VT_VARIANT, 0, 1);
 long ix1 = 0;

 CComVariant aArgs(pdispValueObj);
 SafeArrayPutElement(pPropVal, &ix, &aArgs);

 CComVariant aDoc(pdispDocument);
 CComVariant pParams[2];
 pParams[1] = aDoc;
 pParams[0].vt = VT_ARRAY | VT_VARIANT; pParams[0].parray = pPropVal;

 CComVariant result;

 //invoking the method addeventlistner
 hr = ExecuteFunc(pdispMethod, L"invoke", pParams, 2, &result);
 if(!SUCCEEDED(hr)) return hr;

 return S_OK;
}

Another way to react to document events is to bind a macro to it—a process called event binding.
From OpenOffice.org 1.1 you can also use scripts in other languages, provided that a corre-
sponding scripting framework implementation is present.

All document objects in OpenOffice.org support event binding through an interface
com.sun.star.document.XEventsSupplier. This interface has only one method:

::com::sun::star::container::XNameReplace getEvents();

This method gives access to a container of event bindings. The container is represented by a
com.sun.star.container.XNameReplace interface that, together with the methods of its base
interfaces, offers the following methods:

void replaceByName([in] string aName, [in] any aElement);
any getByName([in] string aName);
sequence< string > getElementNames();
boolean hasByName([in] string aName);
type getElementType();
boolean hasElements();

Each container element represents an event binding. By default, all bindings are empty. The
element names are the event names shown in the preceding table. In addition, there are document

432 OpenOffice.org 1.1 Developer's Guide • June 2003

type- specific events. The method getElementNames() yields all possible events that are supported
by the object and hasByName() checks for the existence of a particular event.

For every supported event name you can use getByName() to query for the current event binding
or replaceByName() to set a new one. Both methods may throw a
com.sun.star.container.NoSuchElementException exception if an unsupported event name is
used.

The type of an event binding, which is wrapped in the any returned by getByName(), is a
sequence of com.sun.star.beans.PropertyValue that describes the event binding.

PropertyValue structs in the event binding description
EventType string. Can assume the values "StarBasic" or "Script". The event type

"Script" describes the location as URL. The event type "StarBasic" is
provided for compatibility reasons and describes the location of the macro
through the properties Library and MacroName, in addition to URL.

Script string. Available for the event types Script and StarBasic. Describes the
location of the macro /script routine which is bound. For the URL property, a
command URL is expected (see 6.1.6 Office Development - OpenOffice.org Appli-
cation Environment - Using the Dispatch Framework). OpenOffice.org will execute
this command when the event occurs.

For the event type StarBasic, the URL uses the macro: protocol. For the event
type Script, other protocols are possible, especially the script: protocol.

The macro protocol has two forms:

macro:///<Library>.<Module>.<Method(args)>
macro://./<Library>.<Module>.<Method(args)>

The first form points to a method in the global basic storage, while the second
one points to a method embedded in the current document.
<Library>.<Module>.<Method(args)> represent the names of the library, the
module and the method. Currently, for args only string arguments (separated
by comma) are possible. If no args exist, empty brackets must be used, because
the brackets are part of the scheme. An example URL could look like:

macro:///MyLib.MyModule.MyMethod(foo,bar)

The exact form of the script: command URL protocol depends on the installed
scripting module. They will be available later as additional components for
OpenOffice.org 1.1.

Library string. Deprecated. Available for EventType "StarBasic". Can assume the
values "application" or empty string for the global basic storage, and
"document" for the document where the code is embedded.

MacroName string. Deprecated. Available for EventType "StarBasic". Describes the
macro location as <Library>.<MyModule>.<MyMethod>.

In OpenOffice.org 1.1 all properties (URL, Library, MacroName) will be returned for event bindings of type
StarBasic, regardless if the binding was created with a URL property only or with the Library and
MacroName property. The internal implementation does the necessary conversion. Older versions of
OpenOffice.org always returned only Library and MacroName, even if the binding was created with the
URL property.

In OpenOffice.org 1.1 there is another important extension in the area of document events and
event bindings. This version has a new service
com.sun.star.document.GlobalEventBroadcaster that offers the same document- event- related
functionality as described previously (interfaces com.sun.star.document.XEventBroadcaster,

Chapter 6 Office Development 433

com.sun.star.document.XEventsSupplier), but it allows you to register for events that happen
in any document and also allows you to set bindings for all documents that are stored in the
global UI configuration of OpenOffice.org. Using this services frees you from registering at every
single document that has been created or loaded.

Though a potential listener registers for event notifications at this global service and not at any
document itself, the received event source in the event notification is the document, not the
GlobalEventBroadcaster. The reason for this is that usually a listener contains code that works
on the document, so it needs a reference to it.

The service com.sun.star.document.GlobalEventBroadcaster also supports two more events
that do not occur in any document but are useful for working with document events:

Global Event Names
OnStartApp Application has been started

OnCloseApp Application is going to be closed. This event is fired after all documents have
been closed and nobody objected to the shutdown.

The event source in the notifications is NULL (empty).

All event bindings can be seen or set in the OpenOffice.org UI in the Tools-Configure dialog on
Events page. Two radio buttons on the right side of the dialog toggle between OpenOffice.org
and Document binding. In OpenOffice.org 1.1, you can still only bind to OpenOffice.org Basic
macros in the dialog. Bindings to script: URLs can only be set using the API, but the dialog is at
least able to display them. If, in OpenOffice.org 1.1, a global and a document binding are set for
the same event, first the global and then the document binding is executed. With older versions,
only the document binding was executed, and the global binding was only executed if no docu-
ment binding was set.

6.2.7 Path Organization
The path settings service is the central service that manages the paths of OpenOffice.org. Almost
every component inside OpenOffice.org uses one or more of the paths to access its resources
located on the file system.

Users can customize most of the paths in OpenOffice.org by choosing Tools – Options –
OpenOffice.org – Paths.

Path Settings
The com.sun.star.util.PathSettings service supports a number of properties which store the
OpenOffice.org predefined paths. There are two different groups of properties. One group stores
only a single path and the other group stores two or more paths - separated by a semicolon.

Properties of com.sun.star.util.PathSettings
Addin Single path Specifies the directory that contains spreadsheet add- ins which use

the old add- in API.
AutoCorrect Multi path Specifies the directories that contain the settings for the AutoCorrect

dialog.
AutoText Multi path Specifies the directories that contain the AutoText modules.
Backup Single path Specifies the directory for storing automatic backup copies of docu-

ments.

434 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.util.PathSettings
Basic Multi path Specifies the location of the Basic files that are used by the AutoPi-

lots.
Bitmap Single path Specifies the directory that contains the external icons for the tool-

bars.
Config Single path Specifies the location of the configuration files. This property is not

visible in the OpenOffice.org path options dialog and cannot be
changed by users.

Dictionary Single path Specifies the location of the OpenOffice.org dictionaries.
Favorite Single path Specifies the directory that contains the saved folder bookmarks .
Filter Single path Specifies the directory where the filters are stored.
Gallery Multi path Specifies the directories that contain the Gallery database and multi -

media files.
Graphic Single path Specifies the directory that is displayed when the dialog for opening

a graphic or for saving a new graphic is called.
Help Single path Specifies the location of the Office help files.
Linguistic Single path Specifies the directory where the spellcheck files are stored.
Module Single path Specifies the directory where the modules are stored.
Palette Single path Specifies the location of the palette files that contain user-defined

colors and patterns (*.SOB and *.SOF).
Plugin Multi path Specifies the directories where the Plugins are stored.
Storage Single path Specifies the directory where mail and news files as well as other

information (for example, about FTP Server) are stored. This prop-
erty is not visible in the OpenOffice.org path options dialog and
cannot be changed by users.

Temp Single path Specifies the directory for the office temp- files.
Template Multi path Specifies the directory for the OpenOffice.org document templates .
UIConfig Multi path Specifies the location of global directories when looking for user

interface configuration files. The user interface configuration is
merged with the user settings that are stored in the directory speci-
fied by UserConfig.

UserConfig Single path Specifies the directory that contains the user settings , including the
user interface configuration files for menus, toolbars, accelerators
and status bars.

UserDictionary Single path Specifies the directory for the custom dictionaries.
Work Single path Specifies the location of the work folder . This path can be modified

according to the user's needs and can be seen in the Open or Save
dialog.

Configuration
The path settings service uses the group Path in the org.Openoffice.Office.Common branch to read
and store paths. The Current and Default groups in the share layer of the configuration branch
store the path settings properties. The Current group initialize the properties of the path settings
service during startup. If the user activates the Default button in the path options dialog, the
Default group values are copied to the current ones.

Chapter 6 Office Development 435

Note: The configuration branch separates the paths of a property with a colon (:), whereas the path settings
service separates multiple paths with a semicolon (;).

<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Common" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://wwww.w3.org/2001/XMLSchema-instance”>
 <component>
 <group oor:name="Path">
 <group oor:name="Current">
 <prop oor:name="OfficeInstall" oor:type="xs:string">
 <value/>
 </prop>
 <prop oor:name="OfficeInstallURL" oor:type="xs:string">
 <value/>
 </prop>
 <prop oor:name="Addin" oor:type="xs:string">
 <value>$(progpath)/addin</value>
 </prop>
 <prop oor:name="AutoCorrect" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/autocorr:$(userurl)/autocorr</value>
 </prop>
 <prop oor:name="AutoText" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/autotext/$(vlang):$(userurl)/autotext
 </value>
 </prop>
 <prop oor:name="Backup" oor:type="xs:string">
 <value>$(userurl)/backup</value>
 </prop>
 <prop oor:name="Basic" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/basic:$(userurl)/basic</value>
 </prop>
 <prop oor:name="Bitmap" oor:type="xs:string">
 <value>$(insturl)/share/config/symbol</value>
 </prop>
 <prop oor:name="Config" oor:type="xs:string">
 <value>$(insturl)/share/config</value>
 </prop>
 <prop oor:name="Dictionary" oor:type="xs:string">
 <value>$(insturl)/share/wordbook/$(vlang)</value>
 </prop>
 <prop oor:name="Favorite" oor:type="xs:string">
 <value>$(userurl)/config/folders</value>
 </prop>
 <prop oor:name="Filter" oor:type="xs:string">
 <value>$(progpath)/filter</value>
 </prop>
 <prop oor:name="Gallery" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/gallery:$(userurl)/gallery</value>
 </prop>
 <prop oor:name="Graphic" oor:type="xs:string">
 <value>$(insturl)/share/gallery</value>
 </prop>
 <prop oor:name="Help" oor:type="xs:string">
 <value>$(instpath)/help</value>
 </prop>
 <prop oor:name="Linguistic" oor:type="xs:string">
 <value>$(insturl)/share/dict</value>
 </prop>
 <prop oor:name="Module" oor:type="xs:string">
 <value>$(progpath)</value>
 </prop>
 <prop oor:name="Palette" oor:type="xs:string">
 <value>$(userurl)/config</value>
 </prop>
 <prop oor:name="Plugin" oor:type="oor:string-list">
 <value oor:separator=":">$(userpath)/plugin</value>
 </prop>
 <prop oor:name="Storage" oor:type="xs:string">
 <value>$(userpath)/store</value>
 </prop>
 <prop oor:name="Temp" oor:type="xs:string">
 <value>$(temp)</value>
 </prop>
 <prop oor:name="Template" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/template/$(vlang):$(userurl)/template
 </value>
 </prop>
 <prop oor:name="UIConfig" oor:type="oor:string-list">
 <value oor:separator=":"/>
 </prop>
 <prop oor:name="UserConfig" oor:type="xs:string">
 <value>$(userurl)/config</value>

436 OpenOffice.org 1.1 Developer's Guide • June 2003

 </prop>
 <prop oor:name="UserDictionary" oor:type="xs:string">
 <value>$(userurl)/wordbook</value>
 </prop>
 <prop oor:name="Work" oor:type="xs:string">
 <value>$(work)</value>
 </prop>
 </group>
 <group oor:name="Default">
 <prop oor:name="Addin" oor:type="xs:string">
 <value>$(progpath)/addin</value>
 </prop>
 <prop oor:name="AutoCorrect" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/autocorr:$(userurl)/autocorr
 </value>
 </prop>
 <prop oor:name="AutoText" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/autotext/$(vlang):$(userurl)/autotext
 </value>
 </prop>
 <prop oor:name="Backup" oor:type="xs:string">
 <value>$(userurl)/backup</value>
 </prop>
 <prop oor:name="Basic" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/basic:$(userurl)/basic</value>
 </prop>
 <prop oor:name="Bitmap" oor:type="xs:string">
 <value>$(insturl)/share/config/symbol</value>
 </prop>
 <prop oor:name="Config" oor:type="xs:string">
 <value>$(insturl)/share/config</value>
 </prop>
 <prop oor:name="Dictionary" oor:type="xs:string">
 <value>$(insturl)/share/wordbook/$(vlang)</value>
 </prop>
 <prop oor:name="Favorite" oor:type="xs:string">
 <value>$(userurl)/config/folders</value>
 </prop>
 <prop oor:name="Filter" oor:type="xs:string">
 <value>$(progpath)/filter</value>
 </prop>
 <prop oor:name="Gallery" oor:type="oor:string-list">
 <value oor:separator=":">$(insturl)/share/gallery:$(userurl)/gallery</value>
 </prop>
 <prop oor:name="Graphic" oor:type="xs:string">
 <value>$(insturl)/share/gallery</value>
 </prop>
 <prop oor:name="Help" oor:type="xs:string">
 <value>$(instpath)/help</value>
 </prop>
 <prop oor:name="Linguistic" oor:type="xs:string">
 <value>$(insturl)/share/dict</value>
 </prop>
 <prop oor:name="Module" oor:type="xs:string">
 <value>$(progpath)</value>
 </prop>
 <prop oor:name="Palette" oor:type="xs:string">
 <value>$(userurl)/config</value>
 </prop>
 <prop oor:name="Plugin" oor:type="oor:string-list">
 <value oor:separator=":">$(userpath)/plugin</value>
 </prop>
 <prop oor:name="Temp" oor:type="xs:string">
 <value>$(temp)</value>
 </prop>
 <prop oor:name="Template" oor:type="oor:string-list">
 <value oor:separator=":">
 $(insturl)/share/template/$(vlang):$(userurl)/template
 </value>
 </prop>
 <prop oor:name="UIConfig" oor:type="oor:string-list">
 <value oor:separator=":"/>
 </prop>
 <prop oor:name="UserConfig" oor:type="xs:string">
 <value>$(userurl)/config</value>
 </prop>
 <prop oor:name="UserDictionary" oor:type="xs:string">
 <value>$(userurl)/wordbook</value>
 </prop>
 <prop oor:name="Work" oor:type="xs:string">
 <value>$(work)</value>
 </prop>
 </group>
 </group>
 </component>

Chapter 6 Office Development 437

</oor:component-schema>

Accessing Path Settings
The path settings service is a one-instance service that supports the
com.sun.star.beans.XPropertySet, com.sun.star.beans.XFastPropertySet and
com.sun.star.beans.XMultiPropertySet interfaces for access to the properties.

The service can be created using the service manager of OpenOffice.org and the service name
com.sun.star.util.PathSettings. The following example creates the path settings service.
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.uno.Exception;
import com.sun.star.uno.XInterface;
import com.sun.star.beans.XPropertySet

XPropertySet createPathSettings() {

 // Obtain Process Service Manager.
 XMultiServiceFactory xServiceFactory = ...

 // Create Path settings service. Needs to be done only once per process.
 XInterface xPathSettings;
 try {
 xPathSettings = xServiceFactory.createInstance("com.sun.star.util.PathSettings");
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xPathSettings != null)
 return (XpropertySet) UnoRuntime.queryInterface(XPropertySet.class, xPathSettings);
 else
 return null;
}

The main interface of the path settings service is com.sun.star.beans.XPropertySet. You can
retrieve and write properties with this interface. It also supports getting information about the
properties themselves.

• com::sun::star::beans::XPropertySetInfo getPropertySetInfo();
The path settings service returns an XPropertySetInfo interface where more information
about the path properties can be retrieved. The information includes the name of the property,
a handle for faster access with XFastPropertySet, the type of the property value and attribute
values.

• void setPropertyValue([in] string aPropertyName, [in] any aValue);
This function can set the path properties to a new value. The path settings service expects that a
value of type string is provided. The string must be a correctly encoded file URL. If the path
property supports multiple paths, each path must be separated by a semicolon (;). Path vari-
ables are also allowed, so long as they can be resolved to a valid file URL.

• any getPropertyValue([in] string PropertyName);
This function retrieves the value of a path property. The property name must be provided and
the path is returned. The path settings service always returns the path as a file URL. If the
property value includes multiple paths, each path is separated by a semicolon (;).

Note: The path settings service always provides property values as file URLs. Properties which are marked
as multi path (see table above) use a semicolon (;) as a separator for the different paths. The service also
expects that a new value for a path property is provided as a file URL or has a preceding path variable, other-
wise a com.sun.star.lang.IllegalArgumentException is thrown.

 Illustration 54 shows how the path settings, path substitution, and configuration service work
together to read or write path properties.

438 OpenOffice.org 1.1 Developer's Guide • June 2003

Important: Keep in mind that the paths managed by the path settings service are vital for almost all of the
functions in OpenOffice.org. Entering a wrong path can result in minor malfunctions or break the complete
OpenOffice.org installation. Although the path settings service performs a validity check on the provided
URL, this cannot prevent all problems.

The following code example uses the path settings service to retrieve and set the path properties.
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;

import com.sun.star.beans.UnknownPropertyException;

/* Provides example code how to access and use the
 * path pathsettings servce.
 */
public class PathSettingsTest extends java.lang.Object {

 /*
 * List of predefined path variables supported by
 * the path settings service.
 */
 private static String[] predefinedPathProperties = {
 "Addin",
 "AutoCorrect",
 "AutoText",
 "Backup",
 "Basic",
 "Bitmap",
 "Config",
 "Dictionary",
 "Favorite",
 "Filter",
 "Gallery",
 "Graphic",
 "Help",
 "Linguistic",
 "Module",
 "Palette",
 "Plugin",
 "Storage",
 "Temp",

Chapter 6 Office Development 439

Illustration 68: Interaction
of path settings, path
substitution and
configuration

 "Template",
 "UIConfig",
 "UserConfig",
 "UserDictionary",
 "Work"
 };

 /*
 * @param args the command line arguments
 */
 public static void main(String[] args) {

 XComponentContext xRemoteContext = null;
 XMultiComponentFactory xRemoteServiceManager = null;
 XPropertySet xPathSettingsService = null;

 try {
 // connect
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();
 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);
 Object initialObject = xUnoUrlResolver.resolve(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 xRemoteServiceManager = xRemoteContext.getServiceManager();

 Object pathSubst = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.comp.framework.PathSettings", xRemoteContext);
 xPathSettingsService = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, pathSubst);

 /* Work with path settings */
 workWithPathSettings(xPathSettingsService);
 }
 catch (java.lang.Exception e){
 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }
 }

 /*
 * Retrieve and set path properties from path settings service
 * @param xPathSettingsService the path settings service
 */
 public static void workWithPathSettings(XPropertySet xPathSettingsService) {
 if (xPathSettingsService != null) {
 for (int i=0; i<predefinedPathProperties.length; i++) {
 try {
 /* Retrieve values for path properties from path settings service*/
 Object aValue = xPathSettingsService.getPropertyValue(predefinedPathProperties[i]);

 // getPropertyValue returns an Object, you have to cast it to type that you need
 String aPath = (String)aValue;
 System.out.println("Property="+ predefinedPathProperties[i] + " Path=" + aPath);
 }
 catch (com.sun.star.beans.UnknownPropertyException e) {
 System.out.println("UnknownPropertyException has been thrown accessing
"+predefinedPathProperties[i]);
 }
 catch (com.sun.star.lang.WrappedTargetException e) {
 System.out.println("WrappedTargetException has been thrown accessing
"+predefinedPathProperties[i]);
 }
 }

 // Try to modfiy the work path property. After running this example
 // you should see the new value of "My Documents" in the path options
 // tab page, accessible via "Tools - Options – OpenOffice.org - Paths".
 // If you want to revert the changes, you can also do it with the path tab page.
 try {
 xPathSettingsService.setPropertyValue("Work", "$(temp)");
 String aValue = (String)xPathSettingsService.getPropertyValue("Work");
 System.out.println("The work path should now be " + aValue);
 }
 catch (com.sun.star.beans.UnknownPropertyException e) {
 System.out.println("UnknownPropertyException has been thrown accessing PathSettings
service");

440 OpenOffice.org 1.1 Developer's Guide • June 2003

 }
 catch (com.sun.star.lang.WrappedTargetException e) {
 System.out.println("WrappedTargetException has been thrown accessing PathSettings service");
 }
 catch (com.sun.star.beans.PropertyVetoException e) {
 System.out.println("PropertyVetoException has been thrown accessing PathSettings service");
 }
 catch (com.sun.star.lang.IllegalArgumentException e) {
 System.out.println("IllegalArgumentException has been thrown accessing PathSettings
service");
 }
 }
 }
}

Path Variables
Path variables are used as placeholders for system- dependent paths or parts of paths which are
only known during the runtime of OpenOffice.org. The path substitution service
com.sun.star.util.PathSubstitution - which manages all path variables of OpenOffice.org -
checks the runtime environment during startup and sets the values of the path variables. The path
substitution service supports a number of predefined path variables. They provide information
about important paths that OpenOffice.org currently uses. They are implemented as read- only
values and cannot be changed.

OpenOffice.org is a multi-platform solution that runs on different file systems. Obviously users
want to have a single user configuration on all workstations across all platforms in a networked
installation. For example, a user wants to use both the Windows and Unix version of
OpenOffice.org. The home directory and the working directory are located on a central file server
that uses Samba to provide access for Windows systems. The user only wants to have one user
installation for both systems, so that individual settings only need to be specified once.

The path settings service described in 6.2.11 Office Development - Common Application Features - Path
Organization - Path Settings utilizes the path substitution service. In the configuration of
OpenOffice.org, path variables describe the path settings, and these variables can be substituted
by platform- specific paths during startup. That way, path substitution gives users the power to
apply path settings only once, while the system takes care of the necessary platform- dependent
and environment adaptations .

 Illustration 53 shows how a path variable can resolve the path problem that arises when you use
the same user directory on different platforms.

Chapter 6 Office Development 441

The following sections describe predefined variables, how to define your own variables, and how
to resolve path variables with respect to paths in your programs.

Predefined Variables
The path substitution service supports a number of predefined path variables. They provide infor-
mation about the paths that OpenOffice.org currently uses. They are implemented as read- only
values and cannot be modified.

The predefined path variables can be separated into three distinct groups. The first group of vari-
ables specifies a single path, the second group specifies a list of paths that are separated by the shell
or operating system dependent character, and the third group specifies only a part of a path.

All predefined variable names are case insensitive, as opposed to the user-defined variables that
are described below.

442 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 69: Path variables solve problems in heterogeneous environments

Predefined variables supported by service com.sun.star.util.PathSubstitution
$(home) Single path The absolute path to the home directory of the current user. Under Windows

this depends on the specific versions: usually the <drive>:\Documents and
Settings\<username>\Application Data under Windows 2000/XP and
<drive>:\Windows\Profiles\<username>\Application Data under Windows NT
and Win9x, ME with multi user support. Windows 9x and ME without multi-
user support <drive>:\Windows\Application Data.

$(inst)
$(instpath)
$(insturl)

Single path The absolute installation path of OpenOffice.org. Normally the share and
program folders are located inside the installation folder. The $(instpath)
and $(insturl) variables are aliases to $(inst)— they are included for
downward compatibility and should not be used.

$(prog)
$(progpath)
$(progurl)

Single path The absolute path of the program folder of OpenOffice.org. Normally the
executable and the shared libraries are located in this folder. The $(prog-
path) and $(progurl) variables are aliases to $(prog)—they are
supported for downward compatibility and should not be used.

$(temp) Single path The absolute path of the current temporary directory used by OpenOffice.org.
$(user)
$(userpath)
$(userurl)

Single path The absolute path to the user installation folder of OpenOffice.org. The
$(userpath) and $(userurl) variables are aliases to $(user)— they are
supported for downward compatibility and should not be used.

$(work) Single path The absolute path of the working directory of the user. Under Windows this
is the My Documents folder. Under Unix this is the home directory of the user.

$(path) List of paths The value of the PATH environment variable of the OpenOffice.org process.
The single paths are separated by a ';' character independent of the system.

$(lang) Part of a path The country code used by OpenOffice.org, see the table Mapping ISO
639/3166 to $(lang) below for examples.

$(langid) Part of a path The language identifier used by OpenOffice.org. An identifier is composed of
a primary language identifier and a sublanguage identifier such as
0x0009=English (primary language identifier), 0x0409=English US (composed
language code).The language identifier is based on the Microsoft language
identifiers, for further information please see:

Table of Language Identifiers
http: / / msdn.microsoft.com/library /en- us/intl / nls_238z.asp

Primary Language Identifiers
http: / / msdn.microsoft.com/library /en- us/intl / nls_61df.asp

SubLanguage Identifiers
http: / / msdn.microsoft.com/library /en- us/intl / nls_19ir.asp

$(vlang) Part of a path The language used by OpenOffice.org as an English string, for example,
"german" for a German version of OpenOffice.org.

The values of $(lang), $(langid) and $(vlang) are based on the property ooLocale in the configura -
tion branch org.openoffice.Setup/L10N, that is normally located in the share directory . This property
follows the ISO 639-1/ISO3166 standards that define identification codes for languages and coun-
tries. The ooLocale property is written by the setup application during installation time. The
following are examples of table Mapping ISO 639/3166 to $(vlang):

Mapping from ISO639-1/ISO3166 to $(lang) and $(vlang)
ISO 639-1 ISO 3166 $(lang) $(vlang)
ar * 96 arabic
ca AD 37 catalan

Chapter 6 Office Development 443

Mapping from ISO639-1/ISO3166 to $(lang) and $(vlang)
ca ES 37 catalan
cs * 42 czech
cz * 42 czech
da DK 45 danish
de * 49 german
el * 30 greek
en * 1 english
en GB 1 english_uk
es * 34 spanish
fi FI 35 finnish
fr * 33 french
he * 97 hebrew
hu HU 36 hungarian
it * 39 italian
ja JP 81 japanese
ko * 82 korean
nb NO 47 norwegian
nl * 31 dutch
nn NO 47 norwegian
no NO 47 norwegian
pl PL 48 polish
pt BR 55 portuguese_brazilian
pt PT 3 portuguese
ru RU 7 russian
sk SK 43 slovak
sv * 46 swedish
th TH 66 thai
tr TR 90 turkish
zh CN 86 chinese_simplified
zh TW 88 chinese_traditional

Custom Path Variables

Syntax

The path substitution service supports the definition and usage of user-defined path variables. The
variable names must use this syntax:
variable ::= “$(“ letter { letter | digit } “)”
letter ::= "A"-"Z"|"a"-"z"
digit ::= "0"-"9"

444 OpenOffice.org 1.1 Developer's Guide • June 2003

The user-defined variables must be defined in the configuration branch
org.openoffice.Office.Substitution. OpenOffice.org employs a rule-based system to evaluate which
definition of a user-defined variable is chosen. The following sections describe the different parts
of this rule-based system and the configuration settings that are required for defining new path
variables.

Environment Values

To bind a specific value to a user-defined path variable, the path substitution service uses environ-
ment values. The path substitution service chooses a variable definition based on the values of
these environment parameters. The following table describes which parameters can be used:

Environment parameters
Host This value can be a host name or an IP address , depending on the network configu-

ration (DNS server available). A host name is case insensitive and can also use the
asterisk (*) wildcard to represent match zero or more characters.

YPDomain The yellow pages domain or NIS domain. The value is case insensitive and can use
the asterisk (*) wildcard to represent match zero or more characters.

DNSDomain The domain name service. The value is case insensitive and can use the asterisk (*)
wildcard to represent match zero or more characters.

NTDomain Windows NT domain. The value is case insensitive and can use the asterisk (*) wild-
card to represent match zero or more characters.

OS The operating system parameter supports the following values:

• WINDOWS (all windows versions including Win9x, WinME, and WinXP)

• UNIX (includes LINUX and SOLARIS)

• SOLARIS

• LINUX

Rules

The user can define the mapping of environment parameter values to variable values. Each defini-
tion is called a rule and all rules for a particular variable are the rule set. You can only have one
environment parameter value for each rule.

The following example rules specify that the user-defined variable called devdoc is bound to the
directory s:\develop\documentation if OpenOffice.org is running under Windows. The second rule
binds devdoc to /net/develop/documentation if OpenOffice.org is running under Solaris.

Variable name=devdoc
Environment parameter=OS
Value=file:///s:/develop/documentation
Variable name=devdoc
Environment parameter=SOLARIS
Value=file:///net/develop/documentation

Analyzing User-Defined Rules

OpenOffice.org uses matching rules to find the active rule inside a provided rule set.

1. Tries to match with the Host environment parameter. If more than one rule matches—this can
be possible if you use the asterisk (*) wildcard character - the first matching rule is applied.

Chapter 6 Office Development 445

2. Tries to match with the different Domain parameters. There is no predefined order for the
domain parameters - the first matching rule is applied.

3. Try to match with the OS parameter. The specialized values have a higher priority than generic
ones, for example, LINUX has a higher priority than UNIX.

 Illustration 51 shows the analyzing and matching of user-defined rules.

446 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 70: Process of the rule set analyzing

The analyzing and matching process is done whenever a rule set has changed. Afterwards the
values of the user-defined path variables are set and can be retrieved using the interface
com.sun.star.util.XStringSubstitution.

Configuration

The path substitution service uses the org.openoffice.Office.Substitution configuration branch for the
rule set definitions, which adhere to this schema:
<?xml version='1.0' encoding='UTF-8'?>
<oor:component-schema oor:name="Substitution" oor:package="org.openoffice.Office" xml:lang="en-US"
xmlns:oor="http://openoffice.org/2001/registry" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <templates>
 <group oor:name="SharePointMapping">
 <prop oor:name="Directory" oor:type="xs:string" oor:nillable="false"/>
 <group oor:name="Environment">
 <prop oor:name="OS" oor:type="xs:string"/>
 <prop oor:name="Host" oor:type="xs:string"/>
 <prop oor:name="DNSDomain" oor:type="xs:string"/>
 <prop oor:name="YPDomain" oor:type="xs:string"/>
 <prop oor:name="NTDomain" oor:type="xs:string"/>
 </group>
 </group>
 <set oor:name="SharePoint" oor:node-type="SharePointMapping"/>
 </templates>
 <component>
 <set oor:name="SharePoints" oor:node-type="SharePoint"/>
 </component>
</oor:component-schema>

The SharePoints set is the root container that store the definition of the different user-defined
path variables. The SharePoint set uses nodes of type SharePoint which defines a single user-
defined path variable.

Properties of the SharePoint set nodes
oor:compo-
nent-data String. The name of the user-defined path variable. It must be unique inside the Share-

Points set.

The name must meet the requirements for path variable names, see 6.2.11 Office Develop-
ment - Common Application Features - Path Organization - Path Variables. The preceding char-
acters “$(“ and the succeeding “)” must be omitted, for example, the node string for the
path variable $(devdoc) must be devdoc.

A SharePoint set is a container for the different rules, called SharePointMapping in the configu -
ration.

Properties of the SharePointMapping group
oor:compo-
nent-data

String - must be unique inside the SharePoint set, but with no additional meaning for user-
defined path variables. Use a consecutive numbering scheme - even numbers are
permitted.

Directory String - must be set and contain a valid and encoded file URL that represents the value of
the user-defined path variable for the rule.

Environment Group - contains a set of properties that define the environment parameter that this rule
must match. You can only use one environment in a rule.
OS The operating system. The following values are supported:

• WINDOWS = Matches all Windows OS from Win 98 and higher.

• LINUX = Matches all supported Linux systems.

• SOLARIS = Matches all supported Solaris systems.

• UNIX = Matches all supported Unix systems (Linux,Solaris)

Chapter 6 Office Development 447

Properties of the SharePointMapping group
Host The host name or IP address. The name or address can include the asterisk

(*) wildcard to match with zero or more characters. For example,
dev*.local.de refers to all systems where the host name starts with “dev”
and ends with “.local.de”

DNSDomain The domain name service. The value is case insensitive and can use the
asterisk (*) wildcard for zero or more characters.

YPDomain The yellow pages domain or NIS domain. The value is case insensitive and
can use the asterisk (*) wildcard for zero or more characters.

NTDomain Windows NT domain. The value is case insensitive and can use the asterisk
(*) wildcard for zero or more characters.

The following example uses two rules to map a Windows and Unix specific path to the user-
defined path variable MyDocuments.
<?xml version="1.0" encoding="utf-8"?>
<oor:component-data oor:name="Substitution" oor:context="org.openoffice.Office"
xsi:schemaLocation="http://openoffice.org/2001/registry component-update.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:oor="http://openoffice.org/2001/registry"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <node oor:name="SharePoints">
 <node oor:name="MyDocuments" oor:op=”replace”>
 <node oor:name="1" oor:op=”replace”>
 <prop oor:name="Directory"><value>file:///H:/documents</value></prop>
 <node oor:name="Environment">
 <prop oor:name="OS"><value>Windows</value></prop>
 </node>
 </node>
 <node oor:name="2" oor:op=”replace”>
 <prop oor:name="Directory"><value>file:///net/home/user/documents</value></prop>
 <node oor:name="Environment">
 <prop oor:name="OS"><value>UNIX</value></prop>
 </node>
 </node>
 </node>
 </node>
</oor:component-data>

Resolving Path Variables
This section explains how to use the OpenOffice.org implementation of the path substitution
service. The following code snippet creates a path substitution service.
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.uno.Exception;
import com.sun.star.uno.XInterface;
import com.sun.star.util.XStringSubstitution

XStringSubstitution createPathSubstitution() {

 ///
 // Obtain Process Service Manager.
 ///

 XMultiServiceFactory xServiceFactory = ...

 ///
 // Create Path Substitution. This needs to be done only once per process.
 ///

 XInterface xPathSubst;
 try {
 xPathSubst = xServiceFactory.createInstance(
 "com.sun.star.util.PathSubstitution");
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xPathSubst != null)
 return (XStringSubstitution)UnoRuntime.queryInterface(
 XStringSubstitution.class, xPathSubst);
 else
 return null;

448 OpenOffice.org 1.1 Developer's Guide • June 2003

}

The service is implemented as a one-instance service and supports the interface
com.sun.star.util.XStringSubstitution. The interface has three methods:

string substituteVariables([in] string aText, [in] boolean bSubstRequired)
string reSubstituteVariables([in] string aText)
string getSubstituteVariableValue([in] string variable)

The method substituteVariables() returns a string where all known variables are replaced by
their value. Unknown variables are not replaced. The argument bSubstRequired can be used to
indicate that the client needs a full substitution—otherwise the function fails and throws a
com.sun.star.container.NoSuchElementException. For example: $(inst)/share/autotext/$(vlang)
could be substituted to file:///c:/OpenOffice.org1.0.2/share/autotext/english.

The method reSubstituteVariables() returns a string where parts of the provided path aText
are replaced by variables that represent this part of the path. If a matching variable is not found,
the path is not modified.

The predefined variable $(path) is not used for substitution. Instead, it is a placeholder for the
path environment variable does not have a static value during runtime. The path variables
$(lang), $(langid) and $(vlang), which represent a directory or a filename in a path, only
match inside or at the end of a provided path. For example: english is not replaced by $(vlang),
whereas file:///c:/english is replaced by file:///c:/$(vlang).

The method getSubstituteVariableValue()returns the current value of the provided path vari-
able as a predefined or a user-defined value. If an unknown variable name is provided, a
com.sun.star.container.NoSuchElementException is thrown. The argument variable can be
provided with preceding "$(" and succeeding ")" or without them. So both $(work) and work can
be used.

This code example shows how to access, substitute, and resubstitute path variables by means of
the OpenOffice.org API.
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;
import com.sun.star.beans.PropertyValue;

import com.sun.star.util.XStringSubstitution;
import com.sun.star.frame.TerminationVetoException;
import com.sun.star.frame.XTerminateListener;

/*
 * Provides example code how to access and use the
 * path substitution sercvice.
 */
public class PathSubstitutionTest extends java.lang.Object {

 /*
 * List of predefined path variables supported by
 * the path substitution service.
 */
 private static String[] predefinedPathVariables = {
 "$(home)","$(inst)","$(prog)","$(temp)","$(user)",
 "$(work)","$(path)","$(lang)","$(langid)","$(vlang)"
 };

 /*
 * @param args the command line arguments
 */
 public static void main(String[] args) {

 XComponentContext xRemoteContext = null;
 XMultiComponentFactory xRemoteServiceManager = null;
 XStringSubstitution xPathSubstService = null;

 try {
 // connect
 XComponentContext xLocalContext =
 com.sun.star.comp.helper.Bootstrap.createInitialComponentContext(null);
 XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager();

Chapter 6 Office Development 449

 Object urlResolver = xLocalServiceManager.createInstanceWithContext(
 "com.sun.star.bridge.UnoUrlResolver", xLocalContext);
 XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface(
 XUnoUrlResolver.class, urlResolver);
 Object initialObject = xUnoUrlResolver.resolve(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, initialObject);
 Object context = xPropertySet.getPropertyValue("DefaultContext");
 xRemoteContext = (XComponentContext)UnoRuntime.queryInterface(
 XComponentContext.class, context);
 xRemoteServiceManager = xRemoteContext.getServiceManager();

 Object pathSubst = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.comp.framework.PathSubstitution", xRemoteContext);
 xPathSubstService = (XStringSubstitution)UnoRuntime.queryInterface(
 XStringSubstitution.class, pathSubst);

 /* Work with path variables */
 workWithPathVariables(xPathSubstService);
 }
 catch (java.lang.Exception e){
 e.printStackTrace();
 }
 finally {
 System.exit(0);
 }
 }

 /*
 * Retrieve, resubstitute path variables
 * @param xPathSubstService the path substitution service
 */
 public static void workWithPathVariables(XStringSubstitution xPathSubstService)
 {
 if (xPathSubstService != null) {
 for (int i=0; i<predefinedPathVariables.length; i++) {
 try {
 /* Retrieve values for predefined path variables */
 String aPath = xPathSubstService.getSubstituteVariableValue(
 predefinedPathVariables[i]);
 System.out.println("Variable="+ predefinedPathVariables[i] +
 " Path=" + aPath);

 /* Check resubstitute */
 String aValue = xPathSubstService.reSubstituteVariables(aPath);
 System.out.println("Path=" + aPath +
 " Variable=" + aValue);
 }
 catch (com.sun.star.container.NoSuchElementException e) {
 System.out.println("NoSuchElementExceptio has been thrown accessing"
 + predefinedPathVariables[i]);
 }
 }
 }
 }
}

6.2.8 OpenOffice.org Single Sign-On API

Overview
Users of a client application that can communicate with a variety of services on a network may
need to enter several passwords during a single session to access different services. This situation
can be further exacerbated if the client application also requires the user to enter a password each
time a particular network service is accessed during a session.

As most network users must authenticate to an OS at login time, it would make sense to access
some of the required network services at this time as well. A solution to this problem is provided
by the Single Sign-On (SSO) methodology, which is the ability to login in once and access several
protected network services.

450 OpenOffice.org 1.1 Developer's Guide • June 2003

The best known SSO is the Kerberos network authentication protocol (see rfc1510). Kerberos func-
tionality is commonly accessed through the Generic Security Service Application Program Inter-
face (GSS-API, see rfc2743). Central to GSS-API is the concept of a security context, which is the
"state of trust" that is initiated when a client (also known as source or initiator) identifies itself to a
network service (also known as target or acceptor). If mutual authentication is supported, then the
service can also authenticate itself to the client. To establish a security context, security tokens are
exchanged, processed, and verified between the client and the service. The client always initiates
this exchange. Once established, a security context can be used to encrypt or decrypt subsequent
client-service communications.

The OpenOffice.org SSO API is based on GSS-API. The SSO API supports the creation of security
contexts on the client and the service side as well as the generation of the security tokens that are
required for the exchange to complete the security context based authentication. The SSO API does
not support the actual exchange of security tokens or the encryption or decryption of client-service
communications in an established security context.

OpenOffice.org implements SSO in two different ways to authenticate with an LDAP server for
configuration purposes. The first is Kerberos based and the second is a simple non-standard
"cached username /password" SSO. The latter is provided as a fallback to support scenarios where
no Kerberos server is available.

Implementing the OpenOffice.org SSO API
Implementing the OpenOffice.org SSO API involves creating security context instances (see
XSSOInitiatorContext and XSSOAcceptorContext below) and using these instances to create
and process security tokens. All of the OpenOffice.org SSO interfaces are available from the ::
com::sun::star::auth namespace. The major interfaces are shown in Illustration 50 and
described below.

XSSOManagerFactory
Represents the starting point for interaction with the SSO API. This interface is responsible for
providing XSSOManager (described below) instances based on the user's configured security
mechanism e.g. "KERBEROS".

XSSOManager
This interface is responsible for the creation of unestablished security contexts for clients
(XSSOInitiatorContext) and services (XSSOAcceptorContext). An XSSOManager instance
"supports" a single security mechanism, that is, the context instances that are created by an
XSSOManager instance only interact with a single security mechanism implementation.

XSSOInitiatorContext
This interface represents a client-side security context that is unestablished when it is created.
A single method, init(), is provided so that you can create an initial client-side security
token that can be delivered to the relevant service and for processing or validating returned
service-side security tokens (if mutual authentication is supported). The expected sequence of
events for this client-side security context is:

• The client calls init(), passes NULL as the parameter, receives an appropriate client-
side security token in return.

• The client sends the security token to the relevant service.

• If the service successfully processes this token, the client is authenticated.

• If mutual authentication is not supported, the client-side authentication sequence is
now complete.

Chapter 6 Office Development 451

• If mutual authentication is supported, the service sends a service-side security token to
the client.

• The client calls init() a second time and passes the returned service-side security
token as a parameter. If the token is successfully passed, the service is authenticated.

XSSOAcceptorContext
This interface represents a service-side security context that is not established when it is
created. A single method, accept(), is provided and is responsible for processing an initial
client-side security token. If mutual authentication is supported, the method also generates a
service-side security token for the client. The expected sequence of events for this service-side
security context is:

• The service receives the client-side security token.

• The service calls accept(), passes the client-side security token as a parameter, and if
successful, the client is authenticated.

• If mutual authentication is not supported, the service-side authentication sequence is
now complete.

• If mutual authentication is supported, accept() returns a non-zero length service-
side security token.

• The service sends the service-side security token to the client to authenticate the
service.

452 OpenOffice.org 1.1 Developer's Guide • June 2003

The following example is a sample usage of the OpenOffice.org SSO API that provides the
authenticate() method of the fictitious client--side MySSO class. For simplicity, assume that
MySSO has the following members:

• mSourceName identifies a client-side user that needs to authenticate to a network service.

• mTargetName identifies the service to which the user needs to authenticate.

• mTargetHost identifies the network host where the service of interest is running.
namespace auth = ::com::sun::star::auth;
namespace lang = ::com::sun::star::lang;

Chapter 6 Office Development 453

Illustration 71: Major Interfaces of the OpenOffice.org SSO

namespace uno = ::com::sun::star::uno;

void MySSO::authenticate(void) {
 static const rtl::OUString kSSOService(
 RTL_CONSTASCII_USTRINGPARAM("com.sun.star.auth.SSOManagerFactory"));

 uno::Reference< lang::XMultiServiceFactory > theServiceFactory =
 ::comphelper::getProcessServiceFactory();

 // Create an SSO Manager Factory.
 uno::Reference< auth::XSSOManagerFactory > theSSOFactory(
 theServiceFactory->createInstance(kSSOService), uno::UNO_QUERY);
 if (!theSSOFactory.is()) {
 throw;
 }

 // Ask the SSO Manager Factory for an SSO Manager.
 uno::Reference<auth::XSSOManager> theSSOManager =
 theSSOFactory->getSSOManager();
 if (!theSSOManager.is()) {
 throw;
 }

 // Ask the SSO Manager to create an unestablished client/initiator side
 // security context based on user name, service name and service host.
 uno::Reference<auth::XSSOInitiatorContext> theInitiatorContext =
 theSSOManager->createInitiatorContext(mSourceName, mTargetName, mTargetHost);

 // Now create the client side security token to send to the service.
 uno::Sequence<sal_Int8> theClientToken = theInitiatorContext->init(NULL);

 // The client should now send 'theClientToken' to the service.
 // If mutual authentication is supported, the service will return a service
 // side security token.
 uno::Sequence<sal_Int8> theServerToken = sendToken(theClientToken);
 if (theInitiatorContext->getMutual()) {
 theInitiatorContext->init(theServerToken);
 }
}

The SSO Password Cache
When you implement the SSO API, you may require access to user passwords, especially if you
are relying on a preexisting underlying security mechanism. If you do not know how to gain such
access, you can use the OpenOffice.org SSO password cache. This cache provides basic support for
maintaining a list of user name or password entries. Individual entries have a default lifetime
corresponding to a single user session, but can optionally exist for multiple sessions. Support is
provided for adding, retrieving, and deleting cache entries. Only one entry per user name can
exist in the cache at any time. If you add an entry for an existing user name, the new entry replaces
the original entry.

The SSO password cache is represented by a single interface, namely the XSSOPasswordCache
interface, available in the ::com::sun::star::auth namespace.

454 OpenOffice.org 1.1 Developer's Guide • June 2003

7 Text Documents

7.1 Overview
In the OpenOffice.org API, a text document is a document model which is able to handle text
contents. A document in our context is a product of work that can be stored and printed to make
the result of the work a permanent resource. By model we mean data that forms the basis of a
document and is organized in a manner that allows working with the data independently from
their visual representation in a graphical user interface.

It is important to understand that developers have to work with the model directly, when they
want to change it through the OpenOffice.org API. The model has a controller object which enables
developers to manipulate the visual presentation of the document in the user interface. But the
controller is not used to change a document. The controller serves two purposes.

• The controller interacts with the user interface for movement, such as moving the visible text
cursor, flipping through screen pages or changing the zoom factor.

• The second purpose is getting information about the current view status, such as the current
selection, the current page, the total page count or the line count. Automatic page or line breaks
are not really part of the document data, but rather something that is needed in a certain pres-
entation of the document.

Keeping the difference between model and controller in mind, we will now discuss the parts of a
text document model in the OpenOffice.org API.

The text document model in the OpenOffice.org API has five major architectural areas, cf. Illustra -
tion 72 below. The five areas are:

• text

• service manager (document internal)

• draw page

• text content suppliers

• objects for styling and numbering

The core of the text document model is the text. It consists of character strings organized in para-
graphs and other text contents. The usage of text will be discussed in 7.3 Text Documents - Working
with Text Documents.

The service manager of the document model creates all text contents for the model, except for the
paragraphs. Note that the document service manager is different from the main service manager
that is used when connecting to the office. Each document model has its own service manager, so
that the services can be adapted to the document when required. Examples for text contents

455

created by the text document service manager are text tables, text fields, drawing shapes, text
frames or graphic objects. The service manager is asked for a text content, then you insert it into
the text.

Afterwards, the majority of these text contents in a text can be retrieved from the model using text
content suppliers. The exception are drawing shapes. They can be found on the DrawPage, which
is discussed below.

Above the text lies the DrawPage. It is used for drawing contents. Imagine it as a transparent layer
with contents that can affect the text under the layer, for instance by forcing it to wrap around
contents on the DrawPage. However, text can also wrap through DrawPage contents, so the simi-
larity is limited.

Finally, there are services that allow for document wide styling and structuring of the text. Among
them are style family suppliers for paragraphs, characters, pages and numbering patterns, and
suppliers for line and outline numbering.

Besides these five architectural areas, there are a number of aspects covering the document char-
acter of our model: It is printable, storable, modifiable, it can be refreshed, its contents are able to
be searched and replaced and it supplies general information about itself. These aspects are shown
at the lower right of the illustration.

456 OpenOffice.org 1.1 Developer's Guide • June 2003

Finally, the controller provides access to the graphical user interface for the model and has knowl-
edge about the current view status in the user interface, cf. the upper left of the diagram above.

The usage of text is discussed in the section 7.3.1 Text Documents - Working with Text Documents -
Word Processing below. This overview will be concluded by two examples:

Chapter 7 Text Documents 457

Illustration 72 Text Document Model

7.1.1 Example: Fields in a Template
All following code samples are contained in TextDocuments.java. This file is located in the Samples
folder that comes with the resources for the developer's manual.

The examples use the environment from chapter 2 First Steps, for instance, connecting using the
getRemoteServiceManager() method.

We want to use a template file containing text fields and bookmarks and insert text into the fields
and at the cursor position. The suitable template file TextTemplateWithUserFields.sxw lies in the
Samples folder, as well. Edit the path to this file below before running the sample.

The first step is to load the file as a template, so that OpenOffice.org creates a new, untitled docu-
ment. As in the chapter 2 First Steps, we have to connect, get the Desktop object, query its XCompo-
nentLoader interface and call loadComponentFromUrl(). This time we tell OpenOffice.org how it
should load the file. The key for loading parameters is the sequence of PropertyValue structs
passed to loadComponentFromUrl(). The appropriate PropertyValue name is AsTemplate and
we have to set AsTemplate to true. (Text/TextDocuments.java)
/** Load a document as template */
protected XComponent newDocComponentFromTemplate(String loadUrl) throws java.lang.Exception {
 // get the remote service manager
 mxRemoteServiceManager = this.getRemoteServiceManager(unoUrl);
 // retrieve the Desktop object, we need its XComponentLoader
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // define load properties according to com.sun.star.document.MediaDescriptor
 // the boolean property AsTemplate tells the office to create a new document
 // from the given file
 PropertyValue[] loadProps = new PropertyValue[1];
 loadProps[0] = new PropertyValue();
 loadProps[0].Name = "AsTemplate";
 loadProps[0].Value = new Boolean(true);
 // load
 return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);
}

Now that we are able to load a text document as template, we will open an existing template file
that contains five text fields and a bookmark. We want to demonstrate how to insert text at prede-
fined positions in a document.

Text fields and bookmarks are supplied by the appropriate XTextFieldsSupplier and XBook-
marksSupplier interfaces. Their fully qualified names are
com.sun.star.text.XTextFieldsSupplier and com.sun.star.text.XBookmarksSupplier.

The XTextFieldsSupplier provides collections of text fields in our text. We use document vari-
able fields for our purpose, which arecom.sun.star.text.textfield.User services. All User
fields have a field master that holds the actual content of the variable. Therefore, the TextFields
collection, as well as the FieldMasters are required for our example. We get the field masters for
the five fields by name and set their Content property. Finally, we refresh the text fields so that
they reflect the changes made to the field masters.

The XBookmarksSupplier returns all bookmarks in our document. The collection of bookmarks is
a com.sun.star.container.XNameAccess, so that the bookmarks are retrieved by name. Every
object in a text supports the interface XTextContent that has a method getAnchor(). The anchor
is the text range an object takes up, so getAnchor() retrieves is an XTextRange. From the chapter
2 First Steps, a com.sun.star.text.XTextRange allows setting the string of a text range. Our
bookmark is a text content and therefore must support XTextContent. Inserting text at a book-
mark position is straightforward: get the anchor of the bookmark and set its string.
(Text/TextDocuments.java)
/** Sample for use of templates
 This sample uses the file TextTemplateWithUserFields.sxw from the Samples folder.

458 OpenOffice.org 1.1 Developer's Guide • June 2003

 The file contains a number of User text fields (Variables - User) and a bookmark
 which we use to fill in various values
 */
protected void templateExample() throws java.lang.Exception {
 // create a small hashtable that simulates a rowset with columns
 Hashtable recipient = new Hashtable();
 recipient.put("Company", "Manatee Books");
 recipient.put("Contact", "Rod Martin");
 recipient.put("ZIP", "34567");
 recipient.put("City", "Fort Lauderdale");
 recipient.put("State", "Florida");

 // load template with User fields and bookmark
 XComponent xTemplateComponent = newDocComponentFromTemplate(
 "file:///X:/devmanual/Samples/TextTemplateWithUserFields.sxw");

 // get XTextFieldsSupplier and XBookmarksSupplier interfaces from document component
 XTextFieldsSupplier xTextFieldsSupplier = (XTextFieldsSupplier)UnoRuntime.queryInterface(
 XTextFieldsSupplier.class, xTemplateComponent);
 XBookmarksSupplier xBookmarksSupplier = (XBookmarksSupplier)UnoRuntime.queryInterface(
 XBookmarksSupplier.class, xTemplateComponent);

 // access the TextFields and the TextFieldMasters collections
 XNameAccess xNamedFieldMasters = xTextFieldsSupplier.getTextFieldMasters();
 XEnumerationAccess xEnumeratedFields = xTextFieldsSupplier.getTextFields();

 // iterate over hashtable and insert values into field masters
 java.util.Enumeration keys = recipient.keys();
 while (keys.hasMoreElements()) {
 // get column name
 String key = (String)keys.nextElement();

 // access corresponding field master
 Object fieldMaster = xNamedFieldMasters.getByName(
 "com.sun.star.text.FieldMaster.User." + key);

 // query the XPropertySet interface, we need to set the Content property
 XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, fieldMaster);

 // insert the column value into field master
 xPropertySet.setPropertyValue("Content", recipient.get(key));
 }

 // afterwards we must refresh the textfields collection
 XRefreshable xRefreshable = (XRefreshable)UnoRuntime.queryInterface(
 XRefreshable.class, xEnumeratedFields);
 xRefreshable.refresh();

 // accessing the Bookmarks collection of the document
 XNameAccess xNamedBookmarks = xBookmarksSupplier.getBookmarks();

 // find the bookmark named "Subscription"
 Object bookmark = xNamedBookmarks.getByName("Subscription");

 // we need its XTextRange which is available from getAnchor(),
 // so query for XTextContent
 XTextContent xBookmarkContent = (XTextContent)UnoRuntime.queryInterface(
 XTextContent.class, bookmark);

 // get the anchor of the bookmark (its XTextRange)
 XTextRange xBookmarkRange = xBookmarkContent.getAnchor();

 // set string at the bookmark position
 xBookmarkRange.setString("subscription for the Manatee Journal");
}

7.1.2 Example: Visible Cursor Position
As discussed earlier, the OpenOffice.org API distinguishes between the model and controller. This
difference is mirrored in two different kinds of cursors in the API: model cursors and visible
cursor s. The visible cursor is also called view cursor .

The second example assumes that the user has selected a text range in a paragraph and expects
something to happen at that cursor position. Setting character and paragraph styles, and retrieving
the current page number at the view cursor position is demonstrated in the example. The view
cursor will be transformed into a model cursor.

Chapter 7 Text Documents 459

We want to work with the current document, therefore we cannot use loadComponentFromURL().
Rather, we ask the com.sun.star.frame.Desktop service for the current component. Once we have
the current component—which is our document model—we go from the model to the controller
and get the view cursor.

The view cursor has properties for the current character and paragraph style. The example uses
built-in styles and sets the property CharStyleName to "Quotation" and ParaStyleName to
"Quotations". Furthermore, the view cursor knows about the automatic page breaks. Because we
are interested in the current page number, we get it from the view cursor and print it out.

The model cursor is much more powerful than the view cursor when it comes to possible move-
ments and editing capabilities. We create a model cursor from the view cursor. Two steps are
necessary: We ask the view cursor for its Text service, then we have the Text service create a
model cursor based on the current cursor position. The model cursor knows where the paragraph
ends, so we go there and insert a string. (Text /TextDocuments.java)
/** Sample for document changes, starting at the current view cursor position
 The sample changes the paragraph style and the character style at the current
 view cursor selection
 Open the sample file ViewCursorExampleFile, select some text and run the example
 The current paragraph will be set to Quotations paragraph style
 The selected text will be set to Quotation character style
 */
private void viewCursorExample() throws java.lang.Exception {
 // get the remote service manager
 mxRemoteServiceManager = this.getRemoteServiceManager(unoUrl);

 // get the Desktop service
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);

 // query its XDesktop interface, we need the current component
 XDesktop xDesktop = (XDesktop)UnoRuntime.queryInterface(
 XDesktop.class, desktop);

 // retrieve the current component and access the controller
 XComponent xCurrentComponent = xDesktop.getCurrentComponent();

 // get the XModel interface from the component
 XModel xModel = (XModel)UnoRuntime.queryInterface(XModel.class, xCurrentComponent);

 // the model knows its controller
 XController xController = xModel.getCurrentController();

 // the controller gives us the TextViewCursor
 // query the viewcursor supplier interface
 XTextViewCursorSupplier xViewCursorSupplier =
 (XTextViewCursorSupplier)UnoRuntime.queryInterface(
 XTextViewCursorSupplier.class, xController);

 // get the cursor
 XTextViewCursor xViewCursor = xViewCursorSupplier.getViewCursor();

 // query its XPropertySet interface, we want to set character and paragraph properties
 XPropertySet xCursorPropertySet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xViewCursor);

 // set the appropriate properties for character and paragraph style
 xCursorPropertySet.setPropertyValue("CharStyleName", "Quotation");
 xCursorPropertySet.setPropertyValue("ParaStyleName", "Quotations");

 // print the current page number – we need the XPageCursor interface for this
 XPageCursor xPageCursor = (XPageCursor)UnoRuntime.queryInterface(
 XPageCursor.class, xViewCursor);
 System.out.println("The current page number is " + xPageCursor.getPage());

 // the model cursor is much more powerful, so
 // we create a model cursor at the current view cursor position with the following steps:
 // we get the Text service from the TextViewCursor, the cursor is an XTextRange and has
 // therefore a method getText()
 XText xDocumentText = xViewCursor.getText();

 // the text creates a model cursor from the viewcursor
 XTextCursor xModelCursor = xDocumentText.createTextCursorByRange(xViewCursor.getStart());

 // now we could query XWordCursor, XSentenceCursor and XParagraphCursor
 // or XDocumentInsertable, XSortable or XContentEnumerationAccess
 // and work with the properties of com.sun.star.text.TextCursor

460 OpenOffice.org 1.1 Developer's Guide • June 2003

 // in this case we just go to the end of the paragraph and add some text.
 XParagraphCursor xParagraphCursor = (XParagraphCursor)UnoRuntime.queryInterface(
 XParagraphCursor.class, xModelCursor);

 // goto the end of the paragraph
 xParagraphCursor.gotoEndOfParagraph(false);
 xParagraphCursor.setString(" ***** Fin de semana! ******");
}

7.2 Handling Text Document Files

7.2.1 Creating and Loading Text Documents
If a document in OpenOffice.org is required, begin by getting a com.sun.star.frame.Desktop
service from the service manager. The desktop handles all document components in
OpenOffice.org, among other things. It is discussed thoroughly in the chapter 6 Office Development.
Office documents are often called components, because they support the
com.sun.star.lang.XComponent interface. An XComponent is a UNO object that can be disposed
explicitly and broadcast an event to other UNO objects when this happens.

The Desktop can load new and existing components from a URL. For this purpose it has a
com.sun.star.frame.XComponentLoader interface that has one single method to load and instan-
tiate components from a URL into a frame:

com.sun.star.lang::XComponent loadComponentFromURL([in] string aURL,
[in] string aTargetFrameName,
[in] long nSearchFlags,
[in] sequence< com::sun::star::beans::PropertyValue > aArgs);

The interesting parameters in our context are the URL that describes which resource should be
loaded and the sequence of load arguments. For the target frame pass "_blank" and set the search
flags to 0. In most cases you will not want to reuse an existing frame.

The URL can be a file: URL, a http: URL, an ftp: URL or a private: URL. Look up the correct
URL format in the load URL box in the function bar of OpenOffice.org. For new writer documents,
a special URL scheme has to be used. The scheme is "private:", followed by "factory" as hostname.
The resource is "swriter" for OpenOffice.org writer documents. For a new writer document, use
"private:factory/swriter".
The load arguments are described in com.sun.star.document.MediaDescriptor. The arguments
AsTemplate and Hidden have properties that are boolean values. If AsTemplate is true, the loader
creates a new untitled document from the given URL. If it is false, template files are loaded for
editing. If Hidden is true, the document is loaded in the background. This is useful when gener-
ating a document in the background without letting the user observe, for example, it can be used
to generate a document and print it without previewing. 6 Office Development describes other avail-
able options.

The section 7.1.1 Text Documents - Overview - Fields in a Template discusses a complete example
about how loading works. The following snippet loads a document in hidden mode:
(Text/TextDocuments.java)
// (the method getRemoteServiceManager is described in the chapter First Steps)
mxRemoteServiceManager = this.getRemoteServiceManager(unoUrl);

// retrieve the Desktop object, we need its XComponentLoader
Object desktop = mxRemoteServiceManager.createInstanceWithContext(
"com.sun.star.frame.Desktop", mxRemoteContext);

// query the XComponentLoader interface from the Desktop service
XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

Chapter 7 Text Documents 461

// define load properties according to com.sun.star.document.MediaDescriptor

/* or simply create an empty array of com.sun.star.beans.PropertyValue structs:
 PropertyValue[] loadProps = new PropertyValue[0]
*/

// the boolean property Hidden tells the office to open a file in hidden mode
PropertyValue[] loadProps = new PropertyValue[1];
loadProps[0] = new PropertyValue();
loadProps[0].Name = "Hidden";
loadProps[0].Value = new Boolean(true);

// load
return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);

7.2.2 Saving Text Documents

Storing
Documents are storable through their interface com.sun.star.frame.XStorable. This interface is
discussed in detail in 6 Office Development. An XStorable implements these operations:

boolean hasLocation()
string getLocation()
boolean isReadonly()
void store()
void storeAsURL([in] string aURL, sequence< com::sun::star::beans::PropertyValue > aArgs)
void storeToURL([in] string aURL, sequence< com::sun::star::beans::PropertyValue > aArgs)

The method names are evident. The method storeAsUrl() is the exact representation of File –
Save As, that is, it changes the current document location. In contrast, storeToUrl() stores a copy
to a new location, but leaves the current document URL untouched.

Exporting
For exporting purposes, a filter name can be passed to storeAsURL() and storeToURL() that trig-
gers an export to other file formats. The property needed for this purpose is the string argument
FilterName that takes filter names defined in the configuration file:

<OfficePath>\share\config\registry \instance\org \openoffice\Office\TypeDetection.xml

In TypeDetection.xml, look for <Filter/> elements, their cfg:name attribute contains the needed
strings for FilterName. The proper filter name for StarWriter 5.x is "StarWriter 5.0", and the
export format "MS Word 97" is also popular. This is the element in TypeDetection.xml that
describes the MS Word 97 filter:
<Filter cfg:name="MS Word 97">
 <Installed cfg:type="boolean">true</Installed>
 <UIName cfg:type="string" cfg:localized="true">
 <cfg:value xml:lang="en-US">Microsoft Word 97/2000/XP</cfg:value>
 </UIName>
 <Data cfg:type="string">3,writer_MS_Word_97,com.sun.star.text.TextDocument,,67,CWW8,0,,</Data>
 </Filter>

The following method stores a document using this filter: (Text /TextDocuments.java)
/** Store a document, using the MS Word 97/2000/XP Filter */
 protected void storeDocComponent(XComponent xDoc, String storeUrl) throws java.lang.Exception {

 XStorable xStorable = (XStorable)UnoRuntime.queryInterface(XStorable.class, xDoc);
 PropertyValue[] storeProps = new PropertyValue[1];
 storeProps[0] = new PropertyValue();
 storeProps[0].Name = "FilterName";
 storeProps[0].Value = "MS Word 97";
 xStorable.storeAsURL(storeUrl, storeProps);
 }

462 OpenOffice.org 1.1 Developer's Guide • June 2003

If an empty array of PropertyValue structs is passed, the native .sxw format of OpenOffice.org is
used.

7.2.3 Printing Text Documents

Printer and Print Job Settings
Printing is a common office functionality. The chapter 6 Office Development provides in-depth
information about it. The writer document implements the com.sun.star.view.XPrintable
interface for printing. It consists of three methods:

sequence< com::sun::star::beans::PropertyValue > getPrinter ()
void setPrinter ([in] sequence< com::sun::star::beans::PropertyValue > aPrinter)
void print ([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

The following code is used with a given document xDoc to print to the standard printer without
any settings: (Text /TextDocuments.java)

// query the XPrintable interface from your document
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);

 // create an empty printOptions array

PropertyValue[] printOpts = new PropertyValue[0];

// kick off printing
 xPrintable.print(printOpts);

There are two groups of properties involved in general printing. The first one is used with
setPrinter() and getPrinter() that controls the printer, and the second one is passed to print
() and controls the print job.

com.sun.star.view.PrinterDescriptor comprises the properties for the printer:

Properties of com.sun.star.view.PrinterDescriptor
Name string — Specifies the name of the printer queue to be used.

PaperOrientation com.sun.star.view.PaperOrientation. Specifies the orientation of
the paper.

PaperFormat com.sun.star.view.PaperFormat. Specifies a predefined paper size
or if the paper size is a user-defined size.

PaperSize com.sun.star.awt.Size. Specifies the size of the paper in 1/100 mm.

IsBusy boolean — Indicates if the printer is busy.

CanSetPaperOrientation boolean — Indicates if the printer allows changes to PaperOrienta-
tion.

CanSetPaperFormat boolean — Indicates if the printer allows changes to PaperFormat.

CanSetPaperSize boolean — Indicates if the printer allows changes to PaperSize.

com.sun.star.view.PrintOptions contains the following possibilities for a print job:

Properties of com.sun.star.view.PrintOptions
CopyCount short — Specifies the number of copies to print.

FileName string — Specifies the name of a file to print to, if set.

Collate boolean — Advises the printer to collate the pages of the copies. If true,
a whole document is printed prior to the next copy, otherwise the page
copies are completed together.

Chapter 7 Text Documents 463

Properties of com.sun.star.view.PrintOptions
Pages string — Specifies the pages to print in the same format as in the print

dialog of the GUI (e.g. "1, 3, 4-7, 9-")

The following method uses PrinterDescriptor and PrintOptions to print to a special printer,
and preselect the pages to print. (Text/TextDocuments.java)
protected void printDocComponent(XComponent xDoc) throws java.lang.Exception {
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);
 PropertyValue[] printerDesc = new PropertyValue[1];
 printerDesc[0] = new PropertyValue();
 printerDesc[0].Name = "Name";
 printerDesc[0].Value = "5D PDF Creator";

 xPrintable.setPrinter(printerDesc);

 PropertyValue[] printOpts = new PropertyValue[1];
 printOpts[0] = new PropertyValue();
 printOpts[0].Name = "Pages";
 printOpts[0].Value = "3-5,7";

 xPrintable.print(printOpts);
}

Printing Multiple Pages on one Page
The interface com.sun.star.text.XPagePrintable is used to print more than one document
page to a single printed page.

sequence< com::sun::star::beans::PropertyValue > getPagePrintSettings()
void setPagePrintSettings([in] sequence< com::sun::star::beans::PropertyValue > aSettings)
void printPages([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

The first two methods getPagePrintSettings() and setPagePrintSettings() control the page
printing. They use a sequence of com.sun.star.beans.PropertyValues whose possible values
are defined in com.sun.star.text.PagePrintSettings:

Properties of com.sun.star.text.PagePrintSettings
PageRows short — Number of rows in which document pages should appear on

the output page.

PageColumns short — Number of columns in which document pages should appear
on the output page.

LeftMargin long — Left margin on the output page.

RightMargin long — Right margin on the output page.

TopMargin long — Top margin on the output page.

BottomMargin long — Bottom margin on the output page.

HoriMargin long — Margin between the columns on the output page.

VertMargin long — Margin between the rows on the output page.

IsLandscape boolean — Determines if the output page is in landscape format.

The method printPages() prints the document according to the previous settings. The argument
for the printPages() method may contain the PrintOptions as described in the section above
(containing the properties CopyCount, FileName, Collate and Pages).

464 OpenOffice.org 1.1 Developer's Guide • June 2003

7.3 Working with Text Documents

7.3.1 Word Processing
The text model in Illustration 72 shows that working with text starts with the method getText()
at the XTestDocument interface of the document model. It returns a com.sun.star.text.Text
service that handles text in OpenOffice.org.

The Text service has two mandatory interfaces and no properties:

The XText is used to edit a text, and XEnumerationAccess is used to iterate over text. The
following sections discuss these aspects of the Text service.

Editing Text
As previously discussed in the introductory chapter 2 First Steps, the interface
com.sun.star.text.XText incorporates three interfaces: XText, XSimpleText and XTextRange.
When working with an XText, you work with the string it contains, or you insert and remove
contents other than strings, such as tables, text fields, and graphics.

Strings
The XText is handled as a whole. There are two possibilities if the text is handled as one string.
The complete string can be set at once, or strings can be added at the beginning or end of the
existing text. These are the appropriate methods used for that purpose:

void setString([in] string text)
String getString()

Consider the following example: (Text/TextDocuments.java)
/** Setting the whole text of a document as one string */
protected void BodyTextExample() {
 // Body Text and TextDocument example
 try {
 // demonstrate simple text insertion
 mxDocText.setString("This is the new body text of the document."
 + "\n\nThis is on the second line.\n\n");
 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

Beginning and end of a text can be determined calling getStart() and getEnd():
com::sun::star::text::XTextRange getStart()
com::sun::star::text::XTextRange getEnd()

The following example adds text using the start and end range of a text:
(Text/TextDocuments.java)
/** Adding a string at the end or the beginning of text */
protected void TextRangeExample() {

Chapter 7 Text Documents 465

Illustration 73: Service com.sun.star.text.Text (mandatory interfaces only)

 try {
 // Get a text range referring to the beginning of the text document
 XTextRange xStart = mxDocText.getStart();
 // use setString to insert text at the beginning
 xStart.setString ("This is text inserted at the beginning.\n\n");
 // Get a text range referring to the end of the text document
 XTextRange xEnd = mxDocText.getEnd();
 // use setString to insert text at the end
 xEnd.setString ("This is text inserted at the end.\n\n");
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

The above code is not very flexible. To gain flexibility, create a text cursor that is a movable text
range. Note that such a text cursor is not visible in the user interface. The XText creates a cursor
that works on the model immediately. The following methods can be used to get as many cursors
as required:

com::sun::star::text::XTextCursor createTextCursor()
com::sun::star::text::XTextCursor createTextCursorByRange(

com::sun::star::text::XTextRange aTextPosition)

The text cursor travels through the text as a "collapsed" text range with identical start and end as a
point in text, or it can expand while it moves to contain a target string. This is controlled with the
methods of the XTextCursor interface:

// moving the cursor
// if bExpand is true, the cursor expands while it travels
boolean goLeft([in] short nCount, [in] boolean bExpand)
boolean goRight([in] short nCount, [in] boolean bExpand)
void gotoStart([in] boolean bExpand)
void gotoEnd([in] boolean bExpand)
void gotoRange([in] com::sun::star::text::XTextRange xRange, [in] boolean bExpand)
// controlling the collapsed status of the cursor
void collapseToStart()
void collapseToEnd()
boolean isCollapsed()

In writer, a text cursor has three interfaces that inherit from XTextCursor:
com.sun.star.text.XWordCursor, com.sun.star.text.XSentenceCursor and
com.sun.star.text.XParagraphCursor. These interfaces introduce the following additional
movements and status checks:

boolean gotoNextWord([in] boolean bExpand)
boolean gotoPreviousWord([in] boolean bExpand)
boolean gotoEndOfWord([in] boolean bExpand)
boolean gotoStartOfWord([in] boolean bExpand)
boolean isStartOfWord()
boolean isEndOfWord()
boolean gotoNextSentence([in] boolean Expand)
boolean gotoPreviousSentence([in] boolean Expand)
boolean gotoStartOfSentence([in] boolean Expand)
boolean gotoEndOfSentence([in] boolean Expand)
boolean isStartOfSentence()
boolean isEndOfSentence()
boolean gotoStartOfParagraph([in] boolean bExpand)
boolean gotoEndOfParagraph([in] boolean bExpand)
boolean gotoNextParagraph([in] boolean bExpand)
boolean gotoPreviousParagraph([in] boolean bExpand)
boolean isStartOfParagraph()
boolean isEndOfParagraph()

Since XTextCursor inherits from XTextRange, a cursor is an XTextRange and incorporates the
methods of an XTextRange:

com::sun::star::text::XText getText()
com::sun::star::text::XTextRange getStart()
com::sun::star::text::XTextRange getEnd()
string getString()
void setString([in] string aString)

466 OpenOffice.org 1.1 Developer's Guide • June 2003

The cursor can be told where it is required and the string content can be set later. This does have a
drawback. After setting the string, the inserted string is always selected. That means further text
can not be added without moving the cursor again. Therefore the most flexible method to insert
strings by means of a cursor is the method insertString() in XText. It takes an XTextRange as
the target range that is replaced during insertion, a string to insert, and a boolean parameter that
determines if the inserted text should be absorbed by the cursor after it has been inserted. The
XTextRange could be any XTextRange. The XTextCursor is an XTextRange, so it is used here:

void insertString([in] com::sun::star::text::XTextRange xRange,
 [in] string aString,
 [in] boolean bAbsorb)

To insert text sequentially the bAbsorb parameter must be set to false, so that the XTextRange
collapses at the end of the inserted string after insertion. If bAbsorb is true, the text range selects
the new inserted string. The string that was selected by the text range prior to insertion is deleted.

Consider the use of insertString() below: (Text/TextDocuments.java)
/** moving a text cursor, selecting text and overwriting it */
protected void TextCursorExample() {
 try {
 // First, get the XSentenceCursor interface of our text cursor
 XSentenceCursor xSentenceCursor = (XSentenceCursor)UnoRuntime.queryInterface(
 XSentenceCursor.class, mxDocCursor);

 // Goto the next cursor, without selecting it
 xSentenceCursor.gotoNextSentence(false);

 // Get the XWordCursor interface of our text cursor
 XWordCursor xWordCursor = (XWordCursor) UnoRuntime.queryInterface(
 XWordCursor.class, mxDocCursor);

 // Skip the first four words of this sentence and select the fifth
 xWordCursor.gotoNextWord(false);
 xWordCursor.gotoNextWord(false);
 xWordCursor.gotoNextWord(false);
 xWordCursor.gotoNextWord(false);
 xWordCursor.gotoNextWord(true);

 // Use the XSimpleText interface to insert a word at the current cursor
 // location, over-writing
 // the current selection (the fifth word selected above)
 mxDocText.insertString(xWordCursor, "old ", true);
 // Access the property set of the cursor, and set the currently selected text
 // (which is the string we just inserted) to be bold
 XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);
 xCursorProps.setPropertyValue("CharWeight", new Float(com.sun.star.awt.FontWeight.BOLD));

 // replace the '.' at the end of the sentence with a new string
 xSentenceCursor.gotoEndOfSentence(false);
 xWordCursor.gotoPreviousWord(true);
 mxDocText.insertString(xWordCursor,
 ", which has been changed with text cursors!", true);
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

Text Contents Other Than Strings
Up to this point, paragraphs made up of character strings has been discussed. Text can also
contain other objects besides character strings in paragraphs. They all support the interface
com.sun.star.text.XTextContent. In fact, everything in texts must support XTextContent.

A text content is an object that is attached to a com.sun.star.text.XTextRange. The text range it
is attached to is called the anchor of the text content.

All text contents mentioned below, starting with tables, support the service
com.sun.star.text.TextContent. It includes the interface com.sun.star.text.XTextContent
that inherits from the interface com.sun.star.lang.XComponent. The TextContent services may
have the following properties:

Chapter 7 Text Documents 467

Properties of com.sun.star.text.TextContent
AnchorType Describes the base the object is positioned to, according to

com.sun.star.text.TextContentAnchorType.

AnchorTypes A sequence of com.sun.star.text.TextContentAnchorType that
contains all allowed anchor types for the object.

TextWrap Determines the way the surrounding text flows around the object, according to
com.sun.star.text.WrapTextMode.

The method dispose() of the XComponent interface deletes the object from the document. Since a
text content is an XComponent, com.sun.star.lang.XEventListener can be added or removed
with the methods addEventListener() and removeEventListener(). These methods are called
back when the object is disposed. Other events are not supported.

The method getAnchor() at the XTextContent interface returns a text range which reflects the
text position where the object is located. This method may return a void object, for example, for
text frames that are bound to a page. The method getAnchor() is used in situations where an
XTextRange is required. For instance, placeholder fields
(com.sun.star.text.textfield.JumpEdit) can be filled out using their getAnchor() method.
Also, yo can get a bookmark, retrieve its XTextRange from getAnchor() and use it to insert a
string at the bookmark position.

The method attach() is an intended method to attach text contents to the document, but it is
currently not implemented.

All text contents—including paragraphs—can be created by the service manager of the document.
They are created using the factory methods createInstance() or createInstanceWithArgu-
ments() at the com.sun.star.lang.XMultiServiceFactory interface of the document.

All text contents—except for paragraphs—can be inserted into text using the
com.sun.star.text.XText method insertTextContent(). They can be removed by calling
removeTextContent(). Starting with the section 7.3.4 Text Documents - Working with Text Docu-
ments - Tables, there are code samples showing the usage of the document service manager with
insertTextContent().

void insertTextContent([in] com::sun::star::text::XTextRange xRange,
 [in] com::sun::star::text::XTextContent xContent, boolean bAbsorb);
void removeTextContent([in] com::sun::star::text::XTextContent xContent)

Paragraphs cannot be inserted by insertTextContent(). Only the interface XRelativeText-
ContentInsert can insert paragraphs. A paragraph created by the service manager can be used
for creating a new paragraph before or after a table, or a text section positioned at the beginning or
the end of page where no cursor can insert new paragraphs. Cf. the section 7.3.1 Text Documents -
Working with Text Documents - Word Processing - Inserting a Paraqraph where no Cursor can go below.

Control Characters
We have used Java escape sequences for paragraph breaks, but this may not be feasible in every
language. Moreover, OpenOffice.org supports a number of control characters that can be used.
There are two possibilities: use the method

void insertControlCharacter([in] com::sun::star::text::XTextRange xRange,
 [in] short nControlCharacter,
 [in] boolean bAbsorb)

to insert single control characters as defined in the constants group
com.sun.star.text.ControlCharacter, or use the corresponding unicode character from the
following list as escape sequence in a string if your language supports it. In Java, Unicode charac-
ters in strings can be incorporated using the \uHHHH escape sequence, where H represents a hexa-
decimal digit

468 OpenOffice.org 1.1 Developer's Guide • June 2003

PARAGRAPH_BREAK Insert a paragraph break (UNICODE 0x000D).

LINE_BREAK Inserts a line break inside of the paragraph (UNICODE 0x000A).

HARD_HYPHEN A character that appears like a dash, but prevents hyphenation at its position
(UNICODE 0x2011).

SOFT_HYPHEN Marks a preferred position for hyphenation (UNICODE 0x00AD).

HARD_SPACE A character that appears like a space, but prevents hyphenation at this point
(UNICODE 0x00A0).

APPEND_PARAGRAPH A new paragraph is appended (no UNICODE for this function).

The section 7.3.2 Text Documents - Working with Text Documents - Formatting describes how page
breaks are created by setting certain paragraph properties.

Iterating over Text
The second interface of com.sun.star.text.Text is XEnumerationAccess. AText service
enumerates all paragraphs in a text and returns objects which support
com.sun.star.text.Paragraph. This includes tables, because writer sees tables as specialized
paragraphs that support the com.sun.star.text.TextTable service.

Paragraphs also have an com.sun.star.container.XEnumerationAccess of their own. They can
enumerate every single text portion that they contain. A text portion is a text range containing a
uniform piece of information that appears within the text flow. An ordinary paragraph, formatted
in a uniform manner and containing nothing but a string, enumerates just a single text portion. In
a paragraph that has specially formatted words or other contents, the text portion enumeration
returns one com.sun.star.text.TextPortion service for each differently formatted string, and
for every other text content. Text portions include the service com.sun.star.text.TextRange and
have the properties listed below:

Properties of com.sun.star.text.TextPortion
TextPortionType string — Contains the type of the text portion (see below).

ControlCharacter short — Returns the control character if the text portion contains a control
character as defined in com.sun.star.text.ControlCharacter.

Bookmark com.sun.star.text.XTextContent. Contains the bookmark if the portion
has TextPortionType="Bookmark".

IsCollapsed boolean — Determines whether the portion is a point only.

IsStart boolean — Determines whether the portion is a start portion if two portions
are needed to include an object, that is, DocmentIndexMark.

Possible Values for TextPortionType are:

TextPortionType
(String)

Description

“Text” a portion with mere string content

“TextField” A com.sun.star.text.TextField content.

“TextContent” A text content supplied through the interface XContentEnumerationAc-
cess.

“Footnote” A footnote or an endnote.

“ControlCharacter” A control character.

“ReferenceMark” A reference mark.

Chapter 7 Text Documents 469

TextPortionType
(String)

Description

“DocumentIndexMark” A document index mark.

“Bookmark” A bookmark.

“Redline” A redline portion which is a result of the change tracking feature.

“Ruby” A ruby attribute which is used in Asian text.

The text portion enumeration of a paragraph does not supply contents which do belong to the
paragraph, but do not fuse together with the text flow. These could be text frames, graphic objects,
embedded objects or drawing shapes anchored at the paragraph, characters or as character. The
TextPortionType "TextContent" indicate if there is a content anchored at a character or as a
character. If you have a TextContent portion type, you know that there are shape objects
anchored at a character or as a character.

This last group of data contained in a text, Paragraphs and TextPortions in writer support the
interface com.sun.star.container.XContentEnumerationAccess. This interface tells which text
contents besides the text flow contents there are and supplies them as an
com.sun.star.container.XEnumeration:

sequence< string > getAvailableServiceNames()
com::sun::star::container::XEnumeration createContentEnumeration([in] string aServiceName)

The XContentEnumerationAccess of the paragraph lists the shape objects anchored at the para-
graph while the XContentEnumerationAccess lists the shape objects anchored at a character or as
a character.

Precisely the same enumerations are available for the current text cursor selection. The text cursor enumer-
ates paragraphs, text portions and text contents just like the service com.sun.star.text.Text itself.

The enumeration access to text through paragraphs and text portions is used if every single para-
graph in a text needs to be touched. The application area for this enumeration are export filters,
that uses this enumeration to go over the whole document, writing out the paragraphs to the
target file. The following code snippet centers all paragraphs in a text. (Text/TextDocuments.java)
/** This method demonstrates how to iterate over paragraphs */
protected void ParagraphExample () {
 try {
 // The service 'com.sun.star.text.Text' supports the XEnumerationAccess interface to
 // provide an enumeration
 // of the paragraphs contained by the text the service refers to.

 // Here, we access this interface
 XEnumerationAccess xParaAccess = (XEnumerationAccess) UnoRuntime.queryInterface(
 XEnumerationAccess.class, mxDocText);
 // Call the XEnumerationAccess's only method to access the actual Enumeration
 XEnumeration xParaEnum = xParaAccess.createEnumeration();

 // While there are paragraphs, do things to them
 while (xParaEnum.hasMoreElements()) {
 // Get a reference to the next paragraphs XServiceInfo interface. TextTables
 // are also part of this
 // enumeration access, so we ask the element if it is a TextTable, if it
 // doesn't support the
 // com.sun.star.text.TextTable service, then it is safe to assume that it
 // really is a paragraph
 XServiceInfo xInfo = (XServiceInfo) UnoRuntime.queryInterface(
 XServiceInfo.class, xParaEnum.nextElement());
 if (!xInfo.supportsService("com.sun.star.text.TextTable")) {
 // Access the paragraph's property set...the properties in this
 // property set are listed
 // in: com.sun.star.style.ParagraphProperties
 XPropertySet xSet = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xInfo);
 // Set the justification to be center justified
 xSet.setPropertyValue("ParaAdjust", com.sun.star.style.ParagraphAdjust.CENTER);
 }
 }
 } catch (Exception e) {

470 OpenOffice.org 1.1 Developer's Guide • June 2003

e.printStackTrace (System.out);
 }
}

Inserting a Paragraph where no Cursor can go
The service com.sun.star.text.Text has an optional interface
com.sun.star.text.XRelativeTextContentInsert which is available in Text services in writer.
The intention of this interface is to insert paragraphs in positions where no cursor or text portion
can be located to use the insertTextContent() method. These situation occurs when text sections
or text tables are at the start or end of the document, or if they follow each other directly.

void insertTextContentBefore([in] com::sun::star::text::XTextContent xNewContent,
 [in] com::sun::star::text::XTextContent xSuccessor)
void insertTextContentAfter([in] com::sun::star::text::XTextContent xNewContent,
 [in] com::sun::star::text::XTextContent xPredecessor)

The only supported text contents are com.sun.star.text.Paragraph as new content, and
com.sun.star.text.TextSection and com.sun.star.text.TextTable as successor or prede-
cessor.

Sorting Text
It is possible to sort text or the content of text tables.

Sorting of text is done by the text cursor that supports com.sun.star.util.XSortable. It
contains two methods:

sequence< com::sun::star::beans::PropertyValue > createSortDescriptor()
void sort([in] sequence< com::sun::star::beans::PropertyValue > xDescriptor)

The method createSortDescriptor() returns a sequence of
com.sun.star.beans.PropertyValue that provides the elements as described in the service
com.sun.star.text.TextSortDescriptor
The method sort() sorts the text that is selected by the cursor, by the given parameters.

Sorting of tables happens directly at the table service, which supports XSortable. Sorting is a
common feature of OpenOffice.org and it is described in detail in 6 Office Development.

Inserting Text Files
The text cursor in writer supports the interface com.sun.star.document.XDocumentInsertable
which has a single method to insert a file at the current cursor position:

void insertDocumentFromURL([in] string aURL,
 [in] sequence< com::sun::star::beans::PropertyValue > aOptions)

Pass a URL and an empty sequence of PropertyValue structs. However, load properties could be
used as described in com.sun.star.document.MediaDescriptor.

Auto Text
The auto text function can be used to organize reusable text passages. They allow storing text,
including the formatting and all other contents in a text block collection to apply them later. Three
services deal with auto text in OpenOffice.org:

• com.sun.star.text.AutoTextContainer specifies the entire collection of auto texts

Chapter 7 Text Documents 471

• com.sun.star.text.AutoTextGroup describes a category of auto texts

• com.sun.star.text.AutoTextEntry is a single auto text. (Text/TextDocuments.java)
/** Insert an autotext at the current cursor position of given cursor mxDocCursor*/

// Get an XNameAccess interface to all auto text groups from the document factory
XNameAccess xContainer = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class, mxFactory.createInstance("com.sun.star.text.AutoTextContainer"));

// Get the autotext group Standard
xGroup = (XAutoTextGroup) UnoRuntime.queryInterface(
 XAutoTextGroup.class, xContainer.getByName("Standard"));

// get the entry Best Wishes (BW)
XAutoTextEntry xEntry = (XAutoTextEntry)UnoRuntime.queryInterface (
 XAutoTextEntry.class, xGroup.getByName ("BW"));

// insert the modified autotext block at the cursor position
xEntry.applyTo(mxDocCursor);

/** Add a new autotext entry to the AutoTextContainer
*/
// Select the last paragraph in the document
xParaCursor.gotoPreviousParagraph(true);

// Get the XAutoTextContainer interface of the AutoTextContainer service
XAutoTextContainer xAutoTextCont = (XAutoTextContainer) UnoRuntime.queryInterface(
 XAutoTextContainer.class, xContainer);

// If the APIExampleGroup already exists, remove it so we can add a new one
if (xContainer.hasByName("APIExampleGroup"))
 xAutoTextCont.removeByName("APIExampleGroup");

// Create a new auto-text group called APIExampleGroup
XAutoTextGroup xNewGroup = xAutoTextCont.insertNewByName ("APIExampleGroup");

// Create and insert a new auto text entry containing the current cursor selection
XAutoTextEntry xNewEntry = xNewGroup.insertNewByName(
 "NAE", "New AutoTextEntry", xParaCursor);

// Get the XSimpleText and XText interfaces of the new autotext block
 XSimpleText xSimpleText = (XSimpleText) UnoRuntime.queryInterface(
 XSimpleText.class, xNewEntry);
XText xText = (XText) UnoRuntime.queryInterface(XText.class, xNewEntry);

// Insert a string at the beginning of the autotext block
xSimpleText.insertString(xText.getStart(),
 "This string was inserted using the API!\n\n", false);

The current implementation forces the user to close the AutoTextEntry instance when they are
changed, so that the changes can take effect. However, the new AutoText is not written to disk
until the destructor of the AutoTextEntry instance inside the writer is called. When this example
has finished executing, the file on disk correctly contains the complete text "This string was
inserted using the API!\n\nSome text for a new autotext block", but there is no way
in Java to call the destructor. It is not clear when the garbage collector deletes the object and writes
the modifications to disk.

7.3.2 Formatting
A multitude of character, paragraph and other properties are available for text in OpenOffice.org.
However, the objects implemented in the writer do not provide properties that support
com.sun.star.beans.XPropertyChangeListener or
com.sun.star.beans.XVetoableChangeListener yet.

472 OpenOffice.org 1.1 Developer's Guide • June 2003

Character and paragraph properties are available in the following services:

Services supporting Character
and Paragraph Properties

Remark

com.sun.star.text.TextCursor If collapsed, the CharacterProperties refer to the position
on the right hand side of the cursor.

com.sun.star.text.Paragraph
com.sun.star.text.TextPortion
com.sun.star.text.TextTableCurso
r
com.sun.star.text.Shape
com.sun.star.table.CellRange In text tables.

com.sun.star.text.TextDocument The model offers a selected number of character properties
which apply to the entire document. These are: CharFont-
Name,CharFontStyleName, CharFontFamily, Char-
FontCharSet, CharFontPitch and their Asian counterparts
CharFontStyleNameAsian, CharFontFamilyAsian,
CharFontCharSetAsian, CharFontPitchAsian.

The character properties are described in the services
com.sun.star.style.CharacterProperties,
com.sun.star.style.CharacterPropertiesAsian and
com.sun.star.style.CharacterPropertiesComplex.

com.sun.star.style.CharacterProperties describes common character properties for all
language zones and character properties in Western text. The following table provides possible
values.

Properties of com.sun.star.style.CharacterProperties
CharFontName string — This property specifies the name of the font in western text.

CharFontStyleName string — This property contains the name of the font style.

CharFontFamily short — This property contains font family that is specified in
com.sun.star.awt.FontFamily. Possible values are: DONTKNOW,
DECORATIVE, MODERN, ROMAN, SCRIPT, SWISS, and SYSTEM.

CharFontCharSet short — This property contains the text encoding of the font that is speci-
fied in com.sun.star.awt.CharSet. Possible values are: DONTKNOW,
ANSI MAC, IBMPC_437, IBMPC_850, IBMPC_860, IBMPC_861,
IBMPC_863, IBMPC_865, and SYSTEM SYMBOL.

CharFontPitch short — This property contains the font pitch that is specified in
com.sun.star.awt.FontPitch. The word font pitch refers to characters
per inch, but the possible values are DONTKNOW, FIXED and VARIABLE.
VARIABLE points to the difference between proportional and unpropor-
tional fonts.

CharColor long — This property contains the value of the text color in ARGB nota-
tion. ARGB has four bytes denoting alpha, red, green and blue. In hex nota-
tion, this can be used conveniently: 0xAARRGGBB. The AA (Alpha) can be 00
or left out.

CharEscapement [optional] short — Property which contains the relative value of the
character height in subscription or superscription.

CharHeight float — This value contains the height of the characters in point.

Chapter 7 Text Documents 473

Properties of com.sun.star.style.CharacterProperties
CharUnderline short — This property contains the value for the character underline that

is specified in com.sun.star.awt.FontUnderline. A lot of underline
types are available. Some possible values are SINGLE, DOUBLE, and
DOTTED.

CharWeight float — This property contains the value of the font weight, cf.
[com.sun.star.awt.FontWeight. A lot of weights are possible. The
common ones are BOLD and NORMAL.

CharPosture long — This property contains the posture of the font as defined in
com.sun.star.awt.FontSlant. The most common values are ITALIC
and NONE.

CharAutoKerning [optional] boolean — Property to determine whether the kerning
tables from the current font are used.

CharBackColor [optional] long —Property which contains the text background color
in ARGB: 0xAARRGGBB.

CharBackTransparent [optional] boolean —Determines if the text background color is set to
transparent.

CharCaseMap [optional] short — Property which contains the value of the case-
mapping of the text for formatting and displaying. Possible CaseMaps are
NONE, UPPERCASE, LOWERCASE, TITLE, and SMALLCAPS as defined
in the constants group com.sun.star.style.CaseMap. (optional)

CharCrossedOut [optional] boolean — This property is true if the characters are
crossed out.

CharFlash [optional] boolean — If this optional property is true , then the char-
acters are flashing

CharStrikeout [optional] short — Determines the type of the strikethrough of the
character as defined in com.sun.star.awt.FontStrikeout. Values are
NONE, SINGLE, DOUBLE, DONTKNOW, BOLD, and SLASH X.

CharWordMode [optional] boolean — If this property is true , the underline and
strike-through properties are not applied to white spaces.

CharKerning [optional] short — Property which contains the value of the kerning
of the characters.

CharLocale struct com.sun.star.lang.Locale. Contains the locale (language and
country) of the characters.

CharKeepTogether [optional] boolean — Property which marks a range of characters to
prevent it from being broken into two lines.

CharNoLineBreak [optional] boolean — Property which marks a range of characters to
ignore a line break in this area.

CharShadowed [optional] boolean — True if the characters are formatted and
displayed with a shadow effect. (optional)

CharFontType [optional] short — Property which specifies the fundamental tech-
nology of the font as specified in com.sun.star.awt.FontType. Possible
values are DONTKNOW, RASTER, DEVICE, and SCALABLE.

CharStyleName [optional] string — Specifies the name of the style of the font.

CharContoured [optional] boolean — True if the characters are formatted and
displayed with a contour effect.

CharCombineIsOn [optional] boolean — True if text is formatted in two lines.

474 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.style.CharacterProperties
CharCombinePrefix [optional] string — Contains the prefix string (usually parenthesis)

before text that is formatted in two lines.

CharCombineSuffix [optional] string — Contains the suffix string (usually parenthesis)
after text that is formatted in two lines.

CharEmphasize [optional] short — Contains the font emphasis value
com.sun.star.text.FontEmphasis.

CharRelief [optional] short — Contains the relief value as FontRelief.

RubyText [optional] string — Contains the text that is set as ruby.

RubyAdjust [optional] short — Determines the adjustment of the ruby text as
RubyAdjust.

RubyCharStyleName [optional] string — Contains the name of the character style that is
applied to RubyText (optional).

RubyIsAbove [optional] boolean — Determines whether the ruby text is printed
above /left or below/right of the text (optional) .

CharRotation [optional] short — Determines the rotation of a character in degree.

CharRotationIsFitTo-
Line

[optional] short — Determines whether the text formatting tries to fit
rotated text into the surrounded line height.

CharScaleWidth [optional] short — Determines the percentage value of scaling of char-
acters.

com.sun.star.style.CharacterPropertiesAsian describes properties used in Asian text. All of
these properties have a counterpart in CharacterProperties. They apply as soon as a text is
recognized as Asian by the employed Unicode character subset.

Properties of com.sun.star.style.CharacterPropertiesAsian
CharHeightAsian float — This value contains the height of the characters in point.

CharWeightAsian float — This property contains the value of the font weight.

CharFontNameAsian string — This property specifies the name of the font style.

CharFontStyleNameAsian string — This property contains the name of the font style.

CharFontFamilyAsian short — This property contains the font family that is specified in
com.sun.star.awt.FontFamily.

CharFontCharSetAsian short — This property contains the text encoding of the font that is speci-
fied in com.sun.star.awt.CharSet.

CharFontPitchAsian short — This property contains the font pitch that is specified in
com.sun.star.awt.FontPitch.

CharPostureAsian long — This property contains the value of the posture of the font as
defined in com.sun.star.awt.FontSlant.

CharLocaleAsian struct com.sun.star.lang.Locale — Contains the value of the locale.

The complex properties com.sun.star.style.CharacterPropertiesComplex refer to the same
character settings as in CharacterPropertiesAsian, only they have the suffix “Complex” instead
of “Asian”.

com.sun.star.style.ParagraphProperties comprises paragraph properties.

Chapter 7 Text Documents 475

Properties of com.sun.star.style.ParagraphProperties
ParaAdjust long — Determines the adjustment of a paragraph.

ParaLineSpacing [optional] struct com.sun.star.style.LineSpacing — Determines
the line spacing of a paragraph.

ParaBackColor [optional] long — Contains the paragraph background color.

ParaBackTransparent [optional] boolean — This value is true if the paragraph background
color is set to transparent.

ParaBackGraphicURL [optional] string — Contains the value of a link for the background
graphic of a paragraph.

ParaBackGraphicFilter [optional] string — Contains the name of the graphic filter for the
background graphic of a paragraph.

ParaBackGraphicLoca-
tion

[optional] long — Contains the value for the position of a background
graphic according to com.sun.star.style.GraphicLocation.

ParaLastLineAdjust short — Determines the adjustment of the last line.

ParaExpandSingleWord [optional] boolean — Determines if single words are stretched.

ParaLeftMargin long — Determines the left margin of the paragraph in 1/100 mm.

ParaRightMargin long — Determines the right margin of the paragraph in 1/100 mm.

ParaTopMargin long — Determines the top margin of the paragraph in 1/100 mm.

ParaBottomMargin long — Determines the bottom margin of the paragraph in 1/100 mm.

ParaLineNumberCount [optional] boolean — Determines if the paragraph is included in the
line numbering.

ParaLineNumberStart-
Value

[optional] boolean — Contains the start value for the line numbering.

ParaIsHyphenation [optional] boolean — Prevents the paragraph from getting hyphenated.

PageDescName [optional] string — If this property is set, it creates a page break before
the paragraph it belongs to and assigns the value as the name of the new
page style sheet to use.

PageNumberOffset [optional] short — If a page break property is set at a paragraph, this
property contains the new value for the page number.

ParaRegisterModeAc-
tive

[optional] boolean — Determines if the register mode is applied to a
paragraph.

ParaTabStops [optional] sequence < com.sun.star.style.TabStop >. Specifies
the positions and kinds of the tab stops within this paragraph.

ParaStyleName [optional] string — Contains the name of the current paragraph style.

DropCapFormat
[optional] struct com.sun.star.style.DropCapFormat specifies
whether the first characters of the paragraph are displayed in capital letters
and how they are formatted.

DropCapWholeWord [optional] boolean — Specifies if the property DropCapFormat is
applied to the whole first word.

ParaKeepTogether [optional] boolean — Setting this property to true prevents page or
column breaks between this and the following paragraph.

ParaSplit [optional] boolean — Setting this property to false prevents the para-
graph from getting split into two pages or columns.

NumberingLevel [optional] short — Specifies the numbering level of the paragraph.

476 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.style.ParagraphProperties

NumberingRules com.sun.star.container.XIndexReplace. Contains the numbering
rules applied to this paragraph.

NumberingStartValue [optional] short — Specifies the start value for numbering if a new
numbering starts at this paragraph.

ParaIsNumberin-
gRestart

[optional] boolean — Determines if the numbering rules restart,
counting at the current paragraph.

NumberingStyleName [optional] string — Specifies the name of the style for the numbering.

ParaOrphans
[optional] byte — Specifies the minimum number of lines of the para-
graph that have to be at bottom of a page if the paragraph is spread over
more than one page.

ParaWidows
[optional] byte — Specifies the minimum number of lines of the para-
graph that have to be at top of a page if the paragraph is spread over more
than one page.

ParaShadowFormat [optional] struct com.sun.star.table.ShadowFormat. Determines
the type, color, and size of the shadow.

IsHangingPunctuation [optional] boolean — Determines if hanging punctuation is allowed.

IsCharacterDistance [optional] boolean — Determines if a distance between Asian text,
western text or complex text is set.

IsForbiddenRules [optional] boolean — Determines if the the rules for forbidden charac-
ters at the start or end of text lines are considered.

Objects supporting these properties support com.sun.star.beans.XPropertySet, as well. To
change the properties, use the method setPropertyValue().
/** This snippet shows the necessary steps to set a property at the
 current position of a given text cursor mxDocCursor
*/

// query the XPropertySet interface
XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, mxDocCursor);

// call setPropertyValue, passing in a Float object
xCursorProps.setPropertyValue("CharWeight", new Float (com.sun.star.awt.FontWeight.BOLD));

The same procedure is used for all properties. The more complex properties are described here.

If a change of the page style is required the paragraph property PageDescName has to be set using
an existing page style name. This forces a page break at the cursor position and the new inserted
page uses the requested page style. The property PageNumberOffset has to be set to start with a
new page count.

If a page break (or a column break) without a change in the used style is required, the property
BreakType is set using the values of com.sun.star.style.BreakType:

Page break Description
BreakType Page or column break as described in com.sun.star.style.BreakType. Possible

values are NONE, COLUMN_BEFORE, COLUMN_AFTER, COLUMN_BOTH,
PAGE_BEFORE, PAGE_AFTER, and PAGE_BOTH. Setting the property forces a page
or column break at the current text cursor position, paragraph or text table.

The property ParaLineNumberCount is used to include a paragraph in the line numbering. The
setting of the line numbering options is done using the property set provided by the
com.sun.star.text.XLineNumberingProperties interface implemented at the text document
model.

Chapter 7 Text Documents 477

To create a hyperlink these properties are set at the current cursor position or the current
com.sun.star.text.Paragraph service.

Hyperlink properties are not specified for paragraphs in the API reference.

Hyperlink Properties Description
HyperLinkURL string — Contains the URL.

HyperLinkTarget string — Contains the name of the target frame and can
be left blank.

HyperLinkName string — The name of the hyperlink can be left blank.

UnvisitedCharStyleName
VisitedCharStyleName

string — The names of the character styles used to
emphasize visited or not visited links. If left blank, the
default character styles Internet Link/Visited Internet Link
are applied automatically.

HyperLinkEvents Events attached to the hyperlink. The names of the events
are OnClick, OnMouseOver, and OnMouseOut. Each
returned event is a sequence of
com.sun.star.beans.PropertyValue, with three
elements named EventType, MacroName and Library. All
elements contain string values. The EventType contains the
value "StarBasic" for OpenOffice.org Basic macros . The
macro name contains the path to the macro, for example,
Standard.Module1.Main. The library contains the name of
the library.

Some properties are connected with each other. There may be side effects or dependencies
between the following properties:

Interdependencies between Properties
ParaRightMargin, ParaLeftMargin, ParaFirstLineIndent, ParaIsAutoFirstLineIndent
ParaTopMargin, ParaBottomMargin
ParaGraphicURL/Filter/Location, ParaBackColor, ParaBackTransparent
ParaIsHyphenation, ParaHyphenationMaxLeadingChars/MaxTrailingChars/MaxHyphens
Left/Right/Top/BottomBorder, Left/Right/Top/BottomBorderDistance, BorerDistance
DropCapFormat, DropCapWholeWord, DropCapCharStyleName
PageDescName, PageNumberOffset
HyperLinkURL/Name/Target, UnvisitedCharStyleName, VisitedCharStyleName
CharEscapement, CharAutoEscapement, CharEscapementHeight
CharFontName, CharFontStyleName, CharFontFamily, CharFontPitch
CharStrikeOut, CharCrossedOut
CharUnderline, CharUnderlineColor, CharUnderlineHasColor
CharCombineIsOn, CharCombinePrefix, CharCombineSuffix
RubyText, RubyAdjust, RubyCharStyleName, RubyIsAbove

478 OpenOffice.org 1.1 Developer's Guide • June 2003

7.3.3 Navigating

Cursors
The text model cursor allows for free navigation over the model by character, words, sentences, or
paragraphs. There can be several model cursors at the same time. Model cursor creation, move-
ment and usage is discussed in the section 7.3.1 Text Documents - Working with Text Documents -
Word Processing . The text model cursors are com.sun.star.text.TextCursor services that are
based on the interface com.sun.star.text.XTextCursor, which is based on
com.sun.star.text.XTextRange.

The text view cursor enables the user to travel over the document in the view by character, line,
screen page and document page. There is only one text view cursor. Certain information about the
current layout, such as the number of lines and page number must be retrieved at the view cursor.
The chapter 7.5 Text Documents - Text Document Controller below discusses the view cursor in
detail. The text view cursor is a com.sun.star.text.TextViewCursor service that includes
com.sun.star.text.TextLayoutCursor.

Locating Text Contents
The text document model has suppliers that yield all text contents in a document as collections. To
find a particular text content, such as bookmarks or text fields, use the appropriate supplier inter-
face. The following supplier interfaces are available at the model:

Supplier interfaces Methods
XTextTablesSupplier Com.sun.star.container.XNameAccess getTextTables()
XTextFramesSupplier com.sun.star.container.XNameAccess getTextFrames()
XTextGraphicObjectsSup-
plier

com.sun.star.container.XNameAccess getGraphicObjects()

XTextEmbeddedObjectsSup-
plier

com.sun.star.container.XNameAccess getEmbeddedObjects()

XTextFieldsSupplier com.sun.star.container.XEnumerationAccess getTextFields()
com.sun.star.container.XNameAccess getTextFieldMasters()

XBookmarksSupplier com.sun.star.container.XNameAccess getBookmarks()
XReferenceMarksSupplier com.sun.star.container.XNameAccess getReferenceMarks()
XFootnotesSupplier com.sun.star.container.XIndexAccess getFootnotes()

com.sun.star.beans.XPropertySet getFootnoteSettings()
XEndnotesSupplier com.sun.star.container.XIndexAccess getEndnotes()

com.sun.star.beans.XPropertySet getEndnoteSettings()
XTextSectionsSupplier com.sun.star.container.XNameAccess getTextSections()
XDocumentIndexesSupplier com.sun.star.container.XIndexAccess getDocumentIndexes()
XRedlinesSupplier com.sun.star.container.XEnumerationAccess getRedlines()

You can work with text content directly, set properties and use its interfaces, or find out where it is
and do an action at the text content location in the text. To find out where a text content is located
call the getAnchor() method at the interface com.sun.star.text.XTextContent, which every
text content must support.

In addition, text contents located at the current text cursor position or the content where the cursor
is currently located are provided in the PropertySet of the cursor. The corresponding cursor
properties are:

Chapter 7 Text Documents 479

• DocumentIndexMark
• TextField
• ReferenceMark
• Footnote
• Endnote
• DocumentIndex
• TextTable
• TextFrame
• Cell
• TextSection

Search and Replace
The writer model supports the interface com.sun.star.util.XReplaceable that inherits from the
interface com.sun.star.util.XSearchable for searching and replacing in text. It contains the
following methods:

com::sun::star::util::util.XSearchDescriptor createSearchDescriptor()
com::sun::star::util::XReplaceDescriptor createReplaceDescriptor()
com::sun::star::uno::XInterface findFirst([in] com::sun::star::util::XSearchDescriptor xDesc)
com::sun::star::uno::XInterface findNext([in] com::sun::star::uno::XInterface xStartAt,
 [in] com::sun::star::util::XSearchDescriptor xDesc)
com::sun::star::container::XIndexAccess findAll([in] com::sun::star::util::XSearchDescriptor xDesc)
long replaceAll([in] com::sun::star::util::XSearchDescriptor xDesc)

To search or replace text, first create a descriptor service using createSearchDescriptor() or
createReplaceDescriptor(). You receive a service that supports the interface
com.sun.star.util.XPropertyReplace with methods to describe what you are searching for,
what you want to replace with and what attributes you are looking for. It is described in detail
below.

Pass in this descriptor to the methods findFirst(), findNext(), findAll() or replaceAll().

The methods findFirst() and findNext() return a com.sun.star.uno.XInterface pointing to
an object that contains the found item. If the search is not successful, a null reference to an
XInterface is returned, that is, if you try to query other interfaces from it, null is returned. The
method findAll() returns a com.sun.star.container.XIndexAccess containing one or more
com.sun.star.uno.XInterface pointing to the found text ranges or if they failed an empty inter-
face. The method replaceAll() returns the number of replaced occurrences only.

480 OpenOffice.org 1.1 Developer's Guide • June 2003

The interface com.sun.star.util.XPropertyReplace is required to describe your search. It is a
powerful interface and inherits from XReplaceDescriptor, XSearchDescriptor and XProper-
tySet.
The target of your search is described by a string containing a search text or a style name using
setSearchString(). Correspondingly, provide the text string or style name that should replace
the found occurrence of the search target to the XReplaceDescriptor using setReplaceString().
Refine the search mode through the properties included in the service
com.sun.star.util.SearchDescriptor:

Properties of com.sun.star.util.SearchDescriptor
SearchBackwards boolean — Search backward

SearchCaseSensitive boolean —Search is case sensitive.

Chapter 7 Text Documents 481

Illustration 74: XPropertyReplace

Properties of com.sun.star.util.SearchDescriptor
SearchRegularExpression boolean —Search interpreting the search string as a

regular expression.

SearchSimilarity boolean — Use similarity search using the four
following options:

SearchSimilarityAdd short — Determines the number of characters the
word in the document may be longer than the search
string for it to remain valid.

SearchSimilarityExchange short —Determines how many characters in the
search term can be exchanged.

SearchSimilarityRelax boolean — If true, the values of added, exchanged,
and removed characters are combined The search
term is then found if the word in the document can
be generated through any combination of these three
conditions.

SearchSimilarityRemove short — Determines how many characters the word
in the document may be shorter than the search
string for it to remain valid. The characters may be
removed from the word at any position.

SearchStyles boolean —Determines if the search and replace
string should be interpreted as paragraph style
names. Note that the Display Name of the style has
to be used.

SearchWords boolean —Determines if the search should find
complete words only.

In XPropertyReplace, the methods to get and set search attributes, and replace attributes allow
the attributes to search for to be defined and the attributes to insert instead of the existing attrib-
utes. All of these methods expect a sequence of com.sun.star.beans.PropertyValue structs.

Any properties contained in the services com.sun.star.style.CharacterProperties,
com.sun.star.style.CharacterPropertiesAsian and
com.sun.star.style.ParagraphProperties can be used for an attribute search. If setValue-
Search(false)is used, OpenOffice.org checks if an attribute exists, whereas setValueSearch
(true) finds specific attribute values. If only searching to see if an attribute exists at all, it is suffi-
cient to pass a PropertyValue struct with the Name field set to the name of the required attribute.

The following code snippet replaces all occurrences of the text "random numbers" by the bold text
"replaced numbers" in a given document mxDoc.
XReplaceable xReplaceable = (XReplaceable) UnoRuntime.queryInterface(XReplaceable.class, mxDoc);
XReplaceDescriptor xRepDesc = xReplaceable.createReplaceDescriptor();

// set a string to search for
xRepDesc.setSearchString("random numbers");

// set the string to be inserted
xRepDesc.setReplaceString("replaced numbers");

// create an array of one property value for a CharWeight property
PropertyValue[] aReplaceArgs = new PropertyValue[1];

// create PropertyValue struct
aReplaceArgs[0] = new PropertyValue();
// CharWeight should be bold
aReplaceArgs[0].Name = "CharWeight";
aReplaceArgs[0].Value = new Float(com.sun.star.awt.FontWeight.BOLD);

// set our sequence with one property value as ReplaceAttribute
XPropertyReplace xPropRepl = (XPropertyReplace) UnoRuntime.queryInterface(

XPropertyReplace.class, xRepDesc);
xPropRepl.setReplaceAttributes(aReplaceArgs);

482 OpenOffice.org 1.1 Developer's Guide • June 2003

// replace
long nResult = xReplaceable.replaceAll(xRepDesc);

7.3.4 Tables

Table Architecture
OpenOffice.org text tables consist of rows, rows consist of one or more cells, and cells can contain
text or rows. There is no logical concept of columns. From the API's perspective, a table acts as if it
had columns, as long as there are no split or merged cells.

Cells in a row are counted alphabetically starting from A, where rows are counted numerically,
starting from 1. This results in a cell-row addressing pattern, where the cell letter is denoted first
(A-Zff.), followed by the row number (1ff.):

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

When a cell is split vertically, the new cell gets the letter of the former right-hand- side neighbor
cell and the former neighbor cell gets the next letter in the alphabet. Consider the example table
below: B2 was split vertically, a new cell C2 is inserted and the former C2 became D2, D2 became
E2, and so forth.

When cells are merged vertically, the resulting cell counts as one cell and gets one letter. The
neighbor cell to the right gets the subsequent letter. B4 in the table below shows this. The former
B4 and C4 have been merged, so the former D4 could become C4. The cell name D4 is no longer
required.

As shown, there is no way to address a column C anymore, for the cells C1 to C4 no longer form a
column:

A1 B1 C1 D1

A2 B2 vertically split
in two

C2 newly inserted D2 E2

A3 B3 C3 D3

A4 B4 merged with C4 C4

When cells are split horizontally, OpenOffice.org simply inserts as many rows into the cell as
required.

In our example table, we continued by splitting C2 first horizontally and then vertically so that
there is a range of four cells.

The writer treats the content of C2 as two rows and starts counting cells within rows. To address
the new cells, it extends the original cell name C2 by new addresses following the cell-row pattern.
The upper row gets row number 1 and the first cell in the row gets cell number 1, resulting in the
cell address C2.1.1, where the latter 1 indicates the row and the former 1 indicates the first cell in
the row. The right neighbor of C2.1.1 is C2.2.1. The subaddress 2.1 means the second cell in the
first row.

Chapter 7 Text Documents 483

A1 B1 C1 D1

A2 B2 vertically split
in two

C2.1.1 C2.2.1

C2.1.2 C2.2.2

D2 E2

A3 B3 C3 D3

A4 B4 merged with C4 C4

The cell-row pattern is used for all further subaddressing as the cells are split and merged. The cell
addresses can change radically depending on the table structure generated by OpenOffice.org. The
next table shows what happens when E2 is merged with D3. The table is reorganized, so that it has
three rows instead of four. The second row contains two cells, A2 and B2 (sic!). The cell A2 has two
rows, as shown from the cell subaddresses: The upper row consists of four cells, namely A2.1.1
through A2.4.1, whereas the lower row consists of the three cells A2.1.2 through A2.3.2.

The cell range C2.1.1:C2.2.2 that was formerly contained in cell C2 is now in cell A2.3.1 that
denotes the third cell in the first row of A2. Within the address of the cell A2.3.1, OpenOffice.org
has started a new subaddressing level using the cell-row pattern again.

A1 B1 C1 D1

A2.1.1 A2.2.1 A2.3.1.1.1 A2.3.1.2.1

A2.3.1.1.2 A2.3.1.2.2

A2.4.1

A2.1.2 A2.2.2 A2.3.2

Former E2 merged with
former D3

Becomes B2!

A3 B3 C3

Cell addresses can become complicated. The cell address can be looked up in the user interface.
Set the GUI text cursor in the desired cell and observe the lower- right corner of the status bar in
the text document.

Remember that there are only "columns" in a text table, as long as there are no split or merged
cells.

Text tables support the service com.sun.star.text.TextTable, which includes the service
com.sun.star.text.TextContent:

484 OpenOffice.org 1.1 Developer's Guide • June 2003

The service com.sun.star.text.TextTable offers access to table cells in two different ways::

• Yields named table cells which are organized in rows and columns.

• Provides a table cursor to travel through the table cells and alter the cell properties.

These aspects are reflected in the interface com.sun.star.text.XTextTable which inherits from
com.sun.star.text.XTextContent. It can be seen as a rectangular range of cells defined by
numeric column indexes, as described by com.sun.star.table.XCellRange. This aspect makes
text tables compatible with spreadsheet tables. Also, text tables have a name, can be sorted, charts
can be based on them, and predefined formats can be applied to the tables. The latter aspects are
covered by the interfaces com.sun.star.container.XNamed, com.sun.star.util.XSortable,
com.sun.star.chart.XChartDataArray and com.sun.star.table.XAutoFormattable.

The usage of these interfaces and the properties of the TextTable service are discussed below.

Chapter 7 Text Documents 485

Illustration 75 Service com.sun.star.text.TextTable

Named Table Cells in Rows, Columns and the Table Cursor
The interface XTextTable introduces the following methods to initialize a table, work with table
cells, rows and columns, and create a table cursor:

void initialize([in] long nRows, [in] long nColumns)
sequence< string > getCellNames()
com::sun::star::table::XCell getCellByName([in] string aCellName)
com::sun::star::table::XTableRows getRows()
com::sun::star::table::XTableColumns getColumns()
com::sun::star::text::XTextTableCursor createCursorByCellName([in] string aCellName)

The method initialize() sets the number of rows and columns prior to inserting the table into
the text. Non- initialized tables default to two rows and two columns.

The method getCellNames() returns a sequence of strings containing the names of all cells in the
table in A1[.1.1] notation.

The method getCellByName() expects a cell name in A1[.1.1] notation, and returns a cell object
that is a com.sun.star.table.XCell and a com.sun.star.text.XText. The advantage of
getCellByName() is its ability to retrieve cells even in tables with split or merged cells.

The method getRows() returns a table row container supporting
com.sun.star.table.XTableRows that is a com.sun.star.container.XIndexAccess, and intro-
duces the following methods to insert an arbitrary number of table rows below a given row index
position and remove rows from a certain position:

void insertByIndex ([in] long nIndex, [in] long nCount)
void removeByIndex ([in] long nIndex, [in] long nCount)

The following table shows which XTableRows methods work under which circumstances.

Method in
com.sun.star.table.XTableR
ows

In Simple table In Complex
Table

getElementType() X X

hasElements() X X

getByIndex() X X

getCount() X X

insertByIndex() X -

removeByIndex() X -

Every row returned by getRows() supports the service com.sun.star.text.TextTableRow, that
is, it is a com.sun.star.beans.XPropertySet which features these properties:

Properties of com.sun.star.text.TextTableRow
RowBackColor long — Specifies the color of the background in 0xAARRGGBB nota-

tion.

BackTransparent boolean — If true, the background color value in "BackColor" is
not visible.

VertOrient The vertical orientation of the text inside of the table cells in this row,
com.sun.star.text.VertOrientation VertOrient can only be
read in Build 641. There is no way to set the vertical orientation of text
table cell contents. It defaults to top for strings and bottom for numeric
values.

486 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.text.TextTableRow
BackGraphicURL string — Contains the URL of a background graphic.

BackGraphicFilter string — Contains the name of the file filter of a background graphic.

BackGraphicLocation com.sun.star.style.GraphicLocation. Determines the position
of the background graphic.

TableColumnSeparator Defines the column width and its merging behavior. It contains a
sequence of com.sun.star.text.TableColumnSeparator structs
with the fields Position and IsVisible. The value of Position is relative
to the table property com.sun.star.text.TextTable:Table-
ColumnRelativeSum. IsVisible refers to merged cells where the sepa-
rator becomes invisible.

Height long — Contains the height of the table row.

IsAutoHeight boolean — If the value of this property is true , the height of the
table row depends on the content of the table cells.

The method getColumns()is similar to getRows(), but restrictions apply. It returns a table column
container supporting com.sun.star.table.XTableColumns that is a
com.sun.star.container.XIndexAccess and introduces the following methods to insert an arbi-
trary number of table columns behind a given column index position and remove columns from a
certain position:

void insertByIndex([in] long nIndex, [in] long nCount)
void removeByIndex([in] long nIndex, [in] long nCount)

The following table shows which XTableColumns methods work in which situation.

Method in
com.sun.star.table.XTableC
olumns

In Simple Table In Complex
Table

getElementType() X X

hasElements() X X

getByIndex() X (but returned object supports XInterface only) -

getCount() X -

insertByIndex() X -

removeByIndex() X -

The method createCursorByCellName() creates a text table cursor that can select a cell range in
the table, merge or split cells, and read and write cell properties of the selected cell range. It is a
com.sun.star.text.TextTableCursor service with the interfaces
com.sun.star.text.XTextTableCursor and com.sun.star.beans.XPropertySet.

Chapter 7 Text Documents 487

These are the methods contained in XTextTableCursor:
string getRangeName()
boolean goLeft([in] short nCount, [in] boolean bExpand)
boolean goRight([in] short nCount, [in] boolean bExpand)
boolean goUp([in] short nCount, [in] boolean bExpand)
boolean goDown([in] short nCount, [in] boolean bExpand)
void gotoStart([in] boolean bExpand)
void gotoEnd([in] boolean bExpand)
boolean gotoCellByName([in] string aCellName, [in] boolean bExpand)
boolean mergeRange()
boolean splitRange([in] short Count, [in] boolean Horizontal)

Traveling through the table calls the cursor's goLeft(), goRight(), goUp(), goDown(), gotoStart
(), gotoEnd(), and gotoCellByName() methods, passing true to select cells on the way.

Once a cell range is selected, apply character and paragraph properties to the cells in the range as
defined in the services com.sun.star.style.CharacterProperties,
com.sun.star.style.CharacterPropertiesAsian,
com.sun.star.style.CharacterPropertiesComplex and
com.sun.star.style.ParagraphProperties. Moreover, split and merge cells using the text table
cursor. An example is provided below.

Indexed Cells and Cell Ranges
The interface com.sun.star.table.XCellRange provides access to cells using their row and
column index as position, and to create sub ranges of tables:

com::sun::star::table::XCell getCellByPosition([in] long nColumn, [in] long nRow)

488 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 76 com.sun.star.text.TextTableCursor

com::sun::star::table::XCellRange getCellRangeByPosition([in] long nLeft, [in] long nTop,
 [in] long nRight, [in] long nBottom)
com::sun::star::table::XCellRange getCellRangeByName([in] string aRange)

The method getCellByPosition() returns a cell object supporting the interfaces
com.sun.star.table.XCell and com.sun.star.text.XText. To find the cell the name is inter-
nally created from the position using the naming scheme described above and returns this cell if it
exists. Calling getCellByPosition(1, 1)in the table at the beginning of this chapter returns the
cell "B2" .

The methods getCellRangeByPosition() and getCellRangeByName() return a range object that
is described below. The name of the range is created with the top-left cell and bottom- right cell of
the table separated by a colon : as in A1:B4. Both methods fail when the structure of the table
contains merged or split cells.

Table Naming, Sorting, Charting and Autoformatting
Each table has a unique name that can be read and written using the interface
com.sun.star.container.XNamed.

A text table is a com.sun.star.util.XSortable. Its method createSortDescriptor() returns a
sequence of com.sun.star.beans.PropertyValue structs that provides the elements as described
in the service com.sun.star.text.TextSortDescriptor. The method sort() sorts the table
content by the given parameters.

The interface com.sun.star.chart.XChartDataArray is used to connect a table or a range inside
of a table to a chart. It reads and writes the values of a range, and sets the column and row labels.
The inherited interface com.sun.star.chart.XChartData enables the chart to connect listeners to
be notified when changes to the values of a table are made. For details about charting, refer to
chapter 10 Charts.

The interface com.sun.star.table.XAutoFormattable provides in its method autoFormat() a
method to format the table using a predefined table format. To access the available auto formats,
the service com.sun.star.sheet.TableAutoFormats has to be accessed. For details, refer to
chapter 8.3.2 Spreadsheet Documents - Working with Spreadsheets - Formatting - Table Auto Formats.

Text Table Properties
The text table supports the properties described in the service com.sun.star.text.TextTable:

Properties of com.sun.star.text.TextTable
BackColor long — Contains the color of the table background.

BackGraphicFilter string — Contains the name of the file filter for the background graphic.

BackGraphicLocation com.sun.star.style.GraphicLocation. Determines the position of the
background graphic.

BackGraphicURL string — Contains the URL for the background graphic.

BackTransparent boolean — Determines if the background color is transparent.

BottomMargin long — Determines the bottom margin.

BreakType com.sun.star.style.BreakType. Determines the type of break that is
applied at the beginning of the table.

ChartColumnAsLabel boolean — Determines if the first column of the table should be treated as
axis labels when a chart is to be created.

Chapter 7 Text Documents 489

Properties of com.sun.star.text.TextTable
ChartRowAsLabel boolean — Determines if the first row of the table should be treated as axis

labels when a chart is to be created.

HoriOrient short — Contains the horizontal orientation according to
com.sun.star.text.HoriOrientation.

IsWidthRelative boolean — Determines if the value of the relative width is valid.

KeepTogether boolean — Setting this property to true prevents page or column breaks
between this table and the following paragraph or text table.

LeftMargin long — Contains the left margin of the table.

PageDescName string — If this property is set, it creates a page break before the table and
assigns the value as the name of the new page style sheet to use.

PageNumberOffset short — If a page break property is set at the table, this property contains the
new value for the page number.

RelativeWidth short — Determines the width of the table relative to its environment.

RepeatHeadline boolean — Determines if the first row of the table is repeated on every new
page.

RightMargin long — Contains the right margin of the table.

ShadowFormat struct com.sun.star.table.ShadowFormat determines the type, color
and size of the shadow.

Split boolean — Setting this property to false prevents the table from getting
spread on two pages.

TableBorder struct com.sun.star.table.TableBorder. Contains the description of
the table borders.

TableColumnRela-
tiveSum

short — Contains the sum of the column width values used in Table-
ColumnSeparators.

TableColumnSepara-
tors

sequence < com.sun.star.text.TableColumnSeparator >. Defines
the column width and its merging behavior. It contains a sequence of
com.sun.star.text.TableColumnSeparator structs with the fields
Position and IsVisible. The value of Position is relative to the table property
com.sun.star.text.TextTable:TableColumnRelativeSum. IsVisible
refers to merged cells where the separator becomes invisible. In tables with
merged or split cells, the sequence TableColumnSeparators is empty.

TopMargin long — Determines the top margin.

Width long — Contains the absolute table width.

Inserting Tables
To create and insert a new text table, a five-step procedure must be followed:

1. Get the service manager of the text document, querying the document's factory interface
com.sun.star.lang.XMultiServiceFactory.

2. Order a new text table from the factory by its service name "com.sun.star.text.TextTable",
using the factory method createInstance().

3. From the object received, query the com.sun.star.text.XTextTable interface that inherits
from com.sun.star.text.XTextContent.

490 OpenOffice.org 1.1 Developer's Guide • June 2003

4. If necessary, initialize the table with the number of rows and columns. For this purpose, XText-
Table offers the initialize() method.

5. Insert the table into the text using the insertTextContent() method at its
com.sun.star.text.XText interface. The method insertTextContent() expects an XText-
Content to insert. Since XTextTable inherits from XTextContent, pass the XTextTable inter -
face retrieved previously.

You are now ready to get cells, fill in text, values and formulas and set the table and cell properties
as needed.

In the following code sample, there is a small helper function to put random numbers between
-1000 and 1000 into the table to demonstrate formulas: (Text /TextDocuments.java)
/** This method returns a random double which isn't too high or too low
 */
protected double getRandomDouble()
{
 return ((maRandom.nextInt() % 1000) * maRandom.nextDouble());
}

The following helper function inserts a string into a cell known by its name and sets its text color
to white: (Text/TextDocuments.java)
/** This method sets the text colour of the cell refered to by sCellName to white and inserts
 the string sText in it
 */
public static void insertIntoCell(String sCellName, String sText, XTextTable xTable) {
 // Access the XText interface of the cell referred to by sCellName
 XText xCellText = (XText) UnoRuntime.queryInterface(
 XText.class, xTable.getCellByName(sCellName));

 // create a text cursor from the cells XText interface
 XTextCursor xCellCursor = xCellText.createTextCursor();

 // Get the property set of the cell's TextCursor
 XPropertySet xCellCursorProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xCellCursor);

 try {
 // Set the colour of the text to white
 xCellCursorProps.setPropertyValue("CharColor", new Integer(16777215));
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }

 // Set the text in the cell to sText
 xCellText.setString(sText);
}

Using the above helper functions, create a text table and insert it into the text document.
(Text/TextDocuments.java)
/** This method shows how to create and insert a text table, as well as insert text and formulae

into the cells of the table
 */
protected void TextTableExample ()
{

try
{

// Create a new table from the document's factory
XTextTable xTable = (XTextTable) UnoRuntime.queryInterface(

XTextTable.class, mxDocFactory .createInstance(
"com.sun.star.text.TextTable"));

// Specify that we want the table to have 4 rows and 4 columns
xTable.initialize(4, 4);

// Insert the table into the document
mxDocText.insertTextContent(mxDocCursor, xTable, false);
// Get an XIndexAccess of the table rows
XIndexAccess xRows = xTable.getRows();

// Access the property set of the first row (properties listed in service description:
// com.sun.star.text.TextTableRow)
XPropertySet xRow = (XPropertySet) UnoRuntime.queryInterface(

XPropertySet.class, xRows.getByIndex (0));
// If BackTransparant is false, then the background color is visible
xRow.setPropertyValue("BackTransparent", new Boolean(false));

Chapter 7 Text Documents 491

// Specify the color of the background to be dark blue
xRow.setPropertyValue("BackColor", new Integer(6710932));

// Access the property set of the whole table
XPropertySet xTableProps = (XPropertySet)UnoRuntime.queryInterface(

XPropertySet.class, xTable);
// We want visible background colors
xTableProps.setPropertyValue("BackTransparent", new Boolean(false));
// Set the background colour to light blue
xTableProps.setPropertyValue("BackColor", new Integer(13421823));

// set the text (and text colour) of all the cells in the first row of the table
insertIntoCell("A1", "First Column", xTable);
insertIntoCell("B1", "Second Column", xTable);
insertIntoCell("C1", "Third Column", xTable);
insertIntoCell("D1", "Results", xTable);

// Insert random numbers into the first this three cells of each
// remaining row
xTable.getCellByName("A2").setValue(getRandomDouble());
xTable.getCellByName("B2").setValue(getRandomDouble());
xTable.getCellByName("C2").setValue(getRandomDouble());

xTable.getCellByName("A3").setValue(getRandomDouble());
xTable.getCellByName("B3").setValue(getRandomDouble());
xTable.getCellByName("C3").setValue(getRandomDouble());

xTable.getCellByName("A4").setValue(getRandomDouble());
xTable.getCellByName("B4").setValue(getRandomDouble());
xTable.getCellByName("C4").setValue(getRandomDouble());

// Set the last cell in each row to be a formula that calculates
// the sum of the first three cells
xTable.getCellByName("D2").setFormula("sum <A2:C2>");
xTable.getCellByName("D3").setFormula("sum <A3:C3>");
xTable.getCellByName("D4").setFormula("sum <A4:C4>");

}
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

The next sample inserts auto text entries into a table, splitting cells during its course.
(Text/TextDocuments.java)
/** This example demonstrates the use of the AutoTextContainer, AutoTextGroup and AutoTextEntry services
 and shows how to create, insert and modify auto text blocks
 */
protected void AutoTextExample ()
{

try
{

// Go to the end of the document
mxDocCursor.gotoEnd(false);
// Insert two paragraphs
mxDocText.insertControlCharacter (mxDocCursor,

ControlCharacter.PARAGRAPH_BREAK, false);
mxDocText.insertControlCharacter (mxDocCursor,

ControlCharacter.PARAGRAPH_BREAK, false);
// Position the cursor in the second paragraph
XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(

XParagraphCursor.class, mxDocCursor);
xParaCursor.gotoPreviousParagraph (false);

// Get an XNameAccess interface to all auto text groups from the document factory
XNameAccess xContainer = (XNameAccess) UnoRuntime.queryInterface(

XNameAccess.class, mxFactory.createInstance (
"com.sun.star.text.AutoTextContainer"));

// Create a new table at the document factory
XTextTable xTable = (XTextTable) UnoRuntime.queryInterface(

XTextTable.class, mxDocFactory .createInstance(
"com.sun.star.text.TextTable"));

// Store the names of all auto text groups in an array of strings
String[] aGroupNames = xContainer.getElementNames();

// Make sure we have at least one group name
if (aGroupNames.length > 0)
{

// initialise the table to have a row for every autotext group
//in a single column + one
// additional row for a header
xTable.initialize(aGroupNames.length+1,1);

492 OpenOffice.org 1.1 Developer's Guide • June 2003

// Access the XPropertySet of the table
XPropertySet xTableProps = (XPropertySet)UnoRuntime.queryInterface(

XPropertySet.class, xTable);

// We want a visible background
xTableProps.setPropertyValue("BackTransparent", new Boolean(false));

// We want the background to be light blue
xTableProps.setPropertyValue("BackColor", new Integer(13421823));

// Inser the table into the document
mxDocText.insertTextContent(mxDocCursor, xTable, false);

// Get an XIndexAccess to all table rows
XIndexAccess xRows = xTable.getRows();

// Get the first row in the table
XPropertySet xRow = (XPropertySet) UnoRuntime.queryInterface(

XPropertySet.class, xRows.getByIndex (0));

// We want the background of the first row to be visible too
xRow.setPropertyValue("BackTransparent", new Boolean(false));

// And let's make it dark blue
xRow.setPropertyValue("BackColor", new Integer(6710932));

// Put a description of the table contents into the first cell
insertIntoCell("A1", "AutoText Groups", xTable);

// Create a table cursor pointing at the second cell in the first column
XTextTableCursor xTableCursor = xTable.createCursorByCellName ("A2");

// Loop over the group names
for (int i = 0 ; i < aGroupNames.length ; i ++)
{

// Get the name of the current cell
String sCellName = xTableCursor.getRangeName ();

// Get the XText interface of the current cell
XText xCellText = (XText) UnoRuntime.queryInterface (

XText.class, xTable.getCellByName (sCellName));

// Set the cell contents of the current cell to be
//the name of the of an autotext group
xCellText.setString (aGroupNames[i]);

// Access the autotext gruop with this name
XAutoTextGroup xGroup = (XAutoTextGroup) UnoRuntime.queryInterface (

XAutoTextGroup.class,xContainer.getByName(aGroupNames[i]));

// Get the titles of each autotext block in this group
String [] aBlockNames = xGroup.getTitles();

// Make sure that the autotext group contains at least one block
if (aBlockNames.length > 0)
{

// Split the current cell vertically into two seperate cells
xTableCursor.splitRange ((short) 1, false);

// Put the cursor in the newly created right hand cell
// and select it
xTableCursor.goRight ((short) 1, false);

// Split this cell horizontally to make a seperate cell
// for each Autotext block
if ((aBlockNames.length -1) > 0)

xTableCursor.splitRange (
(short) (aBlockNames.length - 1), true);

// loop over the block names
for (int j = 0 ; j < aBlockNames.length ; j ++)
{

// Get the XText interface of the current cell
xCellText = (XText) UnoRuntime.queryInterface (

XText.class, xTable.getCellByName (
xTableCursor.getRangeName()));

// Set the text contents of the current cell to the
// title of an Autotext block
xCellText.setString (aBlockNames[j]);

// Move the cursor down one cell
xTableCursor.goDown((short)1, false);

}
}
// Go back to the cell we originally split
xTableCursor.gotoCellByName (sCellName, false);

Chapter 7 Text Documents 493

// Go down one cell
xTableCursor.goDown((short)1, false);

}

XAutoTextGroup xGroup;
String [] aBlockNames;

// Add a depth so that we only generate 200 numbers before
// giving up on finding a random autotext group that contains autotext blocks
int nDepth = 0;
do
{

// Generate a random, positive number which is lower than
// the number of autotext groups
int nRandom = Math.abs (maRandom.nextInt() % aGroupNames.length);

// Get the autotext group at this name
xGroup = (XAutoTextGroup) UnoRuntime.queryInterface (

XAutoTextGroup.class, xContainer.getByName (
aGroupNames[nRandom]));

// Fill our string array with the names of all the blocks in this
// group
aBlockNames = xGroup.getElementNames();

// increment our depth counter
++nDepth;

}
while (nDepth < 200 && aBlockNames.length == 0);
// If we managed to find a group containg blocks...
if (aBlockNames.length > 0)
{

// Pick a random block in this group and get it's
// XAutoTextEntry interface
int nRandom = Math.abs (maRandom.nextInt()

% aBlockNames.length);
XAutoTextEntry xEntry = (XAutoTextEntry)

 UnoRuntime.queryInterface (
XAutoTextEntry.class, xGroup.getByName (

 aBlockNames[nRandom]));
// insert the modified autotext block at the end of the document
xEntry.applyTo (mxDocCursor);

// Get the titles of all text blocks in this AutoText group
String [] aBlockTitles = xGroup.getTitles();

// Get the XNamed interface of the autotext group
XNamed xGroupNamed = (XNamed) UnoRuntime.queryInterface (

 XNamed.class, xGroup);

// Output the short cut and title of the random block
//and the name of the group it's from
System.out.println ("Inserted the Autotext '" + aBlockTitles[nRandom]

+ "', shortcut '" + aBlockNames[nRandom] + "' from group '"
+ xGroupNamed.getName());

}
}

// Go to the end of the document
mxDocCursor.gotoEnd(false);
// Insert new paragraph
mxDocText.insertControlCharacter (

mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

// Position cursor in new paragraph
xParaCursor.gotoPreviousParagraph (false);

// Insert a string in the new paragraph
mxDocText.insertString (mxDocCursor, "Some text for a new autotext block", false);

// Go to the end of the document
mxDocCursor.gotoEnd(false);

}
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

494 OpenOffice.org 1.1 Developer's Guide • June 2003

Accessing Existing Tables
To access the tables contained in a text document, the text document model supports the interface
com.sun.star.text.XTextTablesSupplier with one single method getTextTables(). It returns
a com.sun.star.text.TextTables service, which is a named and indexed collection, that is,
tables are retrieved using com.sun.star.container.XNameAccess or
com.sun.star.container.XIndexAccess.

The following snippet iterates over the text tables in a given text document object mxDoc and colors
them green.
import com.sun.star.text.XTextTablesSupplier;
import com.sun.star.container.XNameAccess;
import com.sun.star.container.XIndexAccess;
import com.sun.star.beans.XPropertySet;

...

// first query the XTextTablesSupplier interface from our document
XTextTablesSupplier xTablesSupplier = (XTextTablesSupplier) UnoRuntime.queryInterface(

XTextTablesSupplier.class, mxDoc);
// get the tables collection
XNameAccess xNamedTables = xTablesSupplier.getTextTables();

// now query the XIndexAccess from the tables collection
XIndexAccess xIndexedTables = (XIndexAccess) UnoRuntime.queryInterface(

XIndexAccess.class, xNamedTables);

// we need properties
XPropertySet xTableProps = null;

// get the tables
for (int i = 0; i < xIndexedTables.getCount(); i++) {

Object table = xIndexedTables.getByIndex(i);
// the properties, please!
xTableProps = (XPropertySet) UnoRuntime.queryInterface(

XPropertySet.class, table);

// color the table light green in format 0xRRGGBB
xTableProps.setPropertyValue("BackColor", new Integer(0xC8FFB9));

}

7.3.5 Text Fields
Text fields are text contents that add a second level of information to text ranges. Usually their
appearance fuses together with the surrounding text, but actually the presented text comes from
elsewhere. Field commands can insert the current date, page number, total page numbers, a cross-
reference to another area of text, the content of certain database fields, and many variables, such as
fields with changing values, into the document. There are some fields that contain their own data,
where others get the data from an attached field master.

Chapter 7 Text Documents 495

Fields are created using the com.sun.star.lang.XMultiServiceFactory of the model before
inserting them using insertTextContent(). The following text field services are available:

Text Field Service Name Description
com.sun.star.text.textfield.Annotation Annotation created through Insert – Note.

com.sun.star.text.textfield.Author Shows the author of the document.

496 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 77Text Fields and Text Field Masters

Text Field Service Name Description
com.sun.star.text.textfield.Bibliography Bibliographic entry created by Insert – Indexes

and Tables – Bibliography Entry. The content
is the source of the creation of bibliographic
indexes. The sequence <PropertyValue> in
the property "Fields" contains pairs of the
name of the field and its content, such as:

Identifier=ABC99
BibliographicType=1

The names of the fields are defined in
com.sun.star.text.BibliographyDataF
ield. A bibliographic entry depends on
com.sun.star.text.FieldMaster.Bibli
ography

com.sun.star.text.textfield.Chapter Show the chapter information.

com.sun.star.text.textfield.CharacterCount Show the character count of the document.

com.sun.star.text.textfield.CombinedCharact
ers

Combines up to six characters as one text object
that is formatted in two lines.

com.sun.star.text.textfield.ConditionalText Inserts text depending on a condition.

com.sun.star.text.textfield.Database The form letter field showing the content from
a database. Depends on
com.sun.star.text.FieldMaster.Datab
ase.

com.sun.star.text.textfield.DatabaseName Shows the name of a database.

com.sun.star.text.textfield.DatabaseNextSet Increments the cursor that points to a database
selection.

com.sun.star.text.textfield.DatabaseNumberO
fSet

Shows the set number of a database cursor.

com.sun.star.text.textfield.DatabaseSetNumb
er

Databases - Any Record. Sets the number of a
database cursor.

com.sun.star.text.textfield.DateTime Shows a date or time value.

com.sun.star.text.textfield.DDE Shows the result of a DDE operation. Depends
on
com.sun.star.text.FieldMaster.DDE.

com.sun.star.text.textfield.docinfo.ChangeA
uthor

Shows the name of the author of the last change
of the document.

com.sun.star.text.textfield.docinfo.ChangeD
ateTime

Shows the date and time of the last change of
the document.

com.sun.star.text.textfield.docinfo.CreateA
uthor

Shows the name of the creator of the document.

com.sun.star.text.textfield.docinfo.CreateD
ateTime

Shows the date and time of the document crea-
tion.

com.sun.star.text.textfield.docinfo.Descrip
tion

Shows the description contained in the docu-
ment information.

com.sun.star.text.textfield.docinfo.EditTim
e

Shows the time of the editing of the document.

com.sun.star.text.textfield.docinfo.Info0 Shows the content of the first user defined info
field of the document info.

Chapter 7 Text Documents 497

Text Field Service Name Description
com.sun.star.text.textfield.docinfo.Info1 Shows the content of the second user defined

info field of the document info.

com.sun.star.text.textfield.docinfo.Info2 Shows the content of the third user defined info
field of the document info.

com.sun.star.text.textfield.docinfo.Info3 Shows the content of the fourth user defined
info field of the document info.

com.sun.star.text.textfield.docinfo.Keyword
s

Shows the keywords contained in the document
info.

com.sun.star.text.textfield.docinfo.PrintAu
thor

Shows the name of the author of the last
printing.

com.sun.star.text.textfield.docinfo.PrintDa
teTime

Shows the date and time of the last printing.

com.sun.star.text.textfield.docinfo.Revisio
n

Shows the revision contained in the document
info.

com.sun.star.text.textfield.docinfo.Subject Shows the subject contained in the document
info.

com.sun.star.text.textfield.docinfo.Title Shows the title contained in the document info.

com.sun.star.text.textfield.EmbeddedObjectC
ount

Shows the number of embedded objects
contained in the document.

com.sun.star.text.textfield.ExtendedUser Shows the user data of the Office user.

com.sun.star.text.textfield.FileName Shows the file name (URL) of the document.

com.sun.star.text.textfield.GetExpression Variables – Show Variable. Shows the value set
by the previous occurrence of SetExpression.

com.sun.star.text.textfield.GetReference References – Insert Reference. Shows a reference
to a reference mark, bookmark, number range
field, footnote or an endnote.

com.sun.star.text.textfield.GraphicObjectCo
unt

Shows the number of graphic object in the docu-
ment.

com.sun.star.text.textfield.HiddenParagraph Depending on a condition, the field hides the
paragraph it is contained in.

com.sun.star.text.textfield.HiddenText Depending on a condition the field shows or
hides a text.

com.sun.star.text.textfield.Input The field activates a dialog to input a value that
changes a related User field or SetExpres-
sion field.

com.sun.star.text.textfield.InputUser The field activates a dialog to input a string that
is displayed by the field. This field is not
connected to variables.

com.sun.star.text.textfield.JumpEdit A placeholder field with an attached interaction
to insert text, a text table, text frame, graphic
object or an OLE object.

com.sun.star.text.textfield.Macro A field connected to a macro that is executed on
a click to the field. To execute such a macro, use
the dispatch (cf. Appendix).

com.sun.star.text.textfield.PageCount Shows the number of pages of the document.

com.sun.star.text.textfield.PageNumber Shows the page number (current, previous,
next).

498 OpenOffice.org 1.1 Developer's Guide • June 2003

Text Field Service Name Description
com.sun.star.text.textfield.ParagraphCount Shows the number of paragraphs contained in

the document.

com.sun.star.text.textfield.ReferencePageGe
t

Displays the page number with respect to the
reference point, that is determined by the text
field ReferencePageSet.

com.sun.star.text.textfield.ReferencePageSe
t

Inserts a starting point for additional page
numbers that can be switched on or off.

com.sun.star.text.textfield.Script Contains a script or a URL to a script.

com.sun.star.text.textfield.SetExpression Variables – Set Variable. A variable field. The
value is valid until the next occurrence of SetEx-
pression field. The actual value depends on
com.sun.star.text.FieldMaster.SetEx
pression.

com.sun.star.text.textfield.TableCount Shows the number of text tables of the docu-
ment.

com.sun.star.text.textfield.TableFormula Contains a formula to calculate in a text table.

com.sun.star.text.textfield.TemplateName Shows the name of the template the current
document is created from.

com.sun.star.text.textfield.User Variables - User Field. Creates a global docu-
ment variable and displays it whenever this
field occurs in the text. Depends on
com.sun.star.text.FieldMaster.User.

com.sun.star.text.textfield.WordCount Shows the number of words contained in the
document.

All fields support the interfaces com.sun.star.text.XTextField,
com.sun.star.util.XUpdatable, com.sun.star.text.XDependentTextField and the service
com.sun.star.text.TextContent.

The method getPresentation() of the interface com.sun.star.text.XTextField returns the
textual representation of the result of the text field operation, such as a date, time, variable value,
or the command, such as CHAPTER, TIME (fixed) depending on the boolean parameter.

The method update() of the interface com.sun.star.util.XUpdatable affects only the following
field types:

• Date and time fields are set to the current date and time.

• The ExtendedUser fields that show parts of the user data set for OpenOffice.org, such as the
Name, City, Phone No. and the Author fields that are set to the current values.

• The FileName fields are updated with the current name of the file.

• The DocInfo.XXX fields are updated with the current document info of the document.

All other fields ignore calls to update().

Some of these fields need a field master that provides the data that appears in the field. This
applies to the field types Database, SetExpression, DDE, User and Bibliography. The interface
com.sun.star.text.XDependentTextField handles these pairs of FieldMasters and TextFields.
The method attachTextFieldMaster() must be called prior to inserting the field into the
document. The method getTextFieldMaster() does not work unless the dependent field is
inserted into the document.

Chapter 7 Text Documents 499

To create a valid text field master, the instance has to be created using the
com.sun.star.lang.XMultiServiceFactory interface of the model with the appropriate service
name:

Text Field Master Service Names Description
com.sun.star.text.FieldMaster.User Contains the global variable that is created and

displayed by the fieldtype
com.sun.star.text.textfield.User.

com.sun.star.text.FieldMaster.DDE The DDE command for a
com.sun.star.text.textfield.DDE.

com.sun.star.text.FieldMaster.SetExpres
sion

Numbering settings if the corresponding
com.sun.star.text.textfield.SetExpressi
on is a number range. A sub type of expression.

com.sun.star.text.FieldMaster.Database Data source definition for a
com.sun.star.text.textfield.Database.

com.sun.star.text.FieldMaster.Bibliogra
phy

Display settings and sorting for
com.sun.star.text.textfield.Bibliograph
y.

The property Name has to be set after the field instance is created, except for the Database field
master type where the properties DatabaseName, DatabaseTableName, DataColumnName and
DatabaseCommandType are set instead of the Name property.

To access existing text fields and field masters, use the interface
com.sun.star.text.XTextFieldsSupplier that is implemented at the text document model.

Its method getTextFields() returns a com.sun.star.text.TextFields container which is a
com.sun.star.container.XEnumerationAccess and can be refreshed through the refresh()
method in its interface com.sun.star.util.XRefreshable.

Its method getTextFieldMasters() returns a com.sun.star.text.TextFieldMasters container
holding the text field masters of the document. This container provides a
com.sun.star.container.XNameAccess interface. All field masters, except for Database are
named by the service name followed by the name of the field master. The Database field masters
create their names by appending the DatabaseName, DataTableName and DataColumnName to the
service name.

Consider the following examples for this naming convention:

"com.sun.star.text.FieldMaster.SetExpression.Illustration" Master for Illustration number
range. Number ranges are built-
in SetExpression fields
present in every document.

"com.sun.star.text.FieldMaster.User.Company" Master for User field (global
document variable), inserted
with display name Company.

"com.sun.star.text.FieldMaster.Database.Bibliography.biblio.Identifier" Master for form letter field refer-
ring to the column Identifier in
the built- in dbase database table
biblio.

Each text field master has a property InstanceName that contains its name in the format of the
related container.

Some SetExpression text field masters are always available if they are not deleted. These are the
masters with the names Text, Illustration, Table and Drawing. They are predefined as number

500 OpenOffice.org 1.1 Developer's Guide • June 2003

range field masters used for captions of text frames, graphics, text tables and drawings. Note that
these predefined names are internal names that are usually not used at the user interface.

The following methods show how to create and insert text fields. (Text /TextDocuments.java)
/** This method inserts both a date field and a user field containing the number '42'
 */
protected void TextFieldExample() {
 try {
 // Use the text document's factory to create a DateTime text field,
 // and access it's
 // XTextField interface
 XTextField xDateField = (XTextField) UnoRuntime.queryInterface(
 XTextField.class, mxDocFactory.createInstance(
 "com.sun.star.text.TextField.DateTime"));

 // Insert it at the end of the document
 mxDocText.insertTextContent (mxDocText.getEnd(), xDateField, false);

 // Use the text document's factory to create a user text field,
 // and access it's XDependentTextField interface
 XDependentTextField xUserField = (XDependentTextField) UnoRuntime.queryInterface (
 XDependentTextField.class, mxDocFactory.createInstance(
 "com.sun.star.text.TextField.User"));

 // Create a fieldmaster for our newly created User Text field, and access it's
 // XPropertySet interface
 XPropertySet xMasterPropSet = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocFactory.createInstance(
 "com.sun.star.text.FieldMaster.User"));

 // Set the name and value of the FieldMaster
 xMasterPropSet.setPropertyValue ("Name", "UserEmperor");
 xMasterPropSet.setPropertyValue ("Value", new Integer(42));

 // Attach the field master to the user field
 xUserField.attachTextFieldMaster (xMasterPropSet);

 // Move the cursor to the end of the document
 mxDocCursor.gotoEnd(false);
 // insert a paragraph break using the XSimpleText interface
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // Insert the user field at the end of the document
 mxDocText.insertTextContent(mxDocText.getEnd(), xUserField, false);
 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

7.3.6 Bookmarks
A Bookmark is a text content that marks a position inside of a paragraph or a text selection that
supports the com.sun.star.text.TextContent service. To search for a bookmark, the text docu-
ment model implements the interface com.sun.star.text.XBookmarksSupplier that supplies a
collection of the bookmarks. The collection supports the service com.sun.star.text.Bookmarks
which consists of com.sun.star.container.XNameAccess and
com.sun.star.container.XIndexAccess.

The bookmark name can be read and changed through its (com.sun.star.container.XNamed)
interface.

To insert, remove or change text, or attributes starting from the position of a bookmark, retrieve its
com.sun.star.text.XTextRange by calling getAnchor() at its
com.sun.star.text.XTextContent interface. Then use getString() or setString() at the
XTextRange, or pass this XTextRange to methods expecting a text range, such as
com.sun.star.text.XText:createTextCursorByRange(), com.sun.star.text.XText:insert-
String() or com.sun.star.text.XText:insertTextContent().

Chapter 7 Text Documents 501

Make sure that the access to the bookmark anchor position always uses the correct text object. Since every
XTextRange knows its surrounding text, use the getText() method of the bookmark's anchor. It is not
allowed to call aText.createTextCursorByRange(oAnchor) when aText represents a different area
of the document than the bookmark (different text frames, body text and text frame...)

Use the createInstance method of the com.sun.star.lang.XMultiServiceFactory interface
provided by the text document model to insert an new bookmark into the document. The service
name is "com.sun.star.text.Bookmark". Then use the bookmark's
com.sun.star.container.XNamed interface and call setName(). If no name is set, OpenOffice.org
makes up generic names, such as Bookmark1 and Bookmark2. Similarly, if a name is used that is
not unique, writer automatically appends a number to the bookmark name. The bookmark object
obtained from createInstance() can only be inserted once.
// inserting and retrieving a bookmark
Object bookmark = mxDocFactory.createInstance ("com.sun.star.text.Bookmark");

// name the bookmark
XNamed xNamed = (XNamed) UnoRuntime.queryInterface (

XNamed.class, bookmark);
xNamed.setName("MyUniqueBookmarkName");

// get XTextContent interface
XTextContent xTextContent = (XTextContent) UnoRuntime.queryInterface (

XTextContent.class, bookmark);

// insert bookmark at the end of the document
// instead of mxDocText.getEnd you could use a text cursor's XTextRange interface or any XTextRange
mxDocText.insertTextContent (mxDocText.getEnd(), xTextContent, false);

// query XBookmarksSupplier from document model and get bookmarks collection
XBookmarksSupplier xBookmarksSupplier = (XBookmarksSupplier)UnoRuntime.queryInterface(
 XBookmarksSupplier.class, xWriterComponent);
XNameAccess xNamedBookmarks = xBookmarksSupplier.getBookmarks();

// retrieve bookmark by name
Object foundBookmark = xNamedBookmarks.getByName("MyUniqueBookmarkName");
XTextContent xFoundBookmark = (XTextContent)UnoRuntime.queryInterface(

XTextContent.class, foundBookmark);

// work with bookmark
XTextRange xFound = xFoundBookmark.getAnchor();
xFound.setString(" The throat mike, glued to her neck, "
 + "looked as much as possible like an analgesic dermadisk.");

7.3.7 Indexes and Index Marks
Indexes are text contents that pull together information that is dispersed over the document. They
can contain chapter headings, locations of key words, locations of arbitrary index marks and loca-
tions of text objects, such as illustrations, objects or tables. In addition, OpenOffice.org features a
bibliographical index.

Indexes
The following index services are available in OpenOffice.org:

Index Service Name Description
com.sun.star.text.DocumentIndex alphabetical index

com.sun.star.text.ContentIndex table of contents

com.sun.star.text.UserIndex user defined index

com.sun.star.text.IllustrationIndex table of all illustrations contained in the document

com.sun.star.text.ObjectIndex table of all objects contained in the document

502 OpenOffice.org 1.1 Developer's Guide • June 2003

Index Service Name Description
com.sun.star.text.TableIndex table of all text tables contained in the document

com.sun.star.text.Bibliography bibliographical index

To access the indexes of a document, the text document model supports the interface
com.sun.star.text.XDocumentIndexesSupplier with a single method getDocumentIndexes().
The returned object is a com.sun.star.text.DocumentIndexes service supporting the interfaces
com.sun.star.container.XIndexAccess and com.sun.star.container.XNameAccess.

All indexes support the services com.sun.star.text.TextContent and
com.sun.star.text.BaseIndex that include the interface com.sun.star.text.XDocumentIndex.
This interface is used to access the service name of the index and update the current content of an
index:

string getServiceName()
void update()

Furthermore, indexes have properties and a name, and support:

• com.sun.star.beans.XPropertySet
provides the properties that determine how the index is created and which elements are
included into the index.

• com.sun.star.container.XNamed
provides a unique name of the index, not necessarily the title of the index.

An index is usually composed of two text sections which are provided as properties. The provided
property ContentSection includes the complete index and the property HeaderSection contains
the title if there is one. They enable the index to have background or column attributes inde-
pendent of the surrounding page format valid at the index position. In addition, there may be
different settings for the content and the heading of the index. However, these text sections are not
part of the document's text section container.

The indexes are structured by levels. The number of levels depends on the index type. The content
index has ten levels, corresponding to the number of available chapter numbering levels, which is
ten. Alphabetical indexes have four levels, one of which is used to insert separators, that are
usually characters that show the alphabet. The bibliography has 22 levels, according to the number
of available bibliographical type entries (com.sun.star.text.BibliographyDataType). All other
index types only have one level.

For all levels, define a separate structure that is provided by the property LevelFormat of the
service com.sun.star.text.BaseIndex. LevelFormat contains the various levels as a
com.sun.star.container.XIndexReplace object. Each level is a sequence of
com.sun.star.beans.PropertyValues which are defined in the service
com.sun.star.text.DocumentIndexLevelFormat. Although LevelFormat provides a level for
the heading, changing that level is not supported.

Each com.sun.star.beans.PropertyValues sequence has to contain at least one
com.sun.star.beans.PropertyValue with the name TokenType. This PropertyValue struct
must contain one of the following string values in its Value member variable:

TokenType Value
(String)

Meaning Additional Sequence
Members (optional)

“TokenEntryNumber” The number of an entry. This is
only supported in tables of content
and it marks the appearance of the
chapter number.

CharacterStyleName

Chapter 7 Text Documents 503

TokenType Value
(String)

Meaning Additional Sequence
Members (optional)

“TokenEntryText” Text of the entry, for example, it
might contain the heading text in
tables of content or the name of a
text reference in a bibliography.

CharacterStyleName

“TokenTabStop” Marks a tab stop to be inserted. TabStopPosition
TabStopRightAligned
TabStopFillCharac-
ters
CharacterStyleName

“TokenText” Inserted text. CharacterStyleName
Text

“TokenPageNumber” Marks the insertion of the page
number.

CharacterStyleName

“TokenChapterInfo” Marks the insertion of a chapter
field to be inserted. Only
supported in alphabetical indexes.

CharacterStyleName
ChapterFormat

“TokenHyperlinkStart” Start of a hyperlink to jump to the
referred heading. Only supported in
tables of content.

“TokenHyperlinkEnd” End of a hyperlink to jump to the
referred heading. Only supported in
tables of content.

“TokenBibliographyDa-
taField”

Identifies one of the 30 possible
BibliographyDataFields. The number
30 comes from the IDL reference of
BilbliographyDataFields.

BibliographyDa-
taField
CharacterStyleName

An example for such a sequence of PropertyValue struct could be constructed like this:
PropertyValue[] indexTokens = new PropertyValue[1];
indexTokens [0] = new PropertyValue();
indexTokens [0].Name = "TokenType";
indexTokens [0].Value = "TokenHyperlinkStart";

The following table explains the sequence members which can be present, in addition to the
TokenType member, as mentioned above.

Additional Properties of com.sun.star.text.DocumentIndexLevelFormat
CharacterStyleName string — Name of the character style that has to be applied to the appear-

ance of the entry.

TabStopPosition long — Position of the tab stop in 1/100 mm.

TabStopRightAligned boolean — The tab stop is to be inserted at the end of the line and right
aligned. This is used before page number entries.

TabStopFillCharacters string — The first character of this string is used as a fill character for the
tab stop.

ChapterFormat short — Type of the chapter info as defined in
com.sun.star.text.ChapterFormat.

BibliographyDataField Type of the bibliographical entry as defined in
com.sun.star.text.BibliographyDataField.

504 OpenOffice.org 1.1 Developer's Guide • June 2003

Index marks
Index marks are text contents whose contents and positions are collected and displayed in indexes.

To access all index marks that are related to an index, use the property IndexMarks of the index. It
contains a sequence of com.sun.star.text.XDocumentIndexMark interfaces.

All index marks support the service com.sun.star.text.BaseIndexMark that includes
com.sun.star.text.TextContent. Also, they all implement the interfaces
com.sun.star.text.XDocumentIndexMark and com.sun.star.beans.XPropertySet.

The XDocumentIndexMark inherits from XTextContent and defines two methods:
string getMarkEntry()
void setMarkEntry([in] string anIndexEntry)

OpenOffice.org supports three different index mark services:

• com.sun.star.text.DocumentIndexMark for entries in alphabetical indexes.

• com.sun.star.text.UserIndexMark for user defined indexes.

• com.sun.star.text.ContentIndexMark for entries in tables of content which are independent
from chapter headings.

An index mark can be set at a point in text or it can mark a portion of a paragraph, usually a word.
It cannot contain text across paragraph breaks. If the index mark does not include text, the
BaseIndexMark property AlternativeText has to be set, otherwise there will be no string to
insert into the index.

Inserting ContentIndexMarks and a table of contents index: (Text/TextDocuments.java)
/** This method demonstrates how to insert indexes and index marks
 */
protected void IndexExample ()
{

try
{

// Go to the end of the document
mxDocCursor.gotoEnd(false);
// Insert a new paragraph and position the cursor in it
mxDocText.insertControlCharacter (mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false

);
XParagraphCursor xParaCursor = (XParagraphCursor)

UnoRuntime.queryInterface(XParagraphCursor.class, mxDocCursor);
xParaCursor.gotoPreviousParagraph (false);

// Create a new ContentIndexMark and get it's XPropertySet interface
XPropertySet xEntry = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,

mxDocFactory.createInstance ("com.sun.star.text.ContentIndexMark"));

// Set the text to be displayed in the index
xEntry.setPropertyValue ("AlternativeText", "Big dogs! Falling on my head!");

// The Level property _must_ be set
xEntry.setPropertyValue ("Level", new Short ((short) 1));

// Create a ContentIndex and access it's XPropertySet interface
XPropertySet xIndex = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,

mxDocFactory.createInstance ("com.sun.star.text.ContentIndex"));

// Again, the Level property _must_ be set
xIndex.setPropertyValue ("Level", new Short ((short) 10));

// Access the XTextContent interfaces of both the Index and the IndexMark
XTextContent xIndexContent = (XTextContent) UnoRuntime.queryInterface(

XTextContent.class, xIndex);
XTextContent xEntryContent = (XTextContent) UnoRuntime.queryInterface(

XTextContent.class, xEntry);

// Insert both in the document
mxDocText.insertTextContent (mxDocCursor, xEntryContent, false);
mxDocText.insertTextContent (mxDocCursor, xIndexContent, false);

// Get the XDocumentIndex interface of the Index
XDocumentIndex xDocIndex = (XDocumentIndex) UnoRuntime.queryInterface(

XDocumentIndex.class, xIndex);

Chapter 7 Text Documents 505

// And call it's update method
xDocIndex.update();

}
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

7.3.8 Reference Marks
A reference mark is a text content that is used as a target for
com.sun.star.text.textfield.GetReference text fields. These text fields show the contents of
reference marks in a text document and allows the user to jump to the reference mark. Reference
marks support the com.sun.star.text.XTextContent and com.sun.star.container.XNamed
interfaces. They can be accessed by using the text document's
com.sun.star.text.XReferenceMarksSupplier interface that defines a single method
getReferenceMarks().

The returned collection is a com.sun.star.text.ReferenceMarks service which has a
com.sun.star.container.XNameAccess and a com.sun.star.container.XIndexAccess inter -
face. (Text /TextDocuments.java)
/** This method demonstrates how to create and insert reference marks, and GetReference Text Fields
 */
protected void ReferenceExample () {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);

 // Insert a paragraph break
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // Get the Paragraph cursor
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);

 // Move the cursor into the new paragraph
 xParaCursor.gotoPreviousParagraph(false);

 // Create a new ReferenceMark and get it's XNamed interface
 XNamed xRefMark = (XNamed) UnoRuntime.queryInterface(XNamed.class,
 mxDocFactory.createInstance("com.sun.star.text.ReferenceMark"));

 // Set the name to TableHeader
 xRefMark.setName("TableHeader");

 // Get the TextTablesSupplier interface of the document
 XTextTablesSupplier xTableSupplier = (XTextTablesSupplier) UnoRuntime.queryInterface(
 XTextTablesSupplier.class, mxDoc);

 // Get an XIndexAccess of TextTables
 XIndexAccess xTables = (XIndexAccess) UnoRuntime.queryInterface(
 XIndexAccess.class, xTableSupplier.getTextTables());

 // We've only inserted one table, so get the first one from index zero
 XTextTable xTable = (XTextTable) UnoRuntime.queryInterface(
 XTextTable.class, xTables.getByIndex(0));

 // Get the first cell from the table
 XText xTableText = (XText) UnoRuntime.queryInterface(
 XText.class, xTable.getCellByName("A1"));

 // Get a text cursor for the first cell
 XTextCursor xTableCursor = xTableText.createTextCursor();

 // Get the XTextContent interface of the reference mark so we can insert it
 XTextContent xContent = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xRefMark);

 // Insert the reference mark into the first cell of the table
 xTableText.insertTextContent (xTableCursor, xContent, false);

506 OpenOffice.org 1.1 Developer's Guide • June 2003

 // Create a 'GetReference' text field to refer to the reference mark we just inserted,
 // and get it's XPropertySet interface
 XPropertySet xFieldProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocFactory.createInstance(
 "com.sun.star.text.TextField.GetReference"));

 // Get the XReferenceMarksSupplier interface of the document
 XReferenceMarksSupplier xRefSupplier = (XReferenceMarksSupplier) UnoRuntime.queryInterface(
 XReferenceMarksSupplier.class, mxDoc);

 // Get an XNameAccess which refers to all inserted reference marks
 XNameAccess xMarks = (XNameAccess) UnoRuntime.queryInterface(XNameAccess.class,
 xRefSupplier.getReferenceMarks());

 // Put the names of each reference mark into an array of strings
 String[] aNames = xMarks.getElementNames();

 // Make sure that at least 1 reference mark actually exists
 // (well, we just inserted one!)
 if (aNames.length > 0) {
 // Output the name of the first reference mark ('TableHeader')
 System.out.println ("GetReference text field inserted for ReferenceMark : "
 + aNames[0]);

 // Set the SourceName of the GetReference text field to 'TableHeader'
 xFieldProps.setPropertyValue("SourceName", aNames[0]);

 // specify that the source is a reference mark (could also be a footnote,
 // bookmark or sequence field)
 xFieldProps.setPropertyValue ("ReferenceFieldSource", new Short(
 ReferenceFieldSource.REFERENCE_MARK));

 // We want the reference displayed as 'above' or 'below'
 xFieldProps.setPropertyValue("ReferenceFieldPart",
 new Short (ReferenceFieldPart.UP_DOWN));

 // Get the XTextContent interface of the GetReference text field
 XTextContent xRefContent = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xFieldProps);

 // Go to the end of the document
 mxDocCursor.gotoEnd(false);

 // Make some text to precede the reference
 mxDocText.insertString(mxDocText.getEnd(), "The table ", false);

 // Insert the text field
 mxDocText.insertTextContent(mxDocText.getEnd(), xRefContent, false);

 // And some text after the reference..
 mxDocText.insertString(mxDocText.getEnd(),
 " contains the sum of some random numbers.", false);

 // Refresh the document
 XRefreshable xRefresh = (XRefreshable) UnoRuntime.queryInterface(
 XRefreshable.class, mxDoc);
 xRefresh.refresh();
 }
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

The name of a reference mark can be used in a com.sun.star.text.textfield.GetReference
text field to refer to the position of the reference mark.

7.3.9 Footnotes and Endnotes
Footnotes and endnotes are text contents that provide background information for the reader that
appears in page footers or at the end of a document.

Footnotes and endnotes implement the service com.sun.star.text.Footnote that includes
com.sun.star.text.TextContent. The Footnote service has the interfaces
com.sun.star.text.XText and com.sun.star.text.XFootnote that inherit from
com.sun.star.text.XTextContent. The XFootnote introduces the following methods:

string getLabel()
void setLabel([in] string aLabel)

Chapter 7 Text Documents 507

The Footnote service defines a property ReferenceId that is used for import and export, and
contains an internal sequential number.

The interface com.sun.star.text.XText which is provided by the
com.sun.star.text.Footnote service accesses the text object in the footnote area where the foot-
note text is located. It is not allowed to insert text tables into this text object.

While footnotes can be placed at the end of a page or the end of a document, endnotes always
appear at the end of a document. Endnote numbering is separate from footnote numbering. Foot-
notes are accessed using the com.sun.star.text.XFootnotesSupplier interface of the text docu-
ment through the method getFootNotes(). Endnotes are accessed similarly by calling getEnd-
notes()at the text document's com.sun.star.text.XEndnotesSupplier interface. Both of these
methods return a com.sun.star.container.XIndexAccess.

A label is set for a footnote or endnote to determine if automatic footnote numbering is used. If no
label is set (= empty string), the footnote is labeled automatically. There are footnote and endnote
settings that specify how the automatic labeling is formatted. These settings are obtained from the
document model using the interfaces com.sun.star.text.XFootnotesSupplier and
com.sun.star.text.XEndnotesSupplier. The corresponding methods are getFootnoteSet-
tings() and getEndnoteSettings(). The object received is a
com.sun.star.beans.XPropertySet and has the properties described in
com.sun.star.text.FootnoteSettings:

Properties of com.sun.star.text.FootnoteSettings

AnchorCharStyleName string — Contains the name of the character style that is used for the label
in the document text.

CharStyleName string — Contains the name of the character style that is used for the label
in front of the footnote /endnote text.

NumberingType short — Contains the numbering type for the numbering of the footnotes or
endnotes.

PageStyleName string — Contains the page style that is used for the page that contains the
footnote or endnote texts.

ParaStyleName string —Contains the paragraph style that is used for the footnote or
endnote text.

Prefix string —Contains the prefix for the footnote or endnote symbol.

StartAt short — Contains the first number of the automatic numbering of footnotes
or endnotes.

Suffix string — Contains the suffix for the footnote /endnote symbol.

BeginNotice [optional] string —Contains the string at the restart of the footnote text
after a break.

EndNotice [optional] string — Contains the string at the end of a footnote part in
front of a break.

FootnoteCounting [optional] boolean —Contains the type of the counting for the footnote
numbers

PositionEndOfDoc [optional] boolean — If true, the footnote text is shown at the end of
the document.

The Footnotes service applies to footnotes and endnotes.

The following sample works with footnotes (Text/TextDocuments.java)
/** This method demonstrates how to create and insert footnotes, and how to access the
 XFootnotesSupplier interface of the document
 */

508 OpenOffice.org 1.1 Developer's Guide • June 2003

protected void FootnoteExample ()
{

try
{

// Create a new footnote from the document factory and get it's
// XFootnote interface
XFootnote xFootnote = (XFootnote) UnoRuntime.queryInterface(XFootnote.class,

mxDocFactory.createInstance ("com.sun.star.text.Footnote"));

// Set the label to 'Numbers'
xFootnote.setLabel ("Numbers");

// Get the footnotes XTextContent interface so we can...
XTextContent xContent = (XTextContent) UnoRuntime.queryInterface (

XTextContent.class, xFootnote);

// ...insert it into the document
mxDocText.insertTextContent (mxDocCursor, xContent, false);

// Get the XFootnotesSupplier interface of the document
XFootnotesSupplier xFootnoteSupplier = (XFootnotesSupplier) UnoRuntime.queryInterface(

XFootnotesSupplier.class, mxDoc);

// Get an XIndexAccess interface to all footnotes
XIndexAccess xFootnotes = (XIndexAccess) UnoRuntime.queryInterface (

XIndexAccess.class, xFootnoteSupplier.getFootnotes());

// Get the XFootnote interface to the first footnote inserted ('Numbers')
XFootnote xNumbers = (XFootnote) UnoRuntime.queryInterface (

XFootnote.class, xFootnotes.getByIndex(0));

// Get the XSimpleText interface to the Footnote
XSimpleText xSimple = (XSimpleText) UnoRuntime.queryInterface (

XSimpleText.class, xNumbers);

// Create a text cursor for the foot note text
XTextRange xRange = (XTextRange) UnoRuntime.queryInterface (

XTextRange.class, xSimple.createTextCursor());

// And insert the actual text of the footnote.
xSimple.insertString (

xRange, " The numbers were generated by using java.util.Random", false);
}
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

7.3.10 Shape Objects in Text

Base Frames vs. Drawing Shapes
Shape objects are text contents that act independently of the ordinary text flow. The surrounding
text may wrap around them. Shape objects can lie in front or behind text, and be anchored to para-
graphs or characters in the text. Anchoring allows the shape objects to follow the paragraphs and
characters while the user is writing. Currently, there are two different kinds of shape objects in
OpenOffice.org, base frames and drawing shapes.

Base Frames
The first group are shape objects that are com.sun.star.text.BaseFrames. The three services
com.sun.star.text.TextFrame, com.sun.star.text.TextGraphicObject and
com.sun.star.text.TextEmbeddedObject are all based on the service
com.sun.star.text.BaseFrame. The TextFrames contain an independent text area that can be
positioned freely over ordinary text. The TextGraphicObjects are bitmaps or vector oriented
images in a format supported by OpenOffice.org internally. The TextEmbeddedObjects are areas
containing a document type other than the document they are embedded in, such as charts,
formulas, internal OpenOffice.org documents (Calc/Draw /Impress), or OLE objects.

Chapter 7 Text Documents 509

The TextFrames, TextGraphicObjects and TextEmbeddedObjects in a text are supplied by their
corresponding supplier interfaces at the document model:
com.sun.star.text.XTextFramesSupplier
com.sun.star.text.XTextGraphicObjectsSupplier
com.sun.star.text.XTextEmbeddedObjectsSupplier. These interfaces all have one single get
method that supplies the respective Shape objects collection:

com::sun::star::container::XNameAccess getTextFrames()
com::sun::star::container::XNameAccess getTextEmbeddedObjects()
com::sun::star::container::XNameAccess getTextGraphicObjects()

The method getTextFrames()returns a com.sun.star.text.TextFrames collection, getTextEm-
beddedObjects() returns a com.sun.star.text.TextEmbeddedObjects collection and getText-
GraphicObjects() yields a com.sun.star.text.TextGraphicObjects collection. All of these
collections support com.sun.star.container.XIndexAccess and
com.sun.star.container.XNameAccess. The TextFrames collection may (optional) support the
com.sun.star.container.XContainer interface to broadcast an event when an Element is added
to the collection. However, the current implementation of the TextFrames collection does not
support this.

The service com.sun.star.text.BaseFrame defines the common properties and interfaces of text
frames, graphic objects and embedded objects. It includes the services
com.sun.star.text.BaseFrameProperties and com.sun.star.text.TextContent, and defines
the following interfaces.

The position and size of a BaseFrame is covered by com.sun.star.drawing.XShape. All Base-
Frame objects share a majority of the core implementation of drawing objects. Therefore, they have
a position and size on the DrawPage.

The name of a BaseFrame is set and read through com.sun.star.container.XNamed. The names
of the frame objects have to be unique for text frames, graphic objects and embedded objects,
respectively.

The com.sun.star.beans.XPropertySet has to be present, because any aspects of BaseFrames
are controlled through properties.

The interface com.sun.star.document.XEventsSupplier is not a part of the BaseFrame service,
but is available in text frames, graphic objects and embedded objects. This interface provides
access to the event macros that may be attached to the object in the GUI.

The properties of BaseFrames are those of the service com.sun.star.text.TextContent, as well
there is a number of frame properties defined in the service
com.sun.star.text.BaseFrameProperties:

Properties of com.sun.star.text.BaseFrameProperties
AnchorPageNo short — Contains the number of the page where the objects are anchored.

AnchorFrame com.sun.star.text.XTextFrame. Contains the text frame the current
frame is anchored to.

BackColor long — Contains the color of the background of the object.

BackGraphicURL string — Contains the URL for the background graphic.

BackGraphicFilter string — Contains the name of the file filter for the background graphic.

BackGraphicLocation Determines the position of the background graphic according to
com.sun.star.style.GraphicLocation.

LeftBorder struct com.sun.star.table.BorderLine. Contains the left border of
the object.

510 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.text.BaseFrameProperties

RightBorder struct com.sun.star.table.BorderLine. Contains the right border of
the object.

TopBorder struct com.sun.star.table.BorderLine. Contains the top border of
the object.

BottomBorder struct com.sun.star.table.BorderLine. Contains the bottom border
of the object.

BorderDistance long — Contains the distance from the border to the object.

LeftBorderDistance long — Contains the distance from the left border to the object.

RightBorderDistance long — Contains the distance from the right border to the object.

TopBorderDistance long — Contains the distance from the top border to the object.

BottomBorderDistance long — Contains the distance from the bottom border to the object.

BackTransparent boolean — If true, the property BackColor is ignored.

ContentProtected boolean — Determines if the content is protected.

LeftMargin long — Contains the left margin of the object.

RightMargin long — Contains the right margin of the object.

TopMargin long — Contains the top margin of the object.

BottomMargin long — Contains the bottom margin of the object.

Height long — Contains the height of the object (1/100 mm).

Width long — Contains the width of the object (1/100 mm).

RelativeHeight short — Contains the relative height of the object.

RelativeWidth short — Contains the relative width of the object.

IsSyncWidthToHeight boolean — Determines if the width follows the height.

IsSyncHeightToWidth boolean — Determines if the height follows the width.

HoriOrient short — Determines the horizontal orientation of the object according to
com.sun.star.text.HoriOrientation.

HoriOrientPosition long — Contains the horizontal position of the object (1/100 mm).

HoriOrientRelation short — Determines the environment of the object the orientation is
related according to com.sun.star.text.RelOrientation.

VertOrient short — Determines the vertical orientation of the object.

VertOrientPosition long — Contains the vertical position of the object (1/100 mm). Valid only
if TextEmbeddedObject::VertOrient is VertOrientation::NONE .

VertOrientRelation short — Determines the environment of the object the orientation is
related according to com.sun.star.text.RelOrientation.

HyperLinkURL string — Contains the URL of a hyperlink that is set at the object.

HyperLinkTarget string — Contains the name of the target for a hyperlink that is set at the
object.

HyperLinkName string — Contains the name of the hyperlink that is set at the object.

Opaque boolean — Determines if the object is opaque or transparent for text.

PageToggle boolean — Determines if the object is mirrored on even pages.

PositionProtected boolean — Determines if the position is protected.

Chapter 7 Text Documents 511

Properties of com.sun.star.text.BaseFrameProperties
Print boolean — Determines if the object is included in printing.

ShadowFormat struct com.sun.star.table.ShadowFormat. Contains the type of
the shadow of the object.

ServerMap boolean — Determines if the object gets an image map from a server.

Size struct com.sun.star.awt.Size. Contains the size of the object.

SizeProtected boolean — Determines if the size is protected.

Surround [deprecated]. Determines the type of the surrounding text.

SurroundAnchorOnly boolean — Determines if the text of the paragraph where the object is
anchored, wraps around the object.

Drawing Shapes
The second group of shape objects are the varied drawing shapes that can be inserted into text,
such as rectangles and ellipses. They are based on com.sun.star.text.Shape. The service
text.Shape includes com.sun.star.drawing.Shape, but adds a number of properties related to
shapes in text (cf. 7.3.10 Text Documents - Working with Text Documents - Shape Objects in Text -
Drawing Shapes below). In addition, drawing shapes support the interface
com.sun.star.text.XTextContent so that they can be inserted into an XText.

There are no specialized supplier interfaces for drawing shapes. All the drawing shapes on the
DrawPage object are supplied by the document model's
com.sun.star.drawing.XDrawPageSupplier and its single method:

com::sun::star::drawing::XDrawPage getDrawPage()

The DrawPage not only contains drawing shapes, but the BaseFrame shape objects too, if the document
contains any.

Text Frames
A text frame is a com.sun.star.text.TextFrame service consisting of
com.sun.star.text.BaseFrame and the interface com.sun.star.text.XTextFrame.The XText-
Frame is based on com.sun.star.text.XTextContent and introduces one method to provide the
XText of the frame:

com::sun::star::text::XText getText()

The properties of com.sun.star.text.TextFrame that add to the BaseFrame are the following:

Properties of com.sun.star.text.TextFrame
FrameHeightAbsolute long — Contains the metric height value of the frame.

FrameWidthAbsolute long — Contains the metric width value of the frame.

FrameWidthPercent byte — Specifies a width relative to the width of the surrounding text.

FrameHeightPercent byte — Specifies a width relative to the width of the surrounding text.

FrameIsAutomaticHeight boolean — If "AutomaticHeight" is set, the object grows if it is required
by the frame content.

SizeType short — Determines the interpretation of the height and relative height
properties.

512 OpenOffice.org 1.1 Developer's Guide • June 2003

Additionally, text frames are com.sun.star.text.Text services and support all of its interfaces,
except for com.sun.star.text.XTextRangeMover.

Text frames can be connected to a chain, that is, the text of the first text frame flows into the next
chain element if it does not fit. The properties ChainPrevName and ChainNextName are provided to
take advantage of this feature. They contain the names of the predecessor and successor of a
frame. All frames have to be empty to chain frames, except for the first member of the chain.

Chained Text Frame Property
ChainPrevName string — Name of the predecessor of the frame.

ChainNextName string — Name of the successor of the frame.

The effect at the API is that the visible text content of the chain members is only accessible at the
first frame in the chain. The content of the following chain members is not shown when chained
before their content is set.

The API reference does not know the properties above. Instead, it specifies a
com.sun.star.text.ChainedTextFrame with an XChainable interface, but this is not yet
supported by text frames.

The following example uses text frames: (Text/TextDocuments.java)
/** This method shows how to create and manipulate text frames
 */
protected void TextFrameExample ()
{

try
{

// Use the document's factory to create a new text frame and immediately access
// it's XTextFrame interface
XTextFrame xFrame = (XTextFrame) UnoRuntime.queryInterface (

XTextFrame.class, mxDocFactory.createInstance (
"com.sun.star.text.TextFrame"));

// Access the XShape interface of the TextFrame
XShape xShape = (XShape) UnoRuntime.queryInterface(XShape.class, xFrame);
// Access the XPropertySet interface of the TextFrame
XPropertySet xFrameProps = (XPropertySet)UnoRuntime.queryInterface(

XPropertySet.class, xFrame);

// Set the size of the new Text Frame using the XShape's 'setSize' method
Size aSize = new Size();
aSize.Height = 400;
aSize.Width = 15000;
xShape.setSize(aSize);
// Set the AnchorType to com.sun.star.text.TextContentAnchorType.AS_CHARACTER
xFrameProps.setPropertyValue("AnchorType", TextContentAnchorType.AS_CHARACTER);
// Go to the end of the text document
mxDocCursor.gotoEnd(false);
// Insert a new paragraph
mxDocText.insertControlCharacter (

mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
// Then insert the new frame
mxDocText.insertTextContent(mxDocCursor, xFrame, false);

// Access the XText interface of the text contained within the frame
XText xFrameText = xFrame.getText();
// Create a TextCursor over the frame's contents
XTextCursor xFrameCursor = xFrameText.createTextCursor();
// Insert some text into the frame
xFrameText.insertString(

xFrameCursor, "The first line in the newly created text frame.", false);
xFrameText.insertString(

xFrameCursor, "\nThe second line in the new text frame.", false);
// Insert a paragraph break into the document (not the frame)
mxDocText.insertControlCharacter (

mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 }
catch (Exception e)
{

e.printStackTrace (System.out);
}

}

Chapter 7 Text Documents 513

Embedded Objects
A TextEmbeddedObject is a com.sun.star.text.BaseFrame providing the interface
com.sun.star.document.XEmbeddedObjectSupplier. The only method of this interface,

com::sun::star::lang::XComponent getEmbeddedObject ()

provides access to the model of the embedded document. That way, an embedded OpenOffice.org
spreadsheet, drawing, chart or a formula document can be used in a text over its document model.

At this time, there is no support to create and insert embedded objects at the API.

Graphic Objects
A TextGraphicObject is a BaseFrame and does not provide any additional interfaces, compared
with com.sun.star.text.BaseFrame. However, it introduces a number of properties that allow
manipulating of a graphic object. They are described in the service
com.sun.star.text.TextGraphicObject:

Properties of com.sun.star.text.TextGraphicObject

ImageMap com.sun.star.container.XIndexContainer. Returns the client-
side image map if one is assigned to the object.

ContentProtected boolean — Determines if the content is protected against changes
from the user interface.

SurroundContour boolean — Determines if the text wraps around the contour of the
object.

ContourOutside boolean — The text flows only around the contour of the object.

ContourPolyPolygon
[optional] struct
com.sun.star.drawing.PointSequenceSequence. Contains the
contour of the object as PolyPolygon.

GraphicCrop struct com.sun.star.text.GraphicCrop. Contains the cropping of
the object.

HoriMirroredOnEvenPages boolean — Determines if the object is horizontally mirrored on even
pages.

HoriMirroredOnOddPages boolean — Determines if the object is horizontally mirrored on odd
pages.

VertMirrored boolean — Determines if the object is mirrored vertically.

GraphicURL string — Contains the URL of the background graphic of the object.

GraphicFilter string — Contains the name of the filter of the background graphic of
the object.

ActualSize com.sun.star.awt.Size. Contains the original size of the bitmap in
the graphic object.

AdjustLuminance short — Changes the display of the luminance. It contains percentage
values between -100 and +100.

AdjustContrast short — Changes the display of contrast. It contains percentage values
between -100 and +100.

AdjustRed short — Changes the display of the red color channel. It contains
percentage values between -100 and +100.

514 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.text.TextGraphicObject

AdjustGreen short — Changes the display of the green color channel. It contains
percentage values between -100 and +100.

AdjustBlue short — Changes the display of the blue color channel. It contains
percentage values between -100 and +100.

Gamma double — Determines the gamma value of the graphic.

GraphicIsInverted boolean — Determines if the graphic is displayed in inverted colors. It
contains percentage values between -100 and +100.

Transparency short — Measure of transparency. It contains percentage values
between -100 and +100.

GraphicColorMode long — Contains the ColorMode according to
com.sun.star.drawing.ColorMode.

TextGraphicObject files can currently only be linked when inserted through API which means only their
URL is stored with the document. Embedding of graphics is not supported. This applies to background
graphics which can be set, for example, to paragraphs, tables or text sections.

Drawing Shapes
The writer uses the same drawing engine as OpenOffice.org impress and OpenOffice.org draw.
The limitations are that in writer only one draw page can exist and 3D objects are not supported.
All drawing shapes support these properties:

Properties of com.sun.star.drawing.Shape
ZOrder [optional] long — Is used to query or change the ZOrder of this

Shape .

LayerID [optional] short — This is the ID of the layer to which this shape
is attached.

LayerName [optional] string — This is the name of the layer to which this
Shape is attached.

Printable [optional] boolean — If this is false, the shape is not visible on
printer outputs.

MoveProtect [optional] boolean — When set to true, this shape cannot be
moved interactively in the user interface.

Name [optional] string — This is the name of this shape.

SizeProtect [optional] boolean — When set to true, this shape may not be
sized interactively in the user interface.

Style [optional] com.sun.star.style.XStyle. Determines the style
for this shape.

Transformation [optional] com.sun.star.drawing.HomogenMatrix This
property lets you get and set the transformation matrix for this shape.
The transformation is a 3x3 blended matrix and can contain translation,
rotation, shearing and scaling.

ShapeUserDefinedAttributes [optional] com.sun.star.container.XNameContainer. This
property stores xml attributes. They are saved to and restored from
automatic styles inside xml files.

Chapter 7 Text Documents 515

In addition to the properties of the shapes natively supported by the drawing engine, the writer
shape adds some properties, so that they are usable for text documents. These are defined in the
service com.sun.star.text.Shape:

Properties of com.sun.star.text.Shape
AnchorPageNo short — Contains the number of the page where the objects are anchored.

AnchorFrame com.sun.star.text.XTextFrame. Contains the text frame the current
frame is anchored to.

SurroundAnchorOnly boolean — Determines if the text of the paragraph in which the object is
anchored, wraps around the object.

AnchorType [optional] com.sun.star.text.TextContentAnchorType. Speci-
fies how the text content is attached to its surrounding text.

HoriOrient short — Determines the horizontal orientation of the object.

HoriOrientPosition long — Contains the horizontal position of the object (1/100 mm).

HoriOrientRelation short — Determines the environment of the object to which the orientation
is related.

VertOrient short — Determines the vertical orientation of the object.

VertOrientPosition long — Contains the vertical position of the object (1/100 mm). Valid only if
TextEmbeddedObject::VertOrient is VertOrientation::NONE.

VertOrientRelation short — Determines the environment of the object to which the orientation
is related.

LeftMargin long — Contains the left margin of the object.

RightMargin long — Contains the right margin of the object.

TopMargin long — Contains the top margin of the object.

BottomMargin long — Contains the bottom margin of the object.

Surround [deprecated]. Determines the type of the surrounding text.

SurroundAnchorOnly boolean — Determines if the text of the paragraph in which the object is
anchored, wraps around the object.

SurroundContour boolean — Determines if the text wraps around the contour of the object.

ContourOutside boolean — The text flows only around the contour of the object.

Opaque boolean — Determines if the object is opaque or transparent for text.

TextRange com.sun.star.text.XTextRange. Contains a text range where the shape
should be anchored to.

The chapter 9 Drawing describes how to use shapes and the interface of the draw page.

A sample that creates and inserts drawing shapes: (Text/TextDocuments.java)
/** This method demonstrates how to create and manipulate shapes, and how to access the draw page
 of the document to insert shapes
 */
protected void DrawPageExample () {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);
 // Insert two new paragraphs
 mxDocText.insertControlCharacter(mxDocCursor,
 ControlCharacter.PARAGRAPH_BREAK, false);
 mxDocText.insertControlCharacter(mxDocCursor,
 ControlCharacter.PARAGRAPH_BREAK, false);

 // Get the XParagraphCursor interface of our document cursor
 XParagraphCursor xParaCursor = (XParagraphCursor)
 UnoRuntime.queryInterface(XParagraphCursor.class, mxDocCursor);

516 OpenOffice.org 1.1 Developer's Guide • June 2003

 // Position the cursor in the 2nd paragraph
 xParaCursor.gotoPreviousParagraph(false);

 // Create a RectangleShape using the document factory
 XShape xRect = (XShape) UnoRuntime.queryInterface(
 XShape.class, mxDocFactory.createInstance(
 "com.sun.star.drawing.RectangleShape"));

 // Create an EllipseShape using the document factory
 XShape xEllipse = (XShape) UnoRuntime.queryInterface(
 XShape.class, mxDocFactory.createInstance(
 "com.sun.star.drawing.EllipseShape"));

 // Set the size of both the ellipse and the rectangle
 Size aSize = new Size();
 aSize.Height = 4000;
 aSize.Width = 10000;
 xRect.setSize(aSize);
 aSize.Height = 3000;
 aSize.Width = 6000;
 xEllipse.setSize(aSize);

 // Set the position of the Rectangle to the right of the ellipse
 Point aPoint = new Point();
 aPoint.X = 6100;
 aPoint.Y = 0;
 xRect.setPosition (aPoint);

 // Get the XPropertySet interfaces of both shapes
 XPropertySet xRectProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xRect);
 XPropertySet xEllipseProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xEllipse);

 // And set the AnchorTypes of both shapes to 'AT_PARAGRAPH'
 xRectProps.setPropertyValue("AnchorType", TextContentAnchorType.AT_PARAGRAPH);
 xEllipseProps.setPropertyValue("AnchorType", TextContentAnchorType.AT_PARAGRAPH);

 // Access the XDrawPageSupplier interface of the document
 XDrawPageSupplier xDrawPageSupplier = (XDrawPageSupplier) UnoRuntime.queryInterface(
 XDrawPageSupplier.class, mxDoc);

 // Get the XShapes interface of the draw page
 XShapes xShapes = (XShapes) UnoRuntime.queryInterface(
 XShapes.class, xDrawPageSupplier.getDrawPage());

 // Add both shapes
 xShapes.add (xEllipse);
 xShapes.add (xRect);

 /*
 This doesn't work, I am assured that FME and AMA are fixing it.

 XShapes xGrouper = (XShapes) UnoRuntime.queryInterface(
 XShapes.class, mxDocFactory.createInstance(
 "com.sun.star.drawing.GroupShape"));

 XShape xGrouperShape = (XShape) UnoRuntime.queryInterface(XShape.class, xGrouper);
 xShapes.add (xGrouperShape);

 xGrouper.add (xRect);
 xGrouper.add (xEllipse);

 XShapeGrouper xShapeGrouper = (XShapeGrouper) UnoRuntime.queryInterface(
 XShapeGrouper.class, xShapes);
 xShapeGrouper.group (xGrouper);
 */

 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

7.3.11 Redline
Redlines are text portions created in the user interface by switching on Edit - Changes - Record.
Redlines in a document are accessed through the com.sun.star.document.XRedlinesSupplier
interface at the document model. A collection of redlines as com.sun.star.beans.XPropertySet
objects are received that can be accessed as com.sun.star.container.XIndexAccess or as

Chapter 7 Text Documents 517

com.sun.star.container.XEnumerationAccess. Their properties are described in
com.sun.star.text.RedlinePortion.

If a change is recorded, but not visible because the option Edit - Changes - Show has been
switched off, redline text is contained in the property RedlineText, which is a
com.sun.star.text.XText.

Calling XPropertySet.getPropertySetInfo() on a redline property set crashes the office.

7.3.12 Ruby
Ruby text is a character layout attribute used in Asian languages. Ruby text appears above or
below text in left to right writing, and left to right of text in top to bottom writing. For examples,
cf. www.w3.org/TR/1999/WD-ruby-19990322/.

Ruby text is created using the appropriate character properties from the service
com.sun.star.style.CharacterProperties wherever this service is supported. However, theA-
sian languages support must be switched on in Tools - Options - LanguageSettings - Languages.

There is no convenient supplier interface for ruby text at the model at this time. However, the
controller has an interface com.sun.star.text.XRubySelection that provides access to rubies
contained in the current selection.

To find ruby text in the model, enumerate all text portions in all paragraphs and check if the prop-
erty TextPortionType contains the string "Ruby" to find ruby text. When there is ruby text, access
the RubyText property of the text portion that contains ruby text as a string.

CharacterProperties for Ruby Text Description
com.sun.star.style.CharacterPropert
ies:RubyText Contains the text that is set as ruby.

com.sun.star.style.CharacterPropert
ies:RubyAdjust

Determines the adjustment of the ruby text as RubyAd-
just.

com.sun.star.style.CharacterPropert
ies:RubyCharStyleName

Contains the name of the character style that is applied to
RubyText.

com.sun.star.style.CharacterPropert
ies:RubyIsAbove

Determines if the ruby text is printed above / left or
below/right of the text

7.4 Overall Document Features

7.4.1 Styles
Styles distinguish sections in a document that are commonly formatted and separates this infor-
mation from the actual formatting. This way it is possible to unify the appearance of a document,
and adjust the formatting of a document by altering a style, instead of local format settings after
the document has been completed. Styles are packages of attributes that can be applied to text or
text contents in a single step.

The following style families are available in OpenOffice.org.

518 OpenOffice.org 1.1 Developer's Guide • June 2003

Style Families Description
CharacterStyles Character styles are used to format single characters or entire words and phrases.

Character styles can be nested.

ParagraphStyles Paragraph styles are used to format entire paragraphs. Apart from the normal
format settings for paragraphs, the paragraph style also defines the font to be used,
and the paragraph style for the following paragraph.

FrameStyles Frame styles are used to format graphic and text frames. These Styles are used to
quickly format graphics and frames automatically.

PageStyles Page styles are used to structure the page. If a "Next Style" is specified, the
OpenOffice.org automatically applies the specified page style when an automatic
page break occurs.

NumberingStyles Numbering styles are used to format paragraphs in numbered or bulleted text.

The text document model implements the interface
com.sun.star.style.XStyleFamiliesSupplier to access these styles. Its method getStyleFa-
milies() returns a collection of com.sun.star.style.StyleFamilies with a
com.sun.star.container.XNameAccess interface. The com.sun.star.container.XNameAccess
interface retrieves the style families by the names listed above. The StyleFamilies service
supports a com.sun.star.container.XIndexAccess.

From the StyleFamilies, retrieve one of the families listed above by name or index. A collection
of styles are received which is a com.sun.star.style.StyleFamily service, providing access to
the single styles through an com.sun.star.container.XNameContainer or an
com.sun.star.container.XIndexAccess.

Each style is a com.sun.star.style.Style and supports the interface
com.sun.star.style.XStyle that inherits from com.sun.star.container.XNamed. The XStyle
contains:

string getName()
void setName([in] string aName)
boolean isUserDefined()
boolean isInUse()
string getParentStyle()
void setParentStyle([in] string aParentStyle)

The office comes with a set of default styles. These styles use programmatic names on the API
level. The method setName() in XStyle always throws an exception if called at such styles. The
same applies to changing the property Category. At the user interface localized names are used.
The user interface names are provided through the property UserInterfaceName.

Note that page and numbering styles are not hierarchical and cannot have parent styles. The
method getParentStyle() always returns an empty string, and the method setParentStyle()
throws a com.sun.star.uno.RuntimeException when called at a default style.

The method isUserDefined() determines whether a style is defined by a user or is a built-in
style. A built-in style cannot be deleted. Additionally the built-in styles have two different names:
a true object name and an alias that is displayed at the user interface. This is not usually visible in
an English OpenOffice.org version, except for the default styles that are named "Standard" as
programmatic name and "Default" in the user interface.

The Style service defines the following properties which are shared by all styles:

Properties of com.sun.star.style.Style
IsPhysical [optional, readonly] boolean — Determines if a style is physically created.

FollowStyle [optional] boolean — Contains the name of the style that is applied to the next
paragraph.

Chapter 7 Text Documents 519

Properties of com.sun.star.style.Style
DisplayName [optional, readonly] string — Contains the name of the style as is

displayed in the user interface.

IsAutoUpdate [optional] string — Determines if a style is automatically updated when the
properties of an object that the style is applied to are changed.

To determine the user interface name, each style has a string property DisplayName that contains
the name that is used at the user interface. It is not allowed to use a DisplayName of a style as a
name of a user-defined style of the same style family.

The built-in styles are not created actually as long as they are not used in the document. The prop-
erty IsPhysical checks for this. It is necessary, for file export purposes, to detect styles which do
not need to be exported.

The StyleFamilies collection can load styles. For this purpose, the interface
com.sun.star.style.XStyleLoader is available at the StyleFamilies collection. It consists of
two methods:

void loadStylesFromURL([in] string URL,
 [in] sequence< com::sun::star::beans::PropertyValue > aOptions)
sequence< com::sun::star::beans::PropertyValue > getStyleLoaderOptions()

The method loadStylesFromURL() enables the document to import styles from other documents.
The expected sequence of PropertyValue structs can contain the following properties:

Properties for loadStylesFromURL() Description
LoadTextStyles Determines if character and paragraph styles are to be

imported. It is not possible to select character styles and para-
graph styles separately.

LoadLoadFrameStyles boolean — Import frame styles only.

LoadPageStyles boolean — Import page styles only.

LoadNumberingStyles boolean — Import numbering styles only.

OverwriteStyles boolean — Determines if internal styles are overwritten if
the source document contains styles having the same name.

The method getStyleLoaderOptions() returns a sequence of these PropertyValue structs, set to
their default values.

Character Styles
Character styles support all properties defined in the services
com.sun.star.style.CharacterProperties and
com.sun.star.style.CharacterPropertiesAsian.

They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.CharacterStyle".

The default style that is shown in the user interface and accessible through the API is not a style,
but a tool to remove applied character styles. Therefore, its properties cannot be changed.

Set the property CharStyleName at an object including the service
com.sun.star.style.CharacterProperties to set its character style.

520 OpenOffice.org 1.1 Developer's Guide • June 2003

Paragraph Styles
Paragraph styles support all properties defined in the services
com.sun.star.style.ParagraphProperties and
com.sun.star.style.ParagraphPropertiesAsian.

They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.ParagraphStyle".

Additionally, there is a service com.sun.star.style.ConditionalParagraphStyle which
creates conditional paragraph styles. Conditional styles are paragraph styles that have different
effects, depending on the context. There is currently no support of the condition properties at the
API.

Set the property ParaStyleName at an object, including the service
com.sun.star.style.ParagraphProperties to set its paragraph style.

Frame Styles
Frame styles support all properties defined in the services
com.sun.star.text.BaseFrameProperties.

The frame styles are applied to text frames, graphic objects and embedded objects.

They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.FrameStyle".

Set the property FrameStyleName at com.sun.star.text.BaseFrame objects to set their frame
style.

Page Styles
Page styles are controlled via properties. The page related properties are defined in the services
com.sun.star.style.PageStyle
They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.PageStyle".

As mentioned above, page styles are not hierarchical. The section 7.4.5 Text Documents - Overall
Document Features - Page Layout discusses page styles.

The PageStyle is set at the current text cursor position. Set the property PageStyleName to change
the page style, and use the property PageDescName to insert a new page, changing the page style.

Numbering Styles
Numbering styles support all properties defined in the services
com.sun.star.text.NumberingStyle.

They are created using the com.sun.star.lang.XMultiServiceFactory interface of the text
document model using the service name "com.sun.star.style.NumberingStyle".

The structure of the numbering rules is described in section 7.4.3 Text Documents - Overall Docu-
ment Features - Line Numbering and Outline Numbering.

Chapter 7 Text Documents 521

The name of the numbering style is set in the property NumberingStyleName of paragraphs (set
through the PropertySet of a TextCursor) or a paragraph style to apply the numbering to the
paragraphs.

The following example demonstrates the use of paragraph styles: (Text /TextDocuments.java)
/** This method demonstrates how to create, insert and apply styles
 */
protected void StylesExample() {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);

 // Insert two paragraph breaks
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // Create a new style from the document's factory
 XStyle xStyle = (XStyle) UnoRuntime.queryInterface(
 XStyle.class, mxDocFactory.createInstance("com.sun.star.style.ParagraphStyle"));

 // Access the XPropertySet interface of the new style
 XPropertySet xStyleProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xStyle);

 // Give the new style a light blue background
 xStyleProps.setPropertyValue ("ParaBackColor", new Integer(13421823));

 // Get the StyleFamiliesSupplier interface of the document
 XStyleFamiliesSupplier xSupplier = (XStyleFamiliesSupplier)UnoRuntime.queryInterface(
 XStyleFamiliesSupplier.class, mxDoc);

 // Use the StyleFamiliesSupplier interface to get the XNameAccess interface of the
 // actual style families
 XNameAccess xFamilies = (XNameAccess) UnoRuntime.queryInterface (
 XNameAccess.class, xSupplier.getStyleFamilies());

 // Access the 'ParagraphStyles' Family
 XNameContainer xFamily = (XNameContainer) UnoRuntime.queryInterface(
 XNameContainer.class, xFamilies.getByName("ParagraphStyles"));

 // Insert the newly created style into the ParagraphStyles family
 xFamily.insertByName ("All-Singing All-Dancing Style", xStyle);

 // Get the XParagraphCursor interface of the document cursor
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);

 // Select the first paragraph inserted
 xParaCursor.gotoPreviousParagraph(false);
 xParaCursor.gotoPreviousParagraph(true);

 // Access the property set of the cursor selection
 XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);

 // Set the style of the cursor selection to our newly created style
 xCursorProps.setPropertyValue("ParaStyleName", "All-Singing All-Dancing Style");

 // Go back to the end
 mxDocCursor.gotoEnd(false);

 // Select the last paragraph in the document
 xParaCursor.gotoNextParagraph(true);

 // And reset it's style to 'Standard' (the programmatic name for the default style)
 xCursorProps.setPropertyValue("ParaStyleName", "Standard");

 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

522 OpenOffice.org 1.1 Developer's Guide • June 2003

7.4.2 Settings

General Document Information
Text documents offer general information about the document through their
com.sun.star.document.XDocumentInfoSupplier interface. The DocumentInfo is a common
OpenOffice.org feature and is discussed in 6 Office Development.

The XDocumentInfoSupplier has one single method:
com::sun::star::document::XDocumentInfo getDocumentInfo()

which returns a com.sun.star.document.DocumentInfo service, offering the statistical informa-
tion about the document that is available through File - Properties in the GUI.

Document Properties
The model implements a com.sun.star.beans.XPropertySet that provides properties
concerning character formatting and general settings.

The properties for character attributes are CharFontName,CharFontStyleName, CharFontFamily,
CharFontCharSet, CharFontPitch and their Asian counterparts CharFontStyleNameAsian,
CharFontFamilyAsian, CharFontCharSetAsian, CharFontPitchAsian.

The following properties handle general settings:

Properties of com.sun.star.text.TextDocument
CharLocale com.sun.star.lang.Locale. Default locale of the document.

CharacterCount long — Number of characters.

ParagraphCount long — Number of paragraphs.

WordCount long — Number of words.

WordSeparator string — Contains all that characters that are treated as separators
between words to determine word count.

RedlineDisplayType short — Displays redlines as defined in
com.sun.star.document.RedlineDisplayType.

RecordChanges boolean — Determines if redlining is switched on.

ShowChanges boolean — Determines if redlines are displayed.

RedlineProtectionKey sequence < byte >. Contains the password key.

ForbiddenCharacters com.sun.star.i18n.ForbiddenCharacters. Contains characters
that are not allowed to be at the first or last character of a text line.

TwoDigitYear short — Determines the start of the range, for example, when entering a
two-digit year.

IndexAutoMarkFileURL string — The URL to the file that contains the search words and settings
of the automatic marking of index marks for alphabetical indexes.

AutomaticControlFocus boolean — If true, the first form object is selected when the document is
loaded.

ApplyFormDesignMode boolean — Determines if form (database) controls are in the design mode.

HideFieldTips boolean — If true, the automatic tips displayed for some types of text
fields are suppressed.

Chapter 7 Text Documents 523

Creating Default Settings
The com.sun.star.lang.XMultiServiceFactory implemented at the model provides the service
com.sun.star.text.Defaults. Use this service to find out default values to set paragraph and
character properties of the document to default.

Creating Document Settings
Another set of properties can be created by the service name com.sun.star.document.Settings
that contains a number of additional settings.

7.4.3 Line Numbering and Outline Numbering
OpenOffice.org provides automatic numbering for texts. For instance, paragraphs can be
numbered or listed with bullets in a hierarchical manner, chapter headings can be numbered and
lines can be counted and numbered.

Paragraph and Outline Numbering
com.sun.star.text.NumberingRulesThe key for paragraph numbering is the paragraph prop -
erty NumberingRules. This property is provided by paragraphs and numbering styles and is a
member of com.sun.star.style.ParagraphProperties.

A similar object controls outline numbering and is returned from the method:
com::sun::star::container::XIndexReplace getChapterNumberingRules()

at the com.sun.star.text.XChapterNumberingSupplier interface that is implemented at the
document model.

These objects provide an interface com.sun.star.container.XIndexReplace. Each element of
the container represents a numbering level. The writer document provides ten numbering levels.
The highest level is zero. Each level of the container consists of a sequence of
com.sun.star.beans.PropertyValue.

The two related objects differ in some of properties they provide.

Both of them provide the following properties:

Common Properties for Paragraph and Outline Numbering in
com.sun.star.text.NumberingLevel
Adjust short — Adjustment of the numbering symbol defined in

com.sun.star.text.HoriOrientation.

ParentNumbering short — Determines if higher numbering levels are included in the
numbering, for example, 2.3.1.2.

Prefix
Suffix

string — Contains strings that surround the numbering symbol, for
example, brackets.

CharStyleName string — Name of the character style that is applied to the number
symbol.

StartWith short — Determines the value the numbering starts with. The default is
one.

524 OpenOffice.org 1.1 Developer's Guide • June 2003

Common Properties for Paragraph and Outline Numbering in
com.sun.star.text.NumberingLevel
FirstLineOffset
LeftMargin

long — Influences the left indent and left margin of the numbering.

SymbolTextDistance [optional] long — Distance between the numbering symbol and the
text of the paragraph.

NumberingType short — Determines the type of the numbering defined in
com.sun.star.style.NumberingType.

Only paragraphs have the following properties in their NumberingRules property:

Paragraph NumberingRules Proper-
ties in
com.sun.star.text.NumberingLevel

Description

BulletChar string — Determines the bullet character if the numbering
type is set to NumberingType::CHAR_SPECIAL.

BulletFontName string — Determines the bullet font if the numbering type is
set to NumberingType::CHAR_SPECIAL.

GraphicURL string — Determines the type, size and orientation of a
graphic when the numbering type is set to
NumberingType::BITMAP.

GraphicBitmap Undocumented

GraphicSize Undocumented

VertOrient short — Vertical orientation of a graphic according to
com.sun.star.text.VertOrientation

Only the chapter numbering rules provide the following property:

Property of
com.sun.star.text.ChapterNumberin
gRule

Description

HeadingStyleName string — Contains the name of the paragraph style that marks
a paragraph as a chapter heading.

Note that the NumberingRules service is returned by value like most properties in the OpenOffice.org API,
therefore you must get the rules from the XPropertySet, change them and put the NumberingRules
object back into the property.

The following is an example for the NumberingRules service: (Text/TextDocuments.java)
/** This method demonstrates how to set numbering types and numbering levels using the

com.sun.star.text.NumberingRules service
 */
protected void NumberingExample() {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);
 // Get the RelativeTextContentInsert interface of the document
 XRelativeTextContentInsert xRelative = (XRelativeTextContentInsert)
 UnoRuntime.queryInterface(XRelativeTextContentInsert.class, mxDocText);

 // Use the document's factory to create the NumberingRules service, and get it's
 // XIndexAccess interface
 XIndexAccess xNum = (XIndexAccess) UnoRuntime.queryInterface(XIndexAccess.class,
 mxDocFactory.createInstance("com.sun.star.text.NumberingRules"));

 // Also get the NumberingRule's XIndexReplace interface
 XIndexReplace xReplace = (XIndexReplace) UnoRuntime.queryInterface(
 XIndexReplace.class, xNum);

Chapter 7 Text Documents 525

 // Create an array of XPropertySets, one for each of the three paragraphs we're about
 // to create
 XPropertySet xParas[] = new XPropertySet[3];
 for (int i = 0 ; i < 3 ; ++ i) {
 // Create a new paragraph
 XTextContent xNewPara = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, mxDocFactory.createInstance(
 "com.sun.star.text.Paragraph"));

 // Get the XPropertySet interface of the new paragraph and put it in our array
 xParas[i] = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xNewPara);

 // Insert the new paragraph into the document after the fish section. As it is
 // an insert
 // relative to the fish section, the first paragraph inserted will be below
 // the next two
 xRelative.insertTextContentAfter (xNewPara, mxFishSection);

 // Separate from the above, but also needs to be done three times

 // Get the PropertyValue sequence for this numbering level
 PropertyValue[] aProps = (PropertyValue []) xNum.getByIndex(i);

 // Iterate over the PropertyValue's for this numbering level, looking for the
 // 'NumberingType' property
 for (int j = 0 ; j < aProps.length ; ++j) {
 if (aProps[j].Name.equals ("NumberingType")) {
 // Once we find it, set it's value to a new type,
 // dependent on which
 // numbering level we're currently on
 switch (i) {
 case 0 : aProps[j].Value = new Short(NumberingType.ROMAN_UPPER);
 break;
 case 1 : aProps[j].Value = new Short(NumberingType.CHARS_UPPER_LETTER);
 break;
 case 2 : aProps[j].Value = new Short(NumberingType.ARABIC);
 break;
 }
 // Put the updated PropertyValue sequence back into the
 // NumberingRules service
 xReplace.replaceByIndex (i, aProps);
 break;
 }
 }
 }
 // Get the XParagraphCursor interface of our text cursro
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);
 // Go to the end of the document, then select the preceding paragraphs
 mxDocCursor.gotoEnd(false);
 xParaCursor.gotoPreviousParagraph false);
 xParaCursor.gotoPreviousParagraph true);
 xParaCursor.gotoPreviousParagraph true);

 // Get the XPropertySet of the cursor's currently selected text
 XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, mxDocCursor);

 // Set the updated Numbering rules to the cursor's property set
 xCursorProps.setPropertyValue ("NumberingRules", xNum);
 mxDocCursor.gotoEnd(false);

 // Set the first paragraph that was inserted to a numbering level of 2 (thus it will
 // have Arabic style numbering)
 xParas[0].setPropertyValue ("NumberingLevel", new Short ((short) 2));

 // Set the second paragraph that was inserted to a numbering level of 1 (thus it will
 // have 'Chars Upper Letter' style numbering)
 xParas[1].setPropertyValue ("NumberingLevel", new Short((short) 1));

 // Set the third paragraph that was inserted to a numbering level of 0 (thus it will
 // have 'Chars Upper Letter' style numbering)
 xParas[2].setPropertyValue("NumberingLevel", new Short((short) 0));
 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

526 OpenOffice.org 1.1 Developer's Guide • June 2003

Line Numbering
The text document model supports the interface
com.sun.star.text.XLineNumberingProperties. The provided object has the properties
described in the service com.sun.star.text.LineNumberingProperties. It is used in conjunc-
tion with the paragraph properties ParaLineNumberCount and ParaLineNumberStartValue.

Number Formats
The text document model provides access to the number formatter through aggregation, that is, it
provides the interface com.sun.star.util.XNumberFormatsSupplier seamlessly.

The number formatter is used to format numerical values. For details, refer to 6.2.5 Office Develop-
ment - Common Application Features - Number Formats.

In text, text fields with numeric content and table cells provide a property NumberFormat that
contains a long value that refers to a number format.

7.4.4 Text Sections
A text section is a range of complete paragraphs that can have its own format settings and source
location, separate from the surrounding text. Text sections can be nested in a hierarchical struc-
ture.

For example, a section is formatted to have text columns that different column settings in a text on
a paragraph by paragraph basis. The content of a section can be linked through file links or over a
DDE connection.

The text sections support the service com.sun.star.text.TextSection. To access the sections,
the text document model implements the interface com.sun.star.text.XTextSectionsSupplier
that provides an interface com.sun.star.container.XNameAccess . The returned objects support
the interface com.sun.star.container.XIndexAccess, as well.

Master documents implement the structure of sub documents using linked text sections.

An example demonstrating the creation, insertion and linking of text sections:
(Text/TextDocuments.java)
/** This method demonstrates how to create linked and unlinked sections
 */
protected void TextSectionExample() {
 try {
 // Go to the end of the document
 mxDocCursor.gotoEnd(false);
 // Insert two paragraph breaks
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, true);

 // Create a new TextSection from the document factory and access it's XNamed interface
 XNamed xChildNamed = (XNamed) UnoRuntime.queryInterface(
 XNamed.class, mxDocFactory.createInstance("com.sun.star.text.TextSection"));
 // Set the new sections name to 'Child_Section'
 xChildNamed.setName("Child_Section");

 // Access the Child_Section's XTextContent interface and insert it into the document
 XTextContent xChildSection = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xChildNamed);
 mxDocText.insertTextContent (mxDocCursor, xChildSection, false);

 // Access the XParagraphCursor interface of our text cursor
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);

Chapter 7 Text Documents 527

 // Go back one paragraph (into Child_Section)
 xParaCursor.gotoPreviousParagraph(false);

 // Insert a string into the Child_Section
 mxDocText.insertString(mxDocCursor, "This is a test", false);

 // Go to the end of the document
 mxDocCursor.gotoEnd(false);

 // Go back two paragraphs
 xParaCursor.gotoPreviousParagraph (false);
 xParaCursor.gotoPreviousParagraph (false);
 // Go to the end of the document, selecting the two paragraphs
 mxDocCursor.gotoEnd(true);

 // Create another text section and access it's XNamed interface
 XNamed xParentNamed = (XNamed) UnoRuntime.queryInterface(XNamed.class,
 mxDocFactory.createInstance("com.sun.star.text.TextSection"));

 // Set this text section's name to Parent_Section
 xParentNamed.setName ("Parent_Section");

 // Access the Parent_Section's XTextContent interface ...
 XTextContent xParentSection = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xParentNamed);
 // ...and insert it into the document
 mxDocText.insertTextContent(mxDocCursor, xParentSection, false);

 // Go to the end of the document
 mxDocCursor.gotoEnd (false);
 // Insert a new paragraph
 mxDocText.insertControlCharacter(
 mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 // And select the new pargraph
 xParaCursor.gotoPreviousParagraph(true);

 // Create a new Text Section and access it's XNamed interface
 XNamed xLinkNamed = (XNamed) UnoRuntime.queryInterface(
 XNamed.class, mxDocFactory.createInstance("com.sun.star.text.TextSection"));
 // Set the new text section's name to Linked_Section
 xLinkNamed.setName("Linked_Section");

 // Access the Linked_Section's XTextContent interface
 XTextContent xLinkedSection = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xLinkNamed);
 // And insert the Linked_Section into the document
 mxDocText.insertTextContent(mxDocCursor, xLinkedSection, false);

 // Access the Linked_Section's XPropertySet interface
 XPropertySet xLinkProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xLinkNamed);
 // Set the linked section to be linked to the Child_Section
 xLinkProps.setPropertyValue("LinkRegion", "Child_Section");

 // Access the XPropertySet interface of the Child_Section
 XPropertySet xChildProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xChildNamed);
 // Set the Child_Section's background colour to blue
 xChildProps.setPropertyValue("BackColor", new Integer(13421823));

 // Refresh the document, so the linked section matches the Child_Section
 XRefreshable xRefresh = (XRefreshable) UnoRuntime.queryInterface(
 XRefreshable.class, mxDoc);
 xRefresh.refresh();
 } catch (Exception e) {
 e.printStackTrace (System.out);
 }
}

7.4.5 Page Layout
A page layout in OpenOffice.org is always a page style. A page can not be hard formatted. To
change the current page layout, retrieve the current page style from the text cursor property
PageStyleName and get this page style from the StyleFamily PageStyles.

Changes of the page layout happen through the properties described in
com.sun.star.style.PageProperties. Refer to the API reference for details on all the possible
properties, including the header and footer texts which are part of these properties.

528 OpenOffice.org 1.1 Developer's Guide • June 2003

As headers or footers are connected to a page style, the text objects are provided as properties of
the style. Depending on the setting of the page layout, there is one header and footer text object
per style available or there are two, a left and right header, and footer text:.

com.sun.star.style.PagePro
perties containing Headers
and Footers

Description

HeaderText com.sun.star.text.Text
HeaderTextLeft com.sun.star.text.Text
HeaderTextRight com.sun.star.text.Text
FooterText com.sun.star.text.Text
FooterTextLeft com.sun.star.text.Text
FooterTextRight com.sun.star.text.Text

The page layout of a page style can be equal on left and right pages, mirrored, or separate for right
and left pages. This is controlled by the property PageStyleLayout that expects values from the
enum com.sun.star.style.PageStyleLayout. As long as left and right pages are equal, Header-
Text and HeaderRightText are identical. The same applies to the footers.

The text objects in headers and footers are only available if headers or footers are switched on,
using the properties HeaderIsOn and FooterIsOn.

Drawing objects cannot be inserted into headers or footers.

7.4.6 Columns
Text frames, text sections and page styles can be formatted to have columns. The width of columns
is relative since the absolute width of the object is unknown in the model. The layout formatting is
responsible for calculating the actual widths of the columns.

Columns are applied using the property TextColumns. It expects a
com.sun.star.text.TextColumns service that has to be created by the document factory. The
interface com.sun.star.text.XTextColumns refines the characteristics of the text columns before
applying the created TextColumns service to the property TextColumns.

Consider the following example to see how to work with text columns:
(Text/TextDocuments.java)
/** This method demonstrates the XTextColumns interface and how to insert a blank paragraph
 using the XRelativeTextContentInsert interface
 */
protected void TextColumnsExample() {
 try {
 // Go to the end of the doucment
 mxDocCursor.gotoEnd(false);
 // insert a new paragraph
 mxDocText.insertControlCharacter(mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // insert the string 'I am a fish.' 100 times
 for (int i = 0 ; i < 100 ; ++i) {
 mxDocText.insertString(mxDocCursor, "I am a fish.", false);
 }
 // insert a paragraph break after the text
 mxDocText.insertControlCharacter(mxDocCursor, ControlCharacter.PARAGRAPH_BREAK, false);

 // Get the XParagraphCursor interface of our text cursor
 XParagraphCursor xParaCursor = (XParagraphCursor) UnoRuntime.queryInterface(
 XParagraphCursor.class, mxDocCursor);
 // Jump back before all the text we just inserted
 xParaCursor.gotoPreviousParagraph(false);
 xParaCursor.gotoPreviousParagraph(false);

 // Insert a string at the beginning of the block of text
 mxDocText.insertString(mxDocCursor, "Fish section begins:", false);

Chapter 7 Text Documents 529

 // Then select all of the text
 xParaCursor.gotoNextParagraph(true);
 xParaCursor.gotoNextParagraph(true);

 // Create a new text section and get it's XNamed interface
 XNamed xSectionNamed = (XNamed) UnoRuntime.queryInterface(
 XNamed.class, mxDocFactory.createInstance("com.sun.star.text.TextSection"));

 // Set the name of our new section (appropiately) to 'Fish'
 xSectionNamed.setName("Fish");

 // Create the TextColumns service and get it's XTextColumns interface
 XTextColumns xColumns = (XTextColumns) UnoRuntime.queryInterface(
 XTextColumns.class, mxDocFactory.createInstance("com.sun.star.text.TextColumns"));

 // We want three columns
 xColumns.setColumnCount((short) 3);

 // Get the TextColumns, and make the middle one narrow with a larger margin
 // on the left than the right
 TextColumn[] aSequence = xColumns.getColumns ();
 aSequence[1].Width /= 2;
 aSequence[1].LeftMargin = 350;
 aSequence[1].RightMargin = 200;
 // Set the updated TextColumns back to the XTextColumns
 xColumns.setColumns(aSequence);

 // Get the property set interface of our 'Fish' section
 XPropertySet xSectionProps = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xSectionNamed);

 // Set the columns to the Text Section
 xSectionProps.setPropertyValue("TextColumns", xColumns);

 // Get the XTextContent interface of our 'Fish' section
 mxFishSection = (XTextContent) UnoRuntime.queryInterface(
 XTextContent.class, xSectionNamed);

 // Insert the 'Fish' section over the currently selected text
 mxDocText.insertTextContent(mxDocCursor, mxFishSection, true);

 // Get the wonderful XRelativeTextContentInsert interface
 XRelativeTextContentInsert xRelative = (XRelativeTextContentInsert)
 UnoRuntime.queryInterface(XRelativeTextContentInsert.class, mxDocText);

 // Create a new empty paragraph and get it's XTextContent interface
 XTextContent xNewPara = (XTextContent) UnoRuntime.queryInterface(XTextContent.class,
 mxDocFactory.createInstance("com.sun.star.text.Paragraph"));

 // Insert the empty paragraph after the fish Text Section
 xRelative.insertTextContentAfter(xNewPara, mxFishSection);
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
}

The text columns property consists of com.sun.star.text.TextColumn structs. The Width
elements of all structs in the TextColumns sequence make up a sum, that is provided by the
method getReferenceValue() of the XTextColumns interface. To determine the metric width of
an actual column, the reference value and the columns width element have to be calculated using
the metric width of the object (page, text frame, text section) and a rule of three, for example:
nColumn3Width = aColumns[3].Width / xTextColumns.getReferenceValue() * RealObjectWidth

The column margins (LeftMargin, and RightMargin elements of the struct) are inside of the
column. Their values do not influence the column width. They just limit the space available for the
column content.

The default column setting in OpenOffice.org creates columns with equal margins at inner
columns, and no left margin at the leftmost column and no right margin at the rightmost column.
Therefore, the relative width of the first and last column is smaller than those of the inner
columns. This causes a limitation of this property: Setting the text columns with equal column
content widths and equal margins is only possible when the width of the object (text frame, text
section) can be determined. Unfortunately this is impossible when the width of the object
depends on its environment itself.

530 OpenOffice.org 1.1 Developer's Guide • June 2003

7.4.7 Link targets
The interface com.sun.star.document.XLinkTargetSupplier of the document model provides
all elements of the document that can be used as link targets. These targets can be used for load
URLs and sets the selection to a certain position object inside of a document. An example of a URL
containing a link target is "file:///c:/documents/document1|bookmarkname".

This interface is used from the hyperlink dialog to detect the links available inside of a document.

The interface com.sun.star.container.XNameAccess returned by the method getLinks()
provides access to an array of target types. These types are:

• Tables

• Text frame

• Graphics

• OLEObjects

• Sections

• Headings

• Bookmarks.

The names of the elements depend on the installed language.

Each returned object supports the interfaces com.sun.star.beans.XPropertySet and interface
com.sun.star.container.XNameAccess. The property set provides the properties LinkDisplay-
Name (string) and LinkDisplayBitmap (com.sun.star.awt.XBitmap). Each of these objects
provides an array of targets of the relating type. Each target returned supports the interface
com.sun.star.beans.XPropertySet and the property LinkDisplayName (string).

The name of the objects is the bookmark to be added to the document URL, for example, "Table1|
table". The LinkDisplayName contains the name of the object, e.g. "Table1".

7.5 Text Document Controller
The text document model knows its controller and it can lock the controller to block user interac-
tion . The appropriate methods in the model's com.sun.star.frame.XModel interface are:

void lockControllers()
void unlockControllers()
boolean hasControllersLocked()
com::sun::star::frame::XController getCurrentController()
void setCurrentController([in] com::sun::star::frame::XController xController)

The controller returned by getCurrentController()shares the following interfaces with all other
document controllers in OpenOffice.org:

• com.sun.star.frame.XController
• com.sun.star.frame.XDispatchProvider
• com.sun.star.ui.XContextMenuInterceptor
Document controllers are explained in the 6 Office Development.

Chapter 7 Text Documents 531

7.5.1 TextView
The writer controller implementation supports the interface
com.sun.star.view.XSelectionSupplier that returns the object that is currently selected in the
user interface.

Its method getSelection() returns an any that may contain the following object depending on
the selection:

Selection Returned Object
Text com.sun.star.container.XIndexAccess containing one or more

com.sun.star.uno.XInterface pointing to a text range.

Selection of table cells com.sun.star.uno.XInterface pointing to a table cursor.

Text frame com.sun.star.uno.XInterface pointing to a text frame.

Graphic object com.sun.star.uno.XInterface pointing to a graphic object.

OLE object com.sun.star.uno.XInterface pointing to an OLE object.

Shape, Form control com.sun.star.uno.XInterface pointing to a
com.sun.star.drawing.ShapeCollection containing one or more
shapes.

• com.sun.star.view.XControlAccess
provides access to the controller of form controls.

• com.sun.star.text.XTextViewCursorSupplier
provides access to the cursor of the view.

• com.sun.star.text.XRubySelection
provides access to rubies contained in the selection. This interface is necessary for Asian
language support.

• com.sun.star.view.XViewSettingsSupplier
provides access to the settings of the view as described in the service
com.sun.star.text.ViewSettings.

Properties of com.sun.star.text.ViewSettings
ShowAnnotations boolean — If true, annotations (notes) are visible.

ShowBreaks boolean — If true, paragraph line breaks are visible.

ShowDrawings boolean — If true, shapes are visible.

ShowFieldCommands boolean — If true, text fields are shown with their commands, other-
wise the content is visible.

ShowFootnoteBackground boolean — If true, footnotes symbols are displayed with gray back-
ground.

ShowGraphics boolean — If true, graphic objects are visible.

ShowHiddenParagraphs boolean — If true, hidden paragraphs are displayed.

ShowHiddenText boolean — If true, hidden text is displayed.

ShowHoriRuler boolean — If true, the horizontal ruler is displayed.

ShowHoriScrollBar boolean — If true, the horizontal scroll bar is displayed.

ShowIndexMarkBackground boolean — If true , index marks are displayed with gray background.

ShowParaBreaks boolean — If true , paragraph breaks are visible.

532 OpenOffice.org 1.1 Developer's Guide • June 2003

ShowProtectedSpaces boolean — If true, protected spaces (hard spaces) are displayed with
gray background.

ShowSoftHyphens boolean — If true, soft hyphens are displayed with gray background.

ShowSpaces boolean — If true, spaces are displayed with dots.

ShowTableBoundaries boolean — If true, table boundaries are displayed.

ShowTables boolean — If true, tables are visible.

ShowTabstops boolean — If true, tab stops are visible.

ShowTextBoundaries boolean — If true, text boundaries are displayed.

ShowTextFieldBackground boolean — If true, text fields are displayed with gray background.

ShowVertRuler boolean — If true, the vertical ruler is displayed.

ShowVertScrollBar boolean — If true, the vertical scroll bar is displayed.

SmoothScrolling boolean — If true, smooth scrolling is active.

SolidMarkHandles boolean — If true, handles of drawing objects are visible.

ZoomType short — defines the zoom type for the document as defined in
com.sun.star.view.DocumentZoomType

ZoomValue short — defines the zoom value to use, the value is given as percentage.
Valid only if the property ZoomType is set to
com.sun.star.view.DocumentZoomType:BY_VALUE.

In StarOffice 6.0 and OpenOffice.org 1.0 you can only influence the zoom factor by setting the
ZoomType to BY_VALUE and adjusting ZoomValue explicitly. The other zoom types have no effect.

7.5.2 TextViewCursor
The text controller has a visible cursor that is used in the GUI. Get the
com.sun.star.text.TextViewCursor by calling getTextViewCursor() at the
com.sun.star.text.XTextViewCursorSupplier interface of the current text document
controller.

It supports the following cursor capabilities that depend on having the necessary information
about the current layout state, therefore it is not supported by the model cursor.

com.sun.star.text.XPageCursor
boolean jumpToFirstPage()
boolean jumpToLastPage()
boolean jumpToPage([in] long pageNo)
long getPage()
boolean jumpToNextPage()
boolean jumpToPreviousPage()
boolean jumpToEndOfPage()
boolean jumpToStartOfPage()

com.sun.star.view.XScreenCursor
boolean screenDown()
boolean screenUp()

com.sun.star.view.XLineCursor
boolean goDown([in] long lines, [in] boolean bExpand)
boolean goUp([in] long lines, [in] boolean bExpand)
boolean isAtStartOfLine()
boolean isAtEndOfLine()
void gotoEndOfLine([in] boolean bExpand)
void gotoStartOfLine([in] boolean bExpand)

Chapter 7 Text Documents 533

com.sun.star.view.XViewCursor
boolean goLeft([in] long characters, [in] boolean bExpand)
boolean goRight([in] long characters, [in] boolean bExpand)
boolean goDown([in] long characters, [in] boolean bExpand)
boolean goUp([in] long characters, [in] boolean bExpand)

Additionally the interface com.sun.star.beans.XPropertySet is supported.

Currently, the view cursor does not have the capabilities as the document cursor does. Therefore,
it is necessary to create a document cursor to have access to the full text cursor functionality. The
method createTextCursorByRange() is used:
XText xCrsrText = xViewCursor.getText();
// Create a TextCursor over the view cursor's contents
XTextCursor xDocumentCursor = xViewText.createTextCursorByRange(xViewCursor.getStart());
xDocumentCursor.gotoRange(xViewCursor.getEnd(), true);

534 OpenOffice.org 1.1 Developer's Guide • June 2003

8 Spreadsheet Documents

8.1 Overview
OpenOffice.org API knows three variants of tables: text tables (see [Chapter:TextTables]), database
tables (see [Chapter:DatabaseTables]) and spreadsheets. Each of the table concepts have their own
purpose. Text tables handle text contents, database tables offer database functionality and spread-
sheets operate on data cells that can be evaluated. Being specialized in such a way means that each
concept has its strength. Text tables offer full functionality for text formatting, where spreadsheets
support complex calculations. Alternately, spreadsheets support only basic formatting capabilities
and text tables perform elementary calculations.

The implementation of the various tables differ due to each of their specializations. Basic table
features are defined in the module com.sun.star.table. Regarding the compatibility of text and
spreadsheet tables, the corresponding features are also located in the module
com.sun.star.table. In addition, spreadsheet tables are fully based on the specifications given
and are extended by additional specifications from the module com.sun.star.sheet. Several
services of the spreadsheet application representing cells and cell ranges extend the common serv-
ices from the module com::sun::star::table. The following table shows the services for cells and cell
ranges.

Spreadsheet service Included com::sun::star::table service
com.sun.star.sheet.SheetCell com.sun.star.table.Cell
com.sun.star.sheet.Cells -

com.sun.star.sheet.SheetCellRange com.sun.star.table.CellRange
com.sun.star.sheet.SheetCellRanges -

com.sun.star.sheet.SheetCellCursor com.sun.star.table.CellCursor

The spreadsheet document model in the OpenOffice.org API has five major architectural areas
(see Illustration 79) The five areas are:

• Spreadsheets Container

• Service Manager (document internal)

• DrawPages

• Content Properties

• Objects for Styling

535

The core of the spreadsheet document model are the spreadsheets contained in the spreadsheets
container . When working with document data, almost everything happens in the spreadsheet
objects extracted from the spreadsheets container.

The service manager of the spreadsheet document model creates shape objects, text fields for page
headers and form controls that can be added to spreadsheets. Note, that the document service
manager is different from the main service manager used when connecting to the office. Each
document model has its own service manager, so that the services can be adapted to the document
they are required for. For instance, a text field is ordered and inserted into the page header text of
a sheet using com.sun.star.text.XText:insertTextContent()or the service manager is asked
for a shape object and inserts it into a sheet using add()at the drawpage.

536 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 78: Spreadsheet Document Component

Each sheet in a spreadsheet document can have a drawpage for drawing contents. A drawpage
can be visualized as a transparent layer above a sheet. The spreadsheet model is able to provide all
drawpages in a spreadsheet document at once.

Linked and named contents from all sheets are accessed through content properties at the docu-
ment model. There are no content suppliers as in text documents, because the actual content of a
spreadsheet document lies in its sheet objects. Rather, there are only certain properties for named
and linked contents in all sheets.

Finally, there are services that allow for document wide styling and structuring of the spreadsheet
document. Among them are style family suppliers for cells and pages, and a number formats
supplier.

Besides these five architectural areas, there are document and calculation aspects shown at the
bottom of the illustration. The document aspects of our model are: it is printable, storable, and
modifiable, it can be protected and audited, and it supplies general information about itself. On
the lower left of the illustration, the calculation aspects are listed. Although almost all spreadsheet
functionality can be found at the spreadsheet objects, a few common functions are bound to the
spreadsheet document model: goal seeking, consolidation and recalculation of all cells.

Finally, the document model has a controller that provides access to the graphical user interface of
the model and has knowledge about the current view status in the user interface (see the upper
left of the illustration).

The usage of the spreadsheet objects in the spreadsheets container is discussed in detail in the
section 8.3 Spreadsheet Documents - Working with Spreadsheets. Before discussing spreadsheet
objects, consider two examples and how they handle a spreadsheet document, that is, how to
create, open, save and print.

8.1.1 Example: Adding a New Spreadsheet
The following helper method opens a new spreadsheet document component. The method getRe-
moteServiceManager() retrieves a connection. Refer to chapter 2 First Steps for additional infor-
mation.
import com.sun.star.lang.XComponent;
import com.sun.star.frame.XComponentLoader;
import com.sun.star.beans.PropertyValue;

...

protected XComponent newSpreadsheetComponent() throws java.lang.Exception {
 String loadUrl = "private:factory/scalc";
 xRemoteServiceManager = this.getRemoteServiceManager(unoUrl);
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);
 PropertyValue[] loadProps = new PropertyValue[0];
 return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);
}

Our helper returns a com.sun.star.lang.XComponent interface for the recently loaded docu-
ment. Now the XComponent is passed to the following method insertSpreadsheet() to add a
new spreadsheet to our document. (Spreadsheet /SpreadsheetDocHelper.java)
import com.sun.star.sheet.XSpreadsheetDcoument;
import com.sun.star.sheet.XSpreadsheet;

...

/** Inserts a new empty spreadsheet with the specified name.
 @param xSheetComponent The XComponent interface of a loaded document object
 @param aName The name of the new sheet.
 @param nIndex The insertion index.
 @return The XSpreadsheet interface of the new sheet.

Chapter 8 Spreadsheet Documents 537

 */
public XSpreadsheet insertSpreadsheet(
 XComponent xSheetComponent, String aName, short nIndex) {
 XSpreadsheetDocument xDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface(
 XSpreadsheetDocument.class, xSheetComponent);

 // Collection of sheets
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.sheet.XSpreadsheet xSheet = null;

 try {
 xSheets.insertNewByName(aName, nIndex);
 xSheet = xSheets.getByName(aName);
 } catch (Exception ex) {
 }

 return xSheet;
}

8.1.2 Example: Editing Spreadsheet Cells
The method insertSpreadsheet() returns a com.sun.star.sheet.XSpreadsheet interface. This
interface is passed to the method below, which shows how to access and modify the content and
formatting of single cells. The interface com.sun.star.sheet.XSpreadsheet returned by insert-
Spreadsheet() is derived from com.sun.star.table.XCellRange. By working with it, cells can
be accessed immediately using getCellByPosition(): (Spreadsheet /GeneralTableSample.java)
void cellWork(XSpreadsheet xRange) {

 com.sun.star.beans.XPropertySet xPropSet = null;
 com.sun.star.table.XCell xCell = null;

 // Access and modify a VALUE CELL
 xCell = xRange.getCellByPosition(0, 0);
 // Set cell value.
 xCell.setValue(1234);

 // Get cell value.
 double nDblValue = xCell.getValue() * 2;
 xRange.getCellByPosition(0, 1).setValue(nDblValue);

 // Create a FORMULA CELL
 xCell = xRange.getCellByPosition(0, 2);
 // Set formula string.
 xCell.setFormula("=1/0");

 // Get error type.
 boolean bValid = (xCell.getError() == 0);
 // Get formula string.
 String aText = "The formula " + xCell.getFormula() + " is ";
 aText += bValid ? "valid." : "erroneous.";

 // Insert a TEXT CELL using the XText interface
 xCell = xRange.getCellByPosition(0, 3);
 com.sun.star.text.XText xCellText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(com.sun.star.text.XText.class, xCell);
 com.sun.star.text.XTextCursor xTextCursor = xCellText.createTextCursor();
 xCellText.insertString(xTextCursor, aText, false);
}

8.2 Handling Spreadsheet Document Files

8.2.1 Creating and Loading Spreadsheet Documents
If a document in OpenOffice.org API is required, begin by getting a
com.sun.star.frame.Desktop service from the service manager. The desktop handles all docu-
ment components in OpenOffice.org API. It is discussed thoroughly in the chapter 6 Office Devel-
opment. Office documents are often called components, because they support the

538 OpenOffice.org 1.1 Developer's Guide • June 2003

com.sun.star.lang.XComponent interface. An XComponent is a UNO object that can be disposed
of directly and broadcast an event to other UNO objects when the object is disposed.

The Desktop can load new and existing components from a URL. For this purpose it has a
com.sun.star.frame.XComponentLoader interface that has one single method to load and instan-
tiate components from a URL into a frame:

com::sun::star::lang::XComponent loadComponentFromURL([IN] string aURL,
 [IN] string aTargetFrameName,
 [IN] long nSearchFlags,
 [IN] sequence <com::sun::star::beans::PropertyValue[] aArgs >)

The interesting parameters in our context is the URL that describes the resource that is loaded and
the load arguments. For the target frame, pass a "_blank" and set the search flags to 0. In most
cases, existing frames are not reused.

The URL can be a file: URL, an http: URL, an ftp: URL or a private: URL. Locate the correct
URL format in the Load URL box in the function bar of OpenOffice.org API. For new spreadsheet
documents, a special URL scheme is used. The scheme is "private:", followed by "factory". The
resource is "scalc" for OpenOffice.org API spreadsheet documents. For a new spreadsheet docu-
ment, use "private:factory /scalc".
The load arguments are described in com.sun.star.document.MediaDescriptor. The properties
AsTemplate and Hidden are boolean values and used for programming. If AsTemplate is true, the
loader creates a new untitled document from the given URL. If it is false, template files are loaded
for editing. If Hidden is true, the document is loaded in the background. This is useful to generate
a document in the background without letting the user observe what is happening. For instance,
use it to generate a document and print it out without previewing. Refer to 6 Office Development for
other available options. This snippet loads a document in hidden mode:
 // the method getRemoteServiceManager is described in the chapter First Steps
 mxRemoteServiceManager = this.getRemoteServiceManager(unoUrl);

 // retrieve the Desktop object, we need its XComponentLoader
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);

 // query the XComponentLoader interface from the Desktop service
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // define load properties according to com.sun.star.document.MediaDescriptor

 /* or simply create an empty array of com.sun.star.beans.PropertyValue structs:
 PropertyValue[] loadProps = new PropertyValue[0]
 */

 // the boolean property Hidden tells the office to open a file in hidden mode
 PropertyValue[] loadProps = new PropertyValue[1];
 loadProps[0] = new PropertyValue();
 loadProps[0].Name = "Hidden";
 loadProps[0].Value = new Boolean(true);
 loadUrl = "file:///c:/MyCalcDocument.sxc"

 // load
 return xComponentLoader.loadComponentFromURL(loadUrl, "_blank", 0, loadProps);

8.2.2 Saving Spreadsheet Documents

Storing
Documents are storable through their interface com.sun.star.frame.XStorable. This interface is
discussed in detail in 6 Office Development. An XStorable implements these operations:

boolean hasLocation()
string getLocation()

Chapter 8 Spreadsheet Documents 539

boolean isReadonly()
void store()
void storeAsURL([in] string aURL, [in] sequence< com::sun::star::beans::PropertyValue > aArgs)
void storeToURL([in] string aURL, [in] sequence< com::sun::star::beans::PropertyValue > aArgs)

The method names are evident. The method storeAsUrl() is the exact representation of File –
Save As from the File menu, that is, it changes the current document location. In contrast, store-
ToUrl() stores a copy to a new location, but leaves the current document URL untouched.

Exporting
For exporting purposes, a filter name can be passed that triggers an export to other file formats.
The property needed for this purpose is the string argument FilterName that takes filter names
defined in the configuration file:

<OfficePath>\share\config\registry \instance\org \openoffice\Office\TypeDetection.xml

In TypeDetection.xml look for <Filter/> elements, their cfg:name attribute contains the needed
strings for FilterName. The proper filter name for StarWriter 5.x is "StarWriter 5.0", and the
export format "MS Word 97" is also popular. This is the element in TypeDetection.xml that
describes the MS Excel 97 filter:
<Filter cfg:name="MS Excel 97">
 <Installed cfg:type="boolean">true</Installed>
 <UIName cfg:type="string" cfg:localized="true">
 <cfg:value xml:lang="en-US">Microsoft Excel 97/2000/XP</cfg:value>
 </UIName>
 <Data cfg:type="string">5,calc_MS_Excel_97,com.sun.star.sheet.SpreadsheetDocument,,3,,0,,</Data>
 </Filter>

The following method stores a document using this filter:
/** Store a document, using the MS Excel 97/2000/XP Filter
 */
protected void storeDocComponent(XComponent xDoc, String storeUrl) throws java.lang.Exception {

 XStorable xStorable = (XStorable)UnoRuntime.queryInterface(XStorable.class, xDoc);
 PropertyValue[] storeProps = new PropertyValue[1];
 storeProps[0] = new PropertyValue();
 storeProps[0].Name = "FilterName";
 storeProps[0].Value = "MS Excel 97";
 xStorable.storeAsURL(storeUrl, storeProps);
}

If an empty array of PropertyValue structs is passed, the native .sxc format of OpenOffice.org
API is used.

Filter Options
Loading and saving OpenOffice.org API documents is described in 6.1.5 Office Development -
OpenOffice.org Application Environment - Handling Documents. This section lists all the filter names
for spreadsheet documents and describes the filter options for text file import.

The filter name and options are passed on loading or saving a document in a sequence of
com.sun.star.beans.PropertyValues. The property FilterName contains the name and the
property FilterOptions contains the filter options.

All filter names are case-sensitive. For compatibility reasons the filter names will not be changed. Therefore,
some of the filters seem to have “curious” names.

540 OpenOffice.org 1.1 Developer's Guide • June 2003

The list of filter names (the last two columns show the possible directions of the filters):

Filter name Description Import Export

StarOffice XML (Calc) Standard XML filter ● ●

calc_StarOffice_XML_Calc_Template XML filter for templates ● ●

StarCalc 5.0 The binary format of StarOffice Calc 5.x ● ●

StarCalc 5.0 Vorlage /Template StarOffice Calc 5.x templates ● ●

StarCalc 4.0 The binary format of StarCalc 4.x ● ●

StarCalc 4.0 Vorlage /Template StarCalc 4.x templates ● ●

StarCalc 3.0 The binary format of StarCalc 3.x ● ●

StarCalc 3.0 Vorlage /Template StarCalc 3.x templates ● ●

HTML (StarCalc) HTML filter ● ●

calc_HTML_WebQuery HTML filter for external data queries ●

MS Excel 97 Microsoft Excel 97/2000/XP ● ●

MS Excel 97 Vorlage /Template Microsoft Excel 97/2000/XP templates ● ●

MS Excel 95 Microsoft Excel 5.0/95 ● ●

MS Excel 5.0/95 Different name for the same filter ● ●

MS Excel 95 Vorlage /Template Microsoft Excel 5.0/95 templates ● ●

MS Excel 5.0/95 Vorlage /Template Different name for the same filter ● ●

MS Excel 4.0 Microsoft Excel 2.1/3.0 /4.0 ●

MS Excel 4.0 Vorlage /Template Microsoft Excel 2.1/3.0 /4.0 templates ●

Lotus Lotus 1-2-3 ●

Text - txt - csv (StarCalc) Comma separated values ● ●

Rich Text Format (StarCalc) ● ●

dBase ● ●

SYLK Symbolic Link ● ●

DIF Data Interchange Format ● ●

Filter Options for Lotus, dBase and DIF Filters
These filters accept a string containing the numerical index of the used character set for single-byte
characters, that is, 0 for the system character set.

Filter Options for the CSV Filter
This filter accepts an option string containing five tokens, separated by commas. The following
table shows an example string for a file with four columns of type date – number – number -
number. In the table the tokens are numbered from (1) to (5). Each token is explained below.

Chapter 8 Spreadsheet Documents 541

Example Filter Options
String

Field
Separator
(1)

Text
Delimiter
(2)

Character
Set
(3)

Number of
First Line
(4)

Cell Format Codes
for the four Columns
(5)
Colum
n

Code

File Format:
Four columns
date – num – num – num

, " System line no. 1 1
2
3
4

YY/MM/DD =
5
Standard = 1
Standard = 1
Standard = 1

Token 44 34 0 1 1/5 /2 /1 / 3 / 1 / 4 / 1

For the filter options above, set the PropertyValue FilterOptions in the load arguments to
"44,34,0,1,1 /5 /2 /1 /3 / 1 / 4 / 1". There are a number of possible settings for the five tokens.

1. Field separator(s) as ASCII values. Multiple values are separated by the slash sign (“/”), that is,
if the values are separated by semicolons and horizontal tabulators, the token would be 59/9.
To treat several consecutive separators as one, the four letters /MRG have to be appended to the
token. If the file contains fixed width fields, the three letters FIX are used.

2. The text delimiter as ASCII value, that is, 34 for double quotes and 39 for single quotes.

3. The character set used in the file as described above.

4. Number of the first line to convert. The first line in the file has the number 1.

5. Cell format of the columns. The content of this token depends on the value of the first token.

• If value separators are used, the form of this token is column/format[/column/format/...]
where column is the number of the column, with 1 being the leftmost column. The
format is explained below.

• If the first token is FIX it has the form start/format[/start/format/...], where start is the
number of the first character for this field, with 0 being the leftmost character in a line.
The format is explained below.

Format specifies which cell format should be used for a field during import:

Format Code Meaning
1 Standard

2 Text

3 MM/DD /YY

4 DD/MM /YY

5 YY/MM /DD

6 -

7 -

8 -

9 ignore field (do not import)

10 US-English

The type code 10 indicates that the content of a field is US-English. This is useful if a field
contains decimal numbers that are formatted according to the US system (using “.” as
decimal separator and “,” as thousands separator). Using 10 as a format specifier for this

542 OpenOffice.org 1.1 Developer's Guide • June 2003

field tells OpenOffice.org API to correctly interpret its numerical content, even if the
decimal and thousands separator in the current language are different.

8.2.3 Printing Spreadsheet Documents

Printer and Print Job Settings
Printing is a common office functionality. The chapter 6 Office Development provides in-depth
information about it. The spreadsheet document implements the
com.sun.star.view.XPrintable interface for printing. It consists of three methods:

sequence< com::sun::star::beans::PropertyValue > getPrinter()
void setPrinter([in] sequence< com::sun::star::beans::PropertyValue > aPrinter)
void print([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

The following code is used with a given document xDoc to print to the standard printer without
any settings:
 // query the XPrintable interface from your document
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);

 // create an empty printOptions array
 PropertyValue[] printOpts = new PropertyValue[0];

 // kick off printing
 xPrintable.print(printOpts);

There are two groups of properties involved in general printing. The first one is used with
setPrinter() and getPrinter(), and controls the printer, and the second is passed to print()
and controls the print job.

com.sun.star.view.PrinterDescriptor comprises the properties for the printer:

Properties of com.sun.star.view.PrinterDescriptor
Name string — Specifies the name of the printer queue to be used.

PaperOrientation com.sun.star.view.PaperOrientation Specifies the orientation of
the paper.

PaperFormat com.sun.star.view.PaperFormat Specifies a predefined paper size
or if the paper size is a user-defined size.

PaperSize com.sun.star.awt.Size Specifies the size of the paper in 100th mm.

IsBusy boolean — Indicates if the printer is busy.

CanSetPaperOrientation boolean — Indicates if the printer allows changes to PaperOrientation.

CanSetPaperFormat boolean — Indicates if the printer allows changes to PaperFormat.

CanSetPaperSize boolean — Indicates if the printer allows changes to PaperSize.

com.sun.star.view.PrintOptions contains the following possibilities for a print job:

Properties of com.sun.star.view.PrintOptions
CopyCount short — Specifies the number of copies to print.

FileName string — If set, specifies the name of the file to print to.

Collate boolean — Advises the printer to collate the pages of the copies. If true, a
whole document is printed prior to the next copy, otherwise the page
copies are completed together.

Chapter 8 Spreadsheet Documents 543

Sort boolean — Advises the printer to sort the pages of the copies.

Pages string — Specifies the pages to print with the same format as in the print
dialog of the GUI, for example, "1, 3, 4-7, 9-".

The following method uses PrinterDescriptor and PrintOptions to print to a special printer,
and preselect the pages to print.
protected void printDocComponent(XComponent xDoc) throws java.lang.Exception {

 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);
 PropertyValue[] printerDesc = new PropertyValue[1];
 printerDesc[0] = new PropertyValue();
 printerDesc[0].Name = "Name";
 printerDesc[0].Value = "5D PDF Creator";

 xPrintable.setPrinter(printerDesc);

 PropertyValue[] printOpts = new PropertyValue[1];
 printOpts[0] = new PropertyValue();
 printOpts[0].Name = "Pages";
 printOpts[0].Value = "3-5,7";

 xPrintable.print(printOpts);
}

Page Breaks and Scaling for Printout
Manual page breaks can be inserted and removed using the property IsStartOfNewPage of the
services com.sun.star.table.TableColumn and com.sun.star.table.TableRow. For details,
refer to the section about page breaks in the chapter 8 Spreadsheet Documents.

To reduce the page size of a sheet so that the sheet fits on a fixed number of printout pages, use
the properties PageScale and ScaleToPages of the current page style. Both of the properties are
short numbers. The PageScale property expects a percentage and ScaleToPages is the number
of pages the printout is to fit. The page style is available through the interface
com.sun.star.style.XStyleFamiliesSupplier of the document component, and is described in
the chapter 8.4.1 Spreadsheet Documents - Overall Document Features - Styles.

Print Areas
The Interface com.sun.star.sheet.XPrintAreas is available at spreadsheets. It provides access
to the addresses of all printable cell ranges, represented by a sequence of
com.sun.star.table.CellRangeAddress structs.

Methods of com.sun.star.sheet.XPrintAreas
getPrintAreas() Returns the print areas of the sheet.

setPrintAreas() Sets the print areas of the sheet.

getPrintTitleColumns() Returns true if the title columns are repeated on all subsequent print pages
to the right.

setPrintTitleColumns() Specifies if the title columns are repeated on all subsequent print pages to
the right.

getTitleColumns() Returns the range of columns that are marked as title columns.

setTitleColumns() Sets the range of columns marked as title columns.

getPrintTitleRows() Returns true if the title rows are repeated on all subsequent print pages to
the bottom.

544 OpenOffice.org 1.1 Developer's Guide • June 2003

Methods of com.sun.star.sheet.XPrintAreas
setPrintTitleRows() Specifies if the title rows are repeated on all subsequent print pages to the

bottom.

getTitleRows() Returns the range of rows that are marked as title rows.

setTitleRows() Sets the range of rows marked as title rows.

8.3 Working with Spreadsheet Documents

8.3.1 Document Structure

Spreadsheet Document
The whole spreadsheet document is represented by the service
com.sun.star.sheet.SpreadsheetDocument. It implements interfaces that provide access to the
container of spreadsheets and methods to modify the document wide contents, for instance, data
consolidation.

Chapter 8 Spreadsheet Documents 545

A spreadsheet document contains a collection of spreadsheets with at least one spreadsheet, repre-
sented by the service com.sun.star.sheet.Spreadsheets. The method getSheets() of the Inter-
face com.sun.star.sheet.XSpreadsheetDocument returns the interface
com.sun.star.sheet.XSpreadsheets for accessing the container of sheets.

546 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 79: Spreadsheet Document

When the spreadsheet container is retrieved from a document using its getSheets() method, it is
possible to access the sheets in three different ways:

by index
Using the interface com.sun.star.container.XIndexAccess allows access to spreadsheets by
their index.

with an enumeration
Using the service com.sun.star.sheet.SpreadsheetsEnumeration spreadsheets can be
accessed as an enumeration.

by name
The interface com.sun.star.sheet.XSpreadsheets is derived from
com.sun.star.container.XNameContainer and therefore contains all methods for accessing
the sheets with a name. It is possible to get a spreadsheet using
com.sun.star.container.XNameAccess) to replace it with another sheet (interface
com.sun.star.container.XNameReplace), and to insert and remove a spreadsheet (interface
com.sun.star.container.XNameContainer).

The following two helper methods demonstrate how spreadsheets are accessed by their indexes
and their names: (Spreadsheet /SpreadsheetDocHelper.java)

Chapter 8 Spreadsheet Documents 547

Illustration 80: Spreadsheets Container

/** Returns the spreadsheet with the specified index (0-based).
 @param xDocument The XSpreadsheetDocument interface of the document.
 @param nIndex The index of the sheet.
 @return The XSpreadsheet interface of the sheet. */
public com.sun.star.sheet.XSpreadsheet getSpreadsheet(
 com.sun.star.sheet.XSpreadsheetDocument xDocument, int nIndex) {

 // Collection of sheets
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.sheet.XSpreadsheet xSheet = null;

 try {
 com.sun.star.container.XIndexAccess xSheetsIA = (com.sun.star.container.XIndexAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class, xSheets);
 xSheet = (com.sun.star.sheet.XSpreadsheet) xSheetsIA.getByIndex(nIndex);
 } catch (Exception ex) {
 }

 return xSheet;
}

/** Returns the spreadsheet with the specified name.
 @param xDocument The XSpreadsheetDocument interface of the document.
 @param aName The name of the sheet.
 @return The XSpreadsheet interface of the sheet. */
public com.sun.star.sheet.XSpreadsheet getSpreadsheet(
 com.sun.star.sheet.XSpreadsheetDocument xDocument,
 String aName) {

 // Collection of sheets
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.sheet.XSpreadsheet xSheet = null;

 try {
 com.sun.star.container.XNameAccess xSheetsNA = (com.sun.star.container.XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, xSheets);
 xSheet = (com.sun.star.sheet.XSpreadsheet) xSheetsNA.getByName(aName);
 } catch (Exception ex) {
 }

 return xSheet;
}

The interface com.sun.star.sheet.XSpreadsheets contains additional methods that use the
name of spreadsheets to add new sheets, and to move and copy them:

 Methods of com.sun.star.sheet.XSpreadsheets
insertNewByName() Creates a new empty spreadsheet with the specified name and inserts

it at the specified position.

moveByName() Moves the spreadsheet with the specified name to a new position.

copyByName() Creates a copy of a spreadsheet, renames it and inserts it at a new
position.

The method below shows how a new spreadsheet is inserted into the spreadsheet collection of a
document with the specified name. (Spreadsheet /SpreadsheetDocHelper.java)
/** Inserts a new empty spreadsheet with the specified name.
 @param xDocument The XSpreadsheetDocument interface of the document.
 @param aName The name of the new sheet.
 @param nIndex The insertion index.
 @return The XSpreadsheet interface of the new sheet.
 */
public com.sun.star.sheet.XSpreadsheet insertSpreadsheet(
 com.sun.star.sheet.XSpreadsheetDocument xDocument,
 String aName, short nIndex) {
 // Collection of sheets
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.sheet.XSpreadsheet xSheet = null;

 try {
 xSheets.insertNewByName(aName, nIndex);
 xSheet = xSheets.getByName(aName);
 } catch (Exception ex) {
 }

 return xSheet;
}

548 OpenOffice.org 1.1 Developer's Guide • June 2003

Spreadsheet Services - Overview
The previous section introduced the organization of the spreadsheets in a document and how they
can be handled. This section discusses the spreadsheets themselves. The following illustration
provides an overview about the main API objects that can be used in a spreadsheet.

The main services in a spreadsheet are com.sun.star.sheet.Spreadsheet,
com.sun.star.sheet.SheetCellRange, the cell service com.sun.star.sheet.SheetCell, the
collection of cell ranges com.sun.star.sheet.SheetCellRanges and the services
com.sun.star.table.TableColumn and com.sun.star.table.TableRow. An overview of the
capabilities of these services is provided below.

Capabilities of Spreadsheet
The spreadsheet is a com.sun.star.sheet.Spreadsheet service that includes the service
com.sun.star.sheet.SheetCellRange, that is, a spreadsheet is a cell range with additional capa-
bilities concerning the entire sheet:

Chapter 8 Spreadsheet Documents 549

Illustration 81: Main Spreadsheet Services

• It can be named using com.sun.star.container.XNamed.

• It has interfaces for sheet analysis. Data pilot tables, sheet outlining, sheet auditing (detective)
and scenarios all are controlled from the spreadsheet object. The corresponding interfaces are
com.sun.star.sheet.XDataPilotTablesSupplier,
com.sun.star.sheet.XScenariosSupplier, com.sun.star.sheet.XSheetOutline and
com.sun.star.sheet.XSheetAuditing.

• Cells can be inserted, and entire cell ranges can be removed, moved or copied on the spread-
sheet level using com.sun.star.sheet.XCellRangeMovement.

• Drawing elements in a spreadsheet are part of the draw page available through
com.sun.star.drawing.XDrawPageSupplier.

• Certain sheet printing features are accessed at the spreadsheet. The
com.sun.star.sheet.XPrintAreas and com.sun.star.sheet.XSheetPageBreak are used to
get page breaks and control print areas.

• The spreadsheet maintains charts. The interface
com.sun.star.table.XTableChartsSupplier controls charts in the spreadsheet.

550 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 82: Spreadsheet

• All cell annotations can be retrieved on the spreadsheet level with
com.sun.star.sheet.XSheetAnnotationsSupplier.

• A spreadsheet can be permanently protected from changes through
com.sun.star.util.XProtectable.

Capabilities of SheetCellRange
The spreadsheet, as well as the cell ranges in a spreadsheet are
com.sun.star.sheet.SheetCellRange services. A SheetCellRange is a rectangular range of
calculation cells that includes the following services:

Chapter 8 Spreadsheet Documents 551

The interfaces supported by a SheetCellRange are depicted in the following illustration:

552 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 83: Services supported by SheetCellRange

A SheetCellRange has the following capabilities:

• Supplies cells and sub-ranges of cells, as well as rows and columns. It has the interfaces
com.sun.star.sheet.XSheetCellRange and com.sun.star.table.XColumnRowRange.

• Performs calculations with a SheetCellRange. The interface
com.sun.star.sheet.XSheetOperation is for aggregate operations,
com.sun.star.sheet.XMultipleOperation copies formulas adjusting their cell references,
com.sun.star.sheet.XSubTotalCalculatable applies and removes sub totals, and
com.sun.star.sheet.XArrayFormulaRange handles array formulas.

Chapter 8 Spreadsheet Documents 553

Illustration 84: SheetCellRange Interfaces

• Formats cells in a range. The settings affect all cells in the range. There are cell properties, char-
acter properties and paragraph properties for formatting purposes. Additionally, a SheetCell-
Range supports auto formats with com.sun.star.table.XAutoFormattable and the content
of the cells can be indented using com.sun.star.util.XIndent. The interfaces
com.sun.star.sheet.XCellFormatRangesSupplier and
com.sun.star.sheet.XUniqueCellFormatRangesSupplier obtain enumeration of cells that
differ in formatting.

• Works with the data in a cell range through a sequence of sequences of any that maps to the
two-dimensional cell array of the range. This array is available through
com.sun.star.sheet.XCellRangeData.

• Fills a cell range with data series automatically through its interface
com.sun.star.sheet.XCellSeries.

• Imports data from a database using com.sun.star.util.XImportable.

• Searches and replaces cell contents using com.sun.star.util.XSearchable.

• Perform queries for cell contents, such as formula cells, formula result types, or empty cells.
The interface com.sun.star.sheet.XCellRangesQuery of the included
com.sun.star.sheet.SheetRangesQuery service is responsible for this task.

• Merges cells into a single cell through com.sun.star.util.XMergeable.

• Sorts and filters the content of a SheetCellRange, using com.sun.star.util.XSortable,
com.sun.star.sheet.XSheetFilterable and com.sun.star.sheet.XSheetFilterableEx.

• Provides its unique range address in the spreadsheet document, that is, the start column and
row, end column and row, and the sheet where it is located. The
com.sun.star.sheet.XCellRangeAddressable:getRangeAddress() returns the corre-
sponding address description struct com.sun.star.table.CellRangeAddress.

• Charts can be based on a SheetCellRange, because it supports
com.sun.star.chart.XChartDataArray.

554 OpenOffice.org 1.1 Developer's Guide • June 2003

Capabilities of SheetCell
A com.sun.star.sheet.SheetCell is the base unit of OpenOffice.org Calc tables. Values,
formulas and text required for calculation jobs are all written into sheet cells. The SheetCell
includes the following services:

Chapter 8 Spreadsheet Documents 555

Illustration 85: SheetCell

The SheetCell exports the following interfaces:

The SheetCell service has the following capabilities:

• It can access the cell content. It can contain numeric values that are used for calculations,
formulas that operate on these values, and text supporting full-featured formatting and hyper-
link text fields. The access to the cell values and formulas is provided through the SheetCell
parent service com.sun.star.table.Cell. The interface com.sun.star.table.XCell is
capable of manipulating the values and formulas in a cell. For text, the service
com.sun.star.text.Text with the main interface com.sun.star.text.XText is available at a
SheetCell. Its text fields are accessed through com.sun.star.text.XTextFieldsSupplier.

• A SheetCell is a special case of a SheetCellRange. As such, it has all capabilities of the
com.sun.star.sheet.SheetCellRange described above.

• It can have an annotation: com.sun.star.sheet.XSheetAnnotationAnchor.

• It can provide its unique cell address in the spreadsheet document, that is, its column, row and
the sheet it is located in. The com.sun.star.sheet.XCellAddressable:getCellAddress()
returns the appropriate com.sun.star.table.CellAddress struct.

• It can be locked temporarily against user interaction with
com.sun.star.document.XActionLockable.

Capabilities of SheetCellRanges Container
The container of com.sun.star.sheet.SheetCellRanges is used where several cell ranges have
to be handled at once for cell query results and other situations. The SheetCellRanges service
includes cell, paragraph and character property services, and it offers a query option:

556 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 86: SheetCell Interfaces

The interfaces of com.sun.star.sheet.SheetCellRanges are element accesses for the ranges in
the SheetCellRanges container. These interfaces are discussed below.

Chapter 8 Spreadsheet Documents 557

Illustration 87: Services of SheetCellRanges

The SheetCellRanges container has the following capabilities:

• It can be formatted using the character, paragraph and cell property services it includes.

• It yields independent cell ranges through the element access interfaces
com.sun.star.container.XIndexAccess, com.sun.star.container.XNameAccess and
com.sun.star.container.XEnumerationAccess.

• It can access, replace, append and remove ranges by name through
com.sun.star.container.XNameContainer

• It can add new ranges to SheetCellRanges by their address descriptions, access the ranges by
index, and obtain the cells in the ranges. This is possible through the interface
com.sun.star.sheet.XSheetCellRangeContainer that was originally based on
com.sun.star.container.XIndexAccess. The SheetCellRanges maintain a sub-container of
all cells in the ranges that are not empty, obtainable through the getCells() method.

• It can enumerate the ranges using com.sun.star.container.XEnumerationAccess.

• It can query the ranges for certain cell contents, such as formula cells, formula result types or
empty cells. The interface com.sun.star.sheet.XCellRangesQuery of the included
com.sun.star.sheet.SheetRangesQuery service is responsible for this task.

558 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 88: Implemented interfaces of SheetCellRanges

• The SheetCellRanges supports selected SheetCellRange features, such as searching and
replacing, indenting, sheet operations and charting.

Capabilities of Columns and Rows
All cell ranges are organized in columns and rows, therefore column and row containers are
retrieved from a spreadsheet, as well as from sub-ranges of a spreadsheet through
com.sun.star.table.XColumnRowRange. These containers are
com.sun.star.table.TableColumns and com.sun.star.table.TableRows. Both containers
support index and enumeration access. Only the TableColumns supports name access to the single
columns and rows (com.sun.star.table.TableColumn and com.sun.star.table.TableRow) of
a SheetCellRange.

The following UML charts show table columns and rows. The first chart shows columns:

Chapter 8 Spreadsheet Documents 559

Illustration 89: Collection of table columns

The collection of table rows differs from the collection of columns, that is, it does not support
com.sun.star.container.XNameAccess:

The services for table rows and columns control the table structure and grid size of a cell range:

• The containers for columns and rows have methods to insert and remove columns, and rows
by index in their main interfaces com.sun.star.table.XTableRows and
com.sun.star.table.XTableColumns.

• The services TableColumn and TableRow have properties to adjust their column width and row
height, toggle their visibility, and set page breaks.

Spreadsheet
A spreadsheet is a cell range with additional interfaces and is represented by the service
com.sun.star.sheet.Spreadsheet.

Properties of Spreadsheet
The properties of a spreadsheet deal with its visibility and its page style:

Properties of com.sun.star.sheet.Spreadsheet
IsVisible boolean — Determines if the sheet is visible in the GUI.

560 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 90: Collection of table rows

Properties of com.sun.star.sheet.Spreadsheet
PageStyle Contains the name of the page style of this spreadsheet. See 8.4.1 Spread-

sheet Documents - Overall Document Features - Styles for details about
styles.

Naming
The spreadsheet interface com.sun.star.container.XNamed obtains and changes the name of the
spreadsheet, and uses it to get a spreadsheet from the spreadsheet collection. Refer to 8.3.1 Spread-
sheet Documents - Working with Spreadsheets - Document Structure - Spreadsheet Document.

Inserting Cells, Moving and Copying Cell Ranges
The interface com.sun.star.sheet.XCellRangeMovement of the Spreadsheet service supports
inserting and removing cells from a spreadsheet, and copying and moving cell contents. When cells
are copied or moved, the relative references of all formulas are updated automatically. The sheet
index included in the source range addresses should be equal to the index of the sheet of this inter-
face.

 Methods of com.sun.star.sheet.XCellRangeMovement
insertCells]() Inserts a range of empty cells at a specific position. The direction of

the insertion is determined by the parameter nMode (type
com.sun.star.sheet.CellInsertMode).

removeRange() Deletes a range of cells from the spreadsheet. The parameter nMode
(type com.sun.star.sheet.CellDeleteMode) determines how
remaining cells will be moved.

copyRange() Copies the contents of a cell range to another place in the document.

IDLS:com.sun.star.sheet.XCel
lRangeMovement:moveRange]()

Moves the contents of a cell range to another place in the document.
Deletes all contents of the source range.

The following example copies a cell range to another location in the sheet.
(Spreadsheet /SpreadsheetSample.java)
/** Copies a cell range to another place in the sheet.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aDestCell The address of the first cell of the destination range.
 @param aSourceRange The source range address.
 */
public void doMovementExample(com.sun.star.sheet.XSpreadsheet xSheet,
 com.sun.star.table.CellAddress aDestCell, com.sun.star.table.CellRangeAddress aSourceRange)
 throws RuntimeException, Exception {
 com.sun.star.sheet.XCellRangeMovement xMovement = (com.sun.star.sheet.XCellRangeMovement)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeMovement.class, xSheet);
 xMovement.copyRange(aDestCell, aSourceRange);
}

Page Breaks
The methods getColumnPageBreaks() and getRowPageBreaks() of the interface
com.sun.star.sheet.XSheetPageBreak return the positions of column and row page breaks,
represented by a sequence of com.sun.star.sheet.TablePageBreakData structs. Each struct
contains the position of the page break and a boolean property that determines if the page break
was inserted manually. Inserting and removing a manual page break uses the property
IsStartOfNewPage of the services com.sun.star.table.TableColumn and
com.sun.star.table.TableRow.

Chapter 8 Spreadsheet Documents 561

The following example prints the positions of all the automatic column page breaks:
(Spreadsheet /SpreadsheetSample.java)
 // --- Print automatic column page breaks ---
 com.sun.star.sheet.XSheetPageBreak xPageBreak = (com.sun.star.sheet.XSheetPageBreak)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetPageBreak.class, xSheet);
 com.sun.star.sheet.TablePageBreakData[] aPageBreakArray = xPageBreak.getColumnPageBreaks();

 System.out.print("Automatic column page breaks:");
 for (int nIndex = 0; nIndex < aPageBreakArray.length; ++nIndex)
 if (!aPageBreakArray[nIndex].ManualBreak)
 System.out.print(" " + aPageBreakArray[nIndex].Position);
 System.out.println();

Cell Ranges
A cell range is a rectangular range of cells. It is represented by the service
com.sun.star.sheet.SheetCellRange.

Properties of Cell Ranges
The cell range properties deal with the position and size of a range, conditional formats, and cell
validation during user input.

Properties of com.sun.star.sheet.SheetCellRange
Position
Size

The position and size of the cell in 100th of a millimeter. The posi-
tion is relative to the first cell of the spreadsheet. Note, that this is
not always the first visible cell.

ConditionalFormat
ConditionalFormatLocal

Used to access conditional formats. See 8.3.2 Spreadsheet Docu-
ments - Working with Spreadsheets - Formatting - Conditional Formats
for details.

Validation
ValidationLocal

Used to access data validation. See 8.3.11 Spreadsheet Documents -
Working with Spreadsheets - Other Table Operations - Data Validation
for details.

This service extends the service com.sun.star.table.CellRange to provide common table cell
range functionality.

Cell and Cell Range Access
The interface com.sun.star.sheet.XSheetCellRange is derived from
com.sun.star.table.XCellRange. It provides access to cells of the range and sub ranges, and is
supported by the spreadsheet and sub-ranges of a spreadsheet. The methods in
com.sun.star.sheet.XSheetCellRange are:

com::sun::star::table::XCell getCellByPosition([in] long nColumn, [in] long nRow)
com::sun::star::table::XCellRange getCellRangeByPosition([in] long nLeft, [in] long nTop,
 [in] long nRight, [in] long nBottom)
com::sun::star::table::XCellRange getCellRangeByName ([in] string aRange)
com::sun::star::sheet::XSpreadsheet getSpreadsheet()

The interface com.sun.star.table.XCellRange provides methods to access cell ranges and
single cells from a cell range.

Cells are retrieved by their position. Cell addresses consist of a row index and a column index. The
index is zero-based, that is, the index 0 means the first row or column of the table.

Cell ranges are retrieved:

562 OpenOffice.org 1.1 Developer's Guide • June 2003

by position
Addresses of cell ranges consist of indexes to the first and last row, and the first and last
column. Range indexes are always zero-based, that is, the index 0 points to the first row or
column of the table.

by name
It is possible to address a cell range over its name in A1:B2 notation as it would appear in the
application.

In a spreadsheet, “A1:B2”, “C1:D2”, or “E5” are valid ranges. Even user defined cell names, range
names, or database range names can be used.

Additionally, XCellRange contains the method getSpreadsheet() that returns the
com.sun.star.sheet.XSpreadsheet interface of the spreadsheet which contains the cell range.
 // --- First cell in a cell range. ---
 com.sun.star.table.XCell xCell = xCellRange.getCellByPosition(0, 0);

 // --- Spreadsheet that contains the cell range. ---
 com.sun.star.sheet.XSpreadsheet xSheet = xCellRange.getSpreadsheet();

There are no methods to modify the contents of all cells of a cell range. Access to cell range format-
ting is supported. Refer to the chapter 8.3.2 Spreadsheet Documents - Working with Spreadsheets -
Formatting for additional details.

In the following example, xRange is an existing cell range (a com.sun.star.table.XCellRange
interface): (Spreadsheet /GeneralTableSample.java)
 com.sun.star.beans.XPropertySet xPropSet = null;
 com.sun.star.table.XCellRange xCellRange = null;

 // *** Accessing a CELL RANGE ***

 // Accessing a cell range over its position.
 xCellRange = xRange.getCellRangeByPosition(2, 0, 3, 1);

 // Change properties of the range.
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);
 xPropSet.setPropertyValue("CellBackColor", new Integer(0x8080FF));

 // Accessing a cell range over its name.
 xCellRange = xRange.getCellRangeByName("C4:D5");

 // Change properties of the range.
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);
 xPropSet.setPropertyValue("CellBackColor", new Integer(0xFFFF80));

Merging Cell Ranges into a Single Cell
The cell range interface com.sun.star.util.XMergeable merges and undoes merged cell ranges.

• The method merge() merges or undoes merged the whole cell range.

• The method getIsMerged() determines if the cell range is completely merged.

(Spreadsheet /SpreadsheetSample.java)
 // --- Merge cells. ---
 com.sun.star.util.XMergeable xMerge = (com.sun.star.util.XMergeable)
 UnoRuntime.queryInterface(com.sun.star.util.XMergeable.class, xCellRange);
 xMerge.merge(true);

Column and Row Access
The cell range interface com.sun.star.table.XColumnRowRange accesses the column and row
ranges in the current cell range. A column or row range contains all the cells in the selected
column or row. This type of range has additional properties, such as, visibility, and width or

Chapter 8 Spreadsheet Documents 563

height. For more information, see 8.3.1 Spreadsheet Documents - Working with Spreadsheets - Docu-
ment Structure - Columns and Rows.

• The method getColumns() returns the interface com.sun.star.table.XTableColumns of the
collection of columns.

• The method getRows() returns the interface com.sun.star.table.XTableRows of the collec-
tion of rows.

(Spreadsheet /SpreadsheetSample.java)
 // --- Column properties. ---
 com.sun.star.table.XColumnRowRange xColRowRange = (com.sun.star.table.XColumnRowRange)
 UnoRuntime.queryInterface(com.sun.star.table.XColumnRowRange.class, xCellRange);
 com.sun.star.table.XTableColumns xColumns = xColRowRange.getColumns();

 Object aColumnObj = xColumns.getByIndex(0);
 xPropSet = (com.sun.star.beans.XPropertySet) UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, aColumnObj);
 xPropSet.setPropertyValue("Width", new Integer(6000));

 com.sun.star.container.XNamed xNamed = (com.sun.star.container.XNamed)
 UnoRuntime.queryInterface(com.sun.star.container.XNamed.class, aColumnObj);
 System.out.println("The name of the wide column is " + xNamed.getName() + ".");

Data Array
The contents of a cell range that are stored in a 2-dimensional array of objects are set and obtained
by the interface com.sun.star.sheet.XCellRangeData.

• The method getDataArray() returns a 2-dimensional array with the contents of all cells of the
range.

• The method setDataArray() fills the data of the passed array into the cells. An empty cell is
created by an empty string. The size of the array has to fit in the size of the cell range.

The following example uses the cell range xCellRange that has the size of 2 columns and 3 rows.
(Spreadsheet /SpreadsheetSample.java)
 // --- Cell range data ---
 com.sun.star.sheet.XCellRangeData xData = (com.sun.star.sheet.XCellRangeData)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeData.class, xCellRange);

 Object[][] aValues =
 {
 {new Double(1.1), new Integer(10)},
 {new Double(2.2), new String("")},
 {new Double(3.3), new String("Text")}
 };

 xData.setDataArray(aValues);

Absolute Address
The method getCellRangeAddress() of the interface
com.sun.star.sheet.XCellRangeAddressable returns a
com.sun.star.table.CellRangeAddress struct that contains the absolute address of the cell in
the spreadsheet document, including the sheet index. This is useful to get the address of cell
ranges returned by other methods. (Spreadsheet /SpreadsheetSample.java)
 // --- Get cell range address. ---
 com.sun.star.sheet.XCellRangeAddressable xRangeAddr = (com.sun.star.sheet.XCellRangeAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeAddressable.class, xCellRange);
 aRangeAddress = xRangeAddr.getRangeAddress();
 System.out.println("Address of this range: Sheet=" + aRangeAddress.Sheet);
 System.out.println(
 "Start column=" + aRangeAddress.StartColumn + "; Start row=" + aRangeAddress.StartRow);
 System.out.println(
 "End column =" + aRangeAddress.EndColumn + "; End row =" + aRangeAddress.EndRow);

564 OpenOffice.org 1.1 Developer's Guide • June 2003

Fill Series
The interface com.sun.star.sheet.XCellSeries fills out each cell of a cell range with values
based on a start value, step count and fill mode. It is possible to fill a series in each direction, speci-
fied by a com.sun.star.sheet.FillDirection constant. If the fill direction is horizontal, each
row of the cell range forms a separate series. Similarly each column forms a series on a vertical fill.

• The method fillSeries() uses the first cell of each series as start value. For example, if the fill
direction is “To top”, the bottom- most cell of each column is used as the start value. It expects a
fill mode to be used to continue the start value, a com.sun.star.sheet.FillMode constant. If
the values are dates, com.sun.star.sheet.FillDateMode constants describes the mode how
the dates are calculated. If the series reaches the specified end value, the calculation is stopped.

• The method fillAuto() determines the fill mode and step count automatically. It takes a
parameter containing the number of cells to be examined. For example, if the fill direction is
“To top” and the specified number of cells is three, the three bottom- most cells of each column
are used to continue the series.

The following example may operate on the following spreadsheet:

A B C D E F G
1 1
2 4
3 01/30/2002
4 Text 10
5 Jan 10
6
7 1 2
8 05/28/2002 02/28/2002
9 6 4

Chapter 8 Spreadsheet Documents 565

Inserting filled series in Java: (Spreadsheet /SpreadsheetSample.java)
public void doSeriesSample(com.sun.star.sheet.XSpreadsheet xSheet) {
 com.sun.star.sheet.XCellSeries xSeries = null;

 // Fill 2 rows linear with end value -> 2nd series is not filled completely
 xSeries = getCellSeries(xSheet, "A1:E2");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_RIGHT, com.sun.star.sheet.FillMode.LINEAR,
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 2, 9);

 // Add months to a date
 xSeries = getCellSeries(xSheet, "A3:E3");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_RIGHT, com.sun.star.sheet.FillMode.DATE,
 com.sun.star.sheet.FillDateMode.FILL_DATE_MONTH, 1, 0x7FFFFFFF);

 // Fill right to left with a text containing a value
 xSeries = getCellSeries(xSheet, "A4:E4");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_LEFT, com.sun.star.sheet.FillMode.LINEAR,
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 10, 0x7FFFFFFF);

 // Fill with an user defined list
 xSeries = getCellSeries(xSheet, "A5:E5");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_RIGHT, com.sun.star.sheet.FillMode.AUTO,
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 1, 0x7FFFFFFF);

 // Fill bottom to top with a geometric series
 xSeries = getCellSeries(xSheet, "G1:G5");
 xSeries.fillSeries(
 com.sun.star.sheet.FillDirection.TO_TOP, com.sun.star.sheet.FillMode.GROWTH,
 com.sun.star.sheet.FillDateMode.FILL_DATE_DAY, 2, 0x7FFFFFFF);

 // Auto fill
 xSeries = getCellSeries(xSheet, "A7:G9");
 xSeries.fillAuto(com.sun.star.sheet.FillDirection.TO_RIGHT, 2);
}

/** Returns the XCellSeries interface of a cell range.
 @param xSheet The spreadsheet containing the cell range.
 @param aRange The address of the cell range.
 @return The XCellSeries interface. */
private com.sun.star.sheet.XCellSeries getCellSeries(
 com.sun.star.sheet.XSpreadsheet xSheet, String aRange) {
 return (com.sun.star.sheet.XCellSeries) UnoRuntime.queryInterface(
 com.sun.star.sheet.XCellSeries.class, xSheet.getCellRangeByName(aRange));
}

This example produces the following result:

A B C D E F G
1 1 3 5 7 9 160
2 4 6 8 80
3 01/30 /2002 02/28/2002 03/30/2002 04/30 /2002 05/30 /2002 40
4 Text 50 Text 40 Text 30 Text 20 Text 10 20
5 Jan Feb Mar Apr May 10
6
7 1 2 3 4 5 6 7
8 05/28 /2002 02/28/2002 11/28/2001 08/28 /2001 05/28 /2001 02/28/2001 11/28 /2000
9 6 4 2 0 -2 -4 -6

Operations
The cell range interface com.sun.star.sheet.XSheetOperation computes a value based on the
contents of all cells of a cell range or clears specific contents of the cells.

• The method computeFunction() returns the result of the calculation. The constants
com.sun.star.sheet.GeneralFunction specify the calculation method.

566 OpenOffice.org 1.1 Developer's Guide • June 2003

• The method clearContents() clears contents of the cells used. The parameter describes the
contents to clear, using the constants of com.sun.star.sheet.CellFlags.

The following code shows how to compute the average of a cell range and clear the cell contents:
 // --- Sheet operation. ---
 // Compute a function
 com.sun.star.sheet.XSheetOperation xSheetOp = (com.sun.star.sheet.XSheetOperation)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetOperation.class, xCellRange);

 double fResult = xSheetOp.computeFunction(com.sun.star.sheet.GeneralFunction.AVERAGE);
 System.out.println("Average value of the data table A10:C30: " + fResult);

 // Clear cell contents
 xSheetOp.clearContents(
 com.sun.star.sheet.CellFlags.ANNOTATION | com.sun.star.sheet.CellFlags.OBJECTS);

Multiple Operations
A multiple operation combines a series of formulas with a variable and a series of values. The
results of each formula with each value is shown in the table. Additionally, it is possible to calcu-
late a single formula with two variables using a 2-value series. The method setTableOperation()
of the interface com.sun.star.sheet.XMultipleOperation inserts a multiple operation range.

The following example shows how to calculate the values 1 to 5 raised to the powers of 1 to 5
(each value to each power). The first column contains the base values, and the first row the expo-
nents, for example, cell E3 contains the result of 24. Below there are three trigonometrical functions
calculated based on a series of values, for example, cell C11 contains the result of cos(0.2).

A B C D E F G
1 =A2^B1 1 2 3 4 5
2 1
3 2
4 3
5 4
6 5
7
8 =SIN(A8) =COS(A8) =TAN(A8)
9 0

10 0.1
11 0.2
12 0.3
13 0.4

Note that the value series have to be included in the multiple operations cell range, but not the
formula cell range (in the second example). The references in the formulas address any cell outside
of the area to be filled. The column cell and row cell parameter have to reference these cells
exactly. In the second example, a row cell address does not have to be used, because the row
contains the formulas. (Spreadsheet /SpreadsheetSample.java)

Chapter 8 Spreadsheet Documents 567

public void InsertMultipleOperation(com.sun.star.sheet.XSpreadsheet xSheet)
 throws RuntimeException, Exception {
 // --- Two independent value series ---
 com.sun.star.table.CellRangeAddress aFormulaRange = createCellRangeAddress(xSheet, "A1");
 com.sun.star.table.CellAddress aColCell = createCellAddress(xSheet, "A2");
 com.sun.star.table.CellAddress aRowCell = createCellAddress(xSheet, "B1");

 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName("A1:F6");
 com.sun.star.sheet.XMultipleOperation xMultOp = (com.sun.star.sheet.XMultipleOperation)
 UnoRuntime.queryInterface(com.sun.star.sheet.XMultipleOperation.class, xCellRange);
 xMultOp.setTableOperation(
 aFormulaRange, com.sun.star.sheet.TableOperationMode.BOTH, aColCell, aRowCell);

 // --- A value series, a formula series ---
 aFormulaRange = createCellRangeAddress(xSheet, "B8:D8");
 aColCell = createCellAddress(xSheet, "A8");
 // Row cell not needed

 xCellRange = xSheet.getCellRangeByName("A9:D13");
 xMultOp = (com.sun.star.sheet.XMultipleOperation)
 UnoRuntime.queryInterface(com.sun.star.sheet.XMultipleOperation.class, xCellRange);
 xMultOp.setTableOperation(
 aFormulaRange, com.sun.star.sheet.TableOperationMode.COLUMN, aColCell, aRowCell);
}

/** Creates a com.sun.star.table.CellAddress and initializes it
 with the given range.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aCell The address of the cell (or a named cell).
 */
public com.sun.star.table.CellAddress createCellAddress(
 com.sun.star.sheet.XSpreadsheet xSheet,
 String aCell) throws RuntimeException, Exception {
 com.sun.star.sheet.XCellAddressable xAddr = (com.sun.star.sheet.XCellAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellAddressable.class,
 xSheet.getCellRangeByName(aCell).getCellByPosition(0, 0));
 return xAddr.getCellAddress();
}

/** Creates a com.sun.star.table.CellRangeAddress and initializes
 it with the given range.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aRange The address of the cell range (or a named range).
 */
public com.sun.star.table.CellRangeAddress createCellRangeAddress(
 com.sun.star.sheet.XSpreadsheet xSheet, String aRange) {
 com.sun.star.sheet.XCellRangeAddressable xAddr = (com.sun.star.sheet.XCellRangeAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeAddressable.class,
 xSheet.getCellRangeByName(aRange));
 return xAddr.getRangeAddress();
}

Handling Array Formulas
The interface com.sun.star.sheet.XArrayFormulaRange handles array formulas.

• If the whole cell range contains an array formula, the method getArrayFormula() returns the
formula string, otherwise an empty string is returned.

• The method setArrayFormula() sets an array formula to the complete cell range.

(Spreadsheet /SpreadsheetSample.java)
 // --- Array formulas ---
 com.sun.star.sheet.XArrayFormulaRange xArrayFormula = (com.sun.star.sheet.XArrayFormulaRange)
 UnoRuntime.queryInterface(com.sun.star.sheet.XArrayFormulaRange.class, xCellRange);
 // Insert a 3x3 unit matrix.
 xArrayFormula.setArrayFormula("=A10:C12");
 System.out.println("Array formula is: " + xArrayFormula.getArrayFormula());

Due to a bug, this interface does not work correctly in the current implementation. The method accepts the
translated function names, but not the English names. This is inconsistent to the method setFormula() of
the interface com.sun.star.table.XCell.

568 OpenOffice.org 1.1 Developer's Guide • June 2003

Cells
A single cell of a spreadsheet is represented by the service com.sun.star.sheet.SheetCell. This
service extends the service com.sun.star.table.Cell, that provides fundamental table cell func-
tionality, such as setting formulas, values and text of a cell.

Properties of SheetCell
The service com.sun.star.sheet.SheetCell introduces new properties and interfaces, extending
the formatting- related cell properties of com.sun.star.table.Cell.

Properties of com.sun.star.sheet.SheetCell
Position
Size

The position and size of the cell in 100th of a millimeter. The position is
relative to the first cell of the spreadsheet. Note that this is not always
the first visible cell.

FormulaLocal Used to query or set a formula using function names of the current
language.

FormulaResultType The type of the result. It is a constant from the set
com.sun.star.sheet.FormulaResult.

IDLS:com.sun.star.sheet.S
heetCell:Conditional-
Format]
ConditionalFormatLocal

Used to access conditional formats. See 8.3.2 Spreadsheet Documents -
Working with Spreadsheets - Formatting - Conditional Formats for details.

Validation
ValidationLocal

Used to access data validation. See 8.3.11 Spreadsheet Documents -
Working with Spreadsheets - Other Table Operations - Data Validation for
details.

Access to Formulas, Values and Errors
The cell interface com.sun.star.table.XCell provides methods to access the value, formula,
content type, and error code of a single cell:

void setValue([in] double nValue)
double getValue()
void setFormula([in] string aFormula)
string getFormula()
com::sun::star::table::CellContentType getType()
long getError()

The value of a cell is a floating-point number. To set a formula to a cell, the whole formula string
has to be passed including the leading equality sign. The function names must be in English.

It is possible to set simple strings or even values with special number formats. In this case, the formula string
consists only of a string constant or of the number as it would be entered in the table (for instance date, time,
or currency values).

The method getType() returns a value of the enumeration
com.sun.star.table.CellContentType indicating the type of the cell content.

The following code fragment shows how to access and modify the content, and formatting of
single cells. The xRange is an existing cell range (a com.sun.star.table.XCellRange interface,
described in 8.3.1 Spreadsheet Documents - Working with Spreadsheets - Document Structure - Cell
Ranges). The method getCellByPosition() is provided by this interface.
(Spreadsheet /GeneralTableSample.java)

Chapter 8 Spreadsheet Documents 569

 com.sun.star.beans.XPropertySet xPropSet = null;
 com.sun.star.table.XCell xCell = null;

 // *** Access and modify a VALUE CELL ***
 xCell = xRange.getCellByPosition(0, 0);
 // Set cell value.
 xCell.setValue(1234);

 // Get cell value.
 double nDblValue = xCell.getValue() * 2;
 xRange.getCellByPosition(0, 1).setValue(nDblValue);

 // *** Create a FORMULA CELL and query error type ***
 xCell = xRange.getCellByPosition(0, 2);
 // Set formula string.
 xCell.setFormula("=1/0");

 // Get error type.
 boolean bValid = (xCell.getError() == 0);
 // Get formula string.
 String aText = "The formula " + xCell.getFormula() + " is ";
 aText += bValid ? "valid." : "erroneous.";

 // *** Insert a TEXT CELL using the XText interface ***
 xCell = xRange.getCellByPosition(0, 3);
 com.sun.star.text.XText xCellText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(com.sun.star.text.XText.class, xCell);
 com.sun.star.text.XTextCursor xTextCursor = xCellText.createTextCursor();
 xCellText.insertString(xTextCursor, aText, false);

 // *** Change cell properties ***
 int nValue = bValid ? 0x00FF00 : 0xFF4040;
 xPropSet = (com.sun.star.beans.XPropertySet) UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xCell);
 xPropSet.setPropertyValue("CellBackColor", new Integer(nValue));

Access to Text Content
The service com.sun.star.text.Text supports the modification of simple or formatted text
contents. Changing text contents and text formatting is provided by the interface
com.sun.star.text.XText as discussed in 2 First Steps. Refer to chapter 7.3.1 Text Documents -
Working with Text Documents - Word Processing - Editing Text for further information. It implements
the interfaces com.sun.star.container.XEnumerationAccess that provides access to the para-
graphs of the text and the interface com.sun.star.text.XText to insert and modify text contents.
For detailed information about text handling, see 7.3.1 Text Documents - Working with Text Docu-
ments - Word Processing - Editing Text. (Spreadsheet /SpreadsheetSample.java)

570 OpenOffice.org 1.1 Developer's Guide • June 2003

 // --- Insert two text paragraphs into the cell. ---
 com.sun.star.text.XText xText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(com.sun.star.text.XText.class, xCell);
 com.sun.star.text.XTextCursor xTextCursor = xText.createTextCursor();

 xText.insertString(xTextCursor, "Text in first line.", false);
 xText.insertControlCharacter(xTextCursor,
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, false);
 xText.insertString(xTextCursor, "Some more text.", false);

 // --- Query the separate paragraphs. ---
 String aText;
 com.sun.star.container.XEnumerationAccess xParaEA =
 (com.sun.star.container.XEnumerationAccess) UnoRuntime.queryInterface(
 com.sun.star.container.XEnumerationAccess.class, xCell);
 com.sun.star.container.XEnumeration xParaEnum = xParaEA.createEnumeration();

 // Go through the paragraphs
 while (xParaEnum.hasMoreElements()) {
 Object aPortionObj = xParaEnum.nextElement();
 com.sun.star.container.XEnumerationAccess xPortionEA =
 (com.sun.star.container.XEnumerationAccess) UnoRuntime.queryInterface(
 com.sun.star.container.XEnumerationAccess.class, aPortionObj);
 com.sun.star.container.XEnumeration xPortionEnum = xPortionEA.createEnumeration();
 aText = "";

 // Go through all text portions of a paragraph and construct string.
 while (xPortionEnum.hasMoreElements()) {
 com.sun.star.text.XTextRange xRange =
 (com.sun.star.text.XTextRange) xPortionEnum.nextElement();
 aText += xRange.getString();
 }
 System.out.println("Paragraph text: " + aText);
 }

The SheetCell interface com.sun.star.text.XTextFieldsSupplier contains methods that
provide access to the collection of text fields in the cell. For details on inserting text fields, refer to
7.3.5 Text Documents - Working with Text Documents - Text Fields.

Currently, the only possible text field in Calc cells is the hyperlink field
com.sun.star.text.textfield.URL.

 Absolute Address
The method getCellAddress() of the interface com.sun.star.sheet.XCellAddressable returns
a com.sun.star.table.CellAddress struct that contains the absolute address of the cell in the
spreadsheet document, including the sheet index. This is useful to get the address of cells returned
by other methods. (Spreadsheet /SpreadsheetSample.java)
 // --- Get cell address. ---
 com.sun.star.sheet.XCellAddressable xCellAddr = (com.sun.star.sheet.XCellAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellAddressable.class, xCell);
 com.sun.star.table.CellAddress aAddress = xCellAddr.getCellAddress();

 String aText = "Address of this cell: Column=" + aAddress.Column;
 aText += "; Row=" + aAddress.Row;
 aText += "; Sheet=" + aAddress.Sheet;
 System.out.println(aText);

Cell Annotations
A spreadsheet cell may contain one annotation that consists of simple unformatted Text.

Chapter 8 Spreadsheet Documents 571

This service com.sun.star.sheet.CellAnnotation represents an annotation. It implements
interfaces to manipulate the contents and access the source cell.

• The interface com.sun.star.sheet.XSheetAnnotation implements methods to query data of
the annotation and to show and hide it. This interface is returned by the method getAnnota-
tion() of the interface com.sun.star.sheet.XSheetAnnotationAnchor.

• The method getParent() of the interface com.sun.star.container.XChild returns the cell
object that contains the annotation.

• The interface com.sun.star.text.XSimpleText modifies the text contents of the annotation.
See 7.3.1 Text Documents - Working with Text Documents - Word Processing - Editing Text for
details.

It is possible to access the annotations through a container object from the spreadsheet or directly
from a cell object.

• The method getAnnotations() of the interface
com.sun.star.sheet.XSheetAnnotationsSupplier returns the interface
com.sun.star.sheet.XSheetAnnotations of the annotations collection of this spreadsheet.

572 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 91: Cell annotations

• The method getAnnotation() of the interface
com.sun.star.sheet.XSheetAnnotationAnchor returns the interface
com.sun.star.sheet.XSheetAnnotation of an annotation object.

The service com.sun.star.sheet.CellAnnotations represents the collection of annotations for
the spreadsheet and implements two interfaces to access the annotations.

• The interface com.sun.star.sheet.XSheetAnnotations is derived from
com.sun.star.container.XIndexAccess to access and remove annotations through their
index. The method insertNew() attaches a new annotation to a cell.

• The method createEnumeration() of the interface
com.sun.star.container.XEnumerationAccess creates an enumeration object, represented
by the service com.sun.star.sheet.CellAnnotationsEnumeration, to access the annotations
sequentially.

The following example inserts an annotation and makes it permanently visible.
(Spreadsheet /SpreadsheetSample.java)
public void doAnnotationSample(
 com.sun.star.sheet.XSpreadsheet xSheet,
 int nColumn, int nRow) throws RuntimeException, Exception {
 // create the CellAddress struct
 com.sun.star.table.XCell xCell = xSheet.getCellByPosition(nColumn, nRow);
 com.sun.star.sheet.XCellAddressable xCellAddr = (com.sun.star.sheet.XCellAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellAddressable.class, xCell);
 com.sun.star.table.CellAddress aAddress = xCellAddr.getCellAddress();
 // insert an annotation
 com.sun.star.sheet.XSheetAnnotationsSupplier xAnnotationsSupp =
 (com.sun.star.sheet.XSheetAnnotationsSupplier) UnoRuntime.queryInterface(
 com.sun.star.sheet.XSheetAnnotationsSupplier.class, xSheet);
 com.sun.star.sheet.XSheetAnnotations xAnnotations = xAnnotationsSupp.getAnnotations();
 xAnnotations.insertNew(aAddress, "This is an annotation");
 // make the annotation visible
 com.sun.star.sheet.XSheetAnnotationAnchor xAnnotAnchor =
 (com.sun.star.sheet.XSheetAnnotationAnchor) UnoRuntime.queryInterface(
 com.sun.star.sheet.XSheetAnnotationAnchor.class, xCell);
 com.sun.star.sheet.XSheetAnnotation xAnnotation = xAnnotAnchor.getAnnotation();
 xAnnotation.setIsVisible(true);
}

Cell Ranges and Cells Container
Cell range collections are represented by the service com.sun.star.sheet.SheetCellRanges.
They are returned by several methods, for instance the cell query methods of
com.sun.star.sheet.SheetRangesQuery. Besides standard container operations, it performs a
few spreadsheet functions also usable with a single cell range.

Properties of SheetCellRanges

Properties of com.sun.star.sheet.SheetCellRanges
ConditionalFormat
ConditionalFormatLocal

Used to access conditional formats. See 8.3.2 Spreadsheet Documents -
Working with Spreadsheets - Formatting - Conditional Formats for details.

Validation
ValidationLocal

Used to access data validation. See 8.3.11 Spreadsheet Documents -
Working with Spreadsheets - Other Table Operations - Data Validation for
details.

Chapter 8 Spreadsheet Documents 573

Access to Single Cell Ranges in SheetCellRanges Container
The interfaces com.sun.star.container.XEnumerationAccess and
com.sun.star.container.XIndexAccess iterates over all contained cell ranges by index or
enumeration. With the com.sun.star.container.XNameContainer, it is possible to insert ranges
with a user-defined name. Later the range can be found, replaced or removed using the name.

The following interfaces and service perform cell range actions on all ranges contained in the
collection:

• Interface com.sun.star.util.XReplaceable (see 8.3.3 Spreadsheet Documents - Working with
Spreadsheets - Navigating)

• Service com.sun.star.sheet.SheetRangesQuery (see 8.3.3 Spreadsheet Documents - Working
with Spreadsheets - Navigating)

• Interface com.sun.star.util.XIndent (see 8.3.2 Spreadsheet Documents - Working with Spread-
sheets - Formatting)

• Interface com.sun.star.sheet.XSheetOperation (see 8.3.1 Spreadsheet Documents - Working
with Spreadsheets - Document Structure - Cell Ranges)

• Interface com.sun.star.chart.XChartDataArray (see 10 Charts)

The interfaces com.sun.star.sheet.XSheetCellRangeContainer and
com.sun.star.sheet.XSheetCellRanges support basic handling of cell range collections.

• The method getRangeAddressesAsString() returns the string representation of all cell
ranges.

• The method getRangeAddresses() returns a sequence with all cell range addresses.

The interface com.sun.star.sheet.XSheetCellRangeContainer is derived from the interface
com.sun.star.sheet.XSheetCellRanges to insert and remove cell ranges.

• The methods addRangeAddress() and addRangeAddresses() insert one or more ranges into
the collection. If the boolean parameter bMergeRanges is set to true, the methods try to merge
the new range(s) with the ranges of the collection.

• The methods removeRangeAddress() and removeRangeAddresses() remove existing ranges
from the collection. Only ranges that are contained in the collection are removed. The methods
do not try to shorten a range.

The interface com.sun.star.sheet.XSheetCellRanges implements methods for access to cells
and cell ranges:

• The method getCells() returns the interface
com.sun.star.container.XEnumerationAccess of a cell collection. The service
com.sun.star.sheet.Cells is discussed below. This collection contains the cell addresses of
non-empty cells in all cell ranges.

The service com.sun.star.sheet.Cells represents a collection of cells.

574 OpenOffice.org 1.1 Developer's Guide • June 2003

The following example demonstrates the usage of cell range collections and cell collections.
(Spreadsheet /SpreadsheetSample.java)
/** All samples regarding cell range collections. */
public void doCellRangesSamples(com.sun.star.sheet.XSpreadsheetDocument xDocument)
 throws RuntimeException, Exception {

 // Create a new cell range container
 com.sun.star.lang.XMultiServiceFactory xDocFactory =
 (com.sun.star.lang.XMultiServiceFactory) UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, xDocument);
 com.sun.star.sheet.XSheetCellRangeContainer xRangeCont =
 (com.sun.star.sheet.XSheetCellRangeContainer) UnoRuntime.queryInterface(
 com.sun.star.sheet.XSheetCellRangeContainer.class,
 xDocFactory.createInstance("com.sun.star.sheet.SheetCellRanges"));

 // Insert ranges
 insertRange(xRangeCont, 0, 0, 0, 0, 0, false); // A1:A1
 insertRange(xRangeCont, 0, 0, 1, 0, 2, true); // A2:A3
 insertRange(xRangeCont, 0, 1, 0, 1, 2, false); // B1:B3

 // Query the list of filled cells
 System.out.print("All filled cells: ");
 com.sun.star.container.XEnumerationAccess xCellsEA = xRangeCont.getCells();
 com.sun.star.container.XEnumeration xEnum = xCellsEA.createEnumeration();
 while (xEnum.hasMoreElements()) {
 Object aCellObj = xEnum.nextElement();
 com.sun.star.sheet.XCellAddressable xAddr = (com.sun.star.sheet.XCellAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellAddressable.class, aCellObj);
 com.sun.star.table.CellAddress aAddr = xAddr.getCellAddress();
 System.out.print(getCellAddressString(aAddr.Column, aAddr.Row) + " ");
 }
 System.out.println();
}

/** Inserts a cell range address into a cell range container and prints a message.
 @param xContainer The com.sun.star.sheet.XSheetCellRangeContainer interface of the container.
 @param nSheet Index of sheet of the range.
 @param nStartCol Index of first column of the range.
 @param nStartRow Index of first row of the range.
 @param nEndCol Index of last column of the range.
 @param nEndRow Index of last row of the range.
 @param bMerge Determines whether the new range should be merged with the existing ranges.
 */
private void insertRange(
 com.sun.star.sheet.XSheetCellRangeContainer xContainer,
 int nSheet, int nStartCol, int nStartRow, int nEndCol, int nEndRow,
 boolean bMerge) throws RuntimeException, Exception {
 com.sun.star.table.CellRangeAddress aAddress = new com.sun.star.table.CellRangeAddress();
 aAddress.Sheet = (short)nSheet;
 aAddress.StartColumn = nStartCol;
 aAddress.StartRow = nStartRow;

Chapter 8 Spreadsheet Documents 575

Illustration 92: Cell collections

 aAddress.EndColumn = nEndCol;
 aAddress.EndRow = nEndRow;
 xContainer.addRangeAddress(aAddress, bMerge);
 System.out.println(
 "Inserting " + (bMerge ? " with" : "without") + " merge,"
 + " result list: " + xContainer.getRangeAddressesAsString());
}

Columns and Rows
Collection of table columns:

576 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 93: Collection of table columns

Collection of table rows:

The services com.sun.star.table.TableColumns and com.sun.star.table.TableRows repre -
sent collections of all columns and rows of a table. It is possible to access cells of columns and
rows, and insert and remove columns and rows using the interfaces
com.sun.star.table.XTableColumns and com.sun.star.table.XTableRows that are derived
from com.sun.star.container.XIndexAccess. The method createEnumeration() of the inter-
face com.sun.star.container.XEnumerationAccess creates an enumeration of all columns or
rows. The interface com.sun.star.container.XNameAccess accesses columns through their
names. The implementation of this interface is optional.

A single column or row is represented by the services com.sun.star.table.TableColumn and
com.sun.star.table.TableRow. They implement the interfaces
com.sun.star.table.XCellRange that provide access to the cells and
com.sun.star.beans.XPropertySet for modifying settings. Additionally, the service Table-
Column implements the interface com.sun.star.container.XNamed. It provides the method
getName() that returns the name of a column. Changing the name of a column is not supported.

The interface com.sun.star.container.XIndexAccess returns columns and rows relative to the cell
range (index 0 is always the first column or row of the cell range). But the interface
com.sun.star.container.XNameAccess returns columns with their real names, regardless of the cell
range.

In the following example, xColumns is an interface of a collection of columns, xRows is an interface
of a collection of rows, and xRange is the range formed by the columns and rows.
(Spreadsheet /GeneralTableSample.java)

Chapter 8 Spreadsheet Documents 577

Illustration 94: Collection of table rows

 com.sun.star.beans.XPropertySet xPropSet = null;

 // *** Modifying COLUMNS and ROWS ***
 // Get column C by index (interface XIndexAccess).
 Object aColumnObj = xColumns.getByIndex(2);
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aColumnObj);
 xPropSet.setPropertyValue("Width", new Integer(5000));

 // Get the name of the column.
 com.sun.star.container.XNamed xNamed = (com.sun.star.container.XNamed)
 UnoRuntime.queryInterface(com.sun.star.container.XNamed.class, aColumnObj);
 aText = "The name of this column is " + xNamed.getName() + ".";
 xRange.getCellByPosition(2, 2).setFormula(aText);

 // Get column D by name (interface XNameAccess).
 com.sun.star.container.XNameAccess xColumnsName = (com.sun.star.container.XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, xColumns);

 aColumnObj = xColumnsName.getByName("D");
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aColumnObj);
 xPropSet.setPropertyValue("IsVisible", new Boolean(false));

 // Get row 7 by index (interface XIndexAccess)
 Object aRowObj = xRows.getByIndex(6);
 xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aRowObj);
 xPropSet.setPropertyValue("Height", new Integer(5000));

 // Create a cell series with the values 1 ... 7.
 for (int nRow = 8; nRow < 15; ++nRow)
 xRange.getCellByPosition(0, nRow).setValue(nRow - 7);
 // Insert a row between 1 and 2
 xRows.insertByIndex(9, 1);
 // Delete the rows with the values 3 and 4.
 xRows.removeByIndex(11, 2);

8.3.2 Formatting

Cell Formatting
In cells, cell ranges, table rows, table columns and cell ranges collections, the cells are formatted
through the service com.sun.star.table.CellProperties. These properties are accessible
through the interface com.sun.star.beans.XPropertySet that is supported by all the objects
mentioned above. The service contains all properties that describe the cell formatting of the cell
range, such as the cell background color, borders, the number format and the cell alignment.
Changing the property values affects all cells of the object being formatted.

The cell border style is stored in the struct com.sun.star.table.TableBorder. A cell range
contains six different kinds of border lines: upper, lower, left, right, horizontal inner, and vertical
inner line. Each line is represented by a struct com.sun.star.table.BorderLine that contains the
line style and color. The boolean members Is...LineValid specifies the validity of the ...Line
members containing the line style. If the property contains the value true, the line style is equal in
all cells that include the line. The style is contained in the ...Line struct. The value false means
the cells are formatted differently and the content of the ...Line struct is undefined. When
changing the border property, these boolean values determine if the lines are changed to the style
contained in the respective ...Line struct.

Character and Paragraph Format
The following services of a cell range contain properties for the character style and paragraph
format:

• Service com.sun.star.style.ParagraphProperties

578 OpenOffice.org 1.1 Developer's Guide • June 2003

• Service com.sun.star.style.CharacterProperties
• Service com.sun.star.style.CharacterPropertiesAsian
• Service com.sun.star.style.CharacterPropertiesComplex
The chapter 7.3.2 Text Documents - Working with Text Documents - Formatting contains a description
of these properties.

This example formats a given cell range xCellRange: (Spreadsheet /SpreadsheetSample.java)
 // --- Change cell range properties. ---
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);

 // from com.sun.star.styles.CharacterProperties
 xPropSet.setPropertyValue("CharColor", new Integer(0x003399));
 xPropSet.setPropertyValue("CharHeight", new Float(20.0));

 // from com.sun.star.styles.ParagraphProperties
 xPropSet.setPropertyValue("ParaLeftMargin", new Integer(500));

 // from com.sun.star.table.CellProperties
 xPropSet.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));
 xPropSet.setPropertyValue("CellBackColor", new Integer(0x99CCFF));

The code below changes the character and paragraph formatting of a cell. Assume that xCell is a
com.sun.star.table.XCell interface of a spreadsheet cell.
(Spreadsheet /SpreadsheetSample.java)
 // --- Change cell properties. ---
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCell);

 // from styles.CharacterProperties
 xPropSet.setPropertyValue("CharColor", new Integer(0x003399));
 xPropSet.setPropertyValue("CharHeight", new Float(20.0));

 // from styles.ParagraphProperties
 xPropSet.setPropertyValue("ParaLeftMargin", new Integer(500));

 // from table.CellProperties
 xPropSet.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));
 xPropSet.setPropertyValue("CellBackColor", new Integer(0x99CCFF));

Indentation
The methods of the interface com.sun.star.util.XIndent change the left indentation of the cell
contents. This interface is supported by cells, cell ranges and collections of cell ranges. The inden-
tation is incremental and decremental, independent for each cell.

• The method decrementIndent() reduces the indentation of each cell by 1.

• The method incrementIndent() enlarges the indentation of each cell by 1.

The following sample shows how to increase the cell indentation by 1.
(Spreadsheet /SpreadsheetSample.java)
 // --- Change indentation. ---
 com.sun.star.util.XIndent xIndent = (com.sun.star.util.XIndent)
 UnoRuntime.queryInterface(com.sun.star.util.XIndent.class, xCellRange);
 xIndent.incrementIndent();

Due to a bug, this interface does not work in the current implementation. Workaround: Use the paragraph
property ParaIndent.

Equally Formatted Cell Ranges
It is possible to get collections of all equally formatted cell ranges contained in a source cell range.

Chapter 8 Spreadsheet Documents 579

Cell Format Ranges
The service com.sun.star.sheet.CellFormatRanges represents a collection of equally formatted
cell ranges. The cells inside of a cell range of the collection have the same formatting attributes. All
cells of the source range are contained in one of the ranges. If there is a non- rectangular, equal-
formatted range, it is split into several rectangular ranges.

Unique Cell Format Ranges
The service com.sun.star.sheet.UniqueCellFormatRanges represents, similar to Cell Format
Ranges above, a collection of equally formatted cell ranges, but this collection contains cell range
container objects (service com.sun.star.sheet.SheetCellRanges) that contain the cell ranges.
The cells of all ranges inside of a cell range container are equally formatted. The formatting attrib-
utes of a range container differ from each other range container. All equally formatted ranges are
consolidated into one container.

580 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 95: Cell Format Ranges

In the following example, the cells have two different background colors. The formatted ranges of
the range A1:G3 are queried in both described ways.

A B C D E F G
1
2
3

A com.sun.star.sheet.CellFormatRanges object contains the following ranges: A1:C2, D1:G1,
D2:F2, G2:G2, and A3:G3.

A com.sun.star.sheet.UniqueCellFormatRanges object contains two
com.sun.star.sheet.SheetCellRanges range collections. One collection contains the white
ranges, that is, A1:C2, D1:G1, G2:G2, and the other collection, the gray ranges, that is, D2:F2,
A3:G3.

Chapter 8 Spreadsheet Documents 581

Illustration 96: UniqueCellFormatRanges

The following code is an example of accessing the formatted ranges in Java. The getCellRangeAd-
dressString is a helper method that returns the range address as a string.
(Spreadsheet /SpreadsheetSample.java)
/** All samples regarding formatted cell ranges. */
public void doFormattedCellRangesSamples(com.sun.star.sheet.XSpreadsheet xSheet)
 throws RuntimeException, Exception {
 // All ranges in one container
 xCellRange = xSheet.getCellRangeByName("A1:G3");
 System.out.println("Service CellFormatRanges:");
 com.sun.star.sheet.XCellFormatRangesSupplier xFormatSupp =
 (com.sun.star.sheet.XCellFormatRangesSupplier) UnoRuntime.queryInterface(
 com.sun.star.sheet.XCellFormatRangesSupplier.class, xCellRange);
 com.sun.star.container.XIndexAccess xRangeIA = xFormatSupp.getCellFormatRanges();
 System.out.println(getCellRangeListString(xRangeIA));

 // Ranges sorted in SheetCellRanges containers
 System.out.println("\nService UniqueCellFormatRanges:");
 com.sun.star.sheet.XUniqueCellFormatRangesSupplier xUniqueFormatSupp =
 (com.sun.star.sheet.XUniqueCellFormatRangesSupplier) UnoRuntime.queryInterface(
 com.sun.star.sheet.XUniqueCellFormatRangesSupplier.class, xCellRange);
 com.sun.star.container.XIndexAccess xRangesIA = xUniqueFormatSupp.getUniqueCellFormatRanges();
 int nCount = xRangesIA.getCount();
 for (int nIndex = 0; nIndex < nCount; ++nIndex) {
 Object aRangesObj = xRangesIA.getByIndex(nIndex);
 xRangeIA = (com.sun.star.container.XIndexAccess) UnoRuntime.queryInterface(
 com.sun.star.container.XIndexAccess.class, aRangesObj);
 System.out.println(
 "Container " + (nIndex + 1) + ": " + getCellRangeListString(xRangeIA));
 }
}

/** Returns a list of addresses of all cell ranges contained in the collection.
 @param xRangesIA The XIndexAccess interface of the collection.
 @return A string containing the cell range address list.
 */
private String getCellRangeListString(com.sun.star.container.XIndexAccess xRangesIA)
 throws RuntimeException, Exception {
 String aStr = "";
 int nCount = xRangesIA.getCount();
 for (int nIndex = 0; nIndex < nCount; ++nIndex) {
 if (nIndex > 0)
 aStr += " ";
 Object aRangeObj = xRangesIA.getByIndex(nIndex);
 com.sun.star.sheet.XSheetCellRange xCellRange = (com.sun.star.sheet.XSheetCellRange)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetCellRange.class, aRangeObj);
 aStr += getCellRangeAddressString(xCellRange, false);
 }
 return aStr;
}

582 OpenOffice.org 1.1 Developer's Guide • June 2003

Table Auto Formats
Table auto formats are used to apply different formats to a cell range. A table auto format is a
collection of cell styles used to format all cells of a range. The style applied is dependent on the
position of the cell.

The table auto format contains separate information about four different row types and four
different column types:

• First row (header), first data area row, second data area row, last row (footer)

• First column, first data area column, second data area column, last column

The row or column types for the data area (between first and last row/column) are repeated in
sequence. Each cell of the formatted range belongs to one of the row types and column types,
resulting in 16 different auto-format fields. In the example below, the highlighted cells have the
formatting of the first data area row and last column field. Additionally, this example shows the
indexes of all the auto format fields. These indexes are used to access the field with the interface
com.sun.star.container.XIndexAccess.

First column First data area
column

Second data
area column

First data area
column

Last Column

First row (header) 0 1 2 1 3
First data area row 4 5 6 5 7
Second data area row 8 9 10 9 11
First data area row 4 5 6 5 7
Second data area row 8 9 10 9 11
Last row (footer) 12 13 14 13 15

Chapter 8 Spreadsheet Documents 583

A table auto format is represented by the service com.sun.star.sheet.TableAutoFormat. It
contains exactly 16 auto format fields (service com.sun.star.sheet.TableAutoFormatField).
Each auto format field contains all properties of a single cell.

The cell range interface com.sun.star.table.XAutoFormattable contains the method auto-
Format() that applies a table auto format to a cell range. The cell range must have a size of at least
3x3 cells. The boolean properties of the table auto format determine the formatting properties are
copied to the cells. The default setting of all the properties is true.

584 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 97: TableAutoFormat

In the current implementation it is not possible to modify the cell borders of a table auto format (the property
TableBorder is missing). Nevertheless, the property IncludeBorder controls whether the borders of
default auto formats are applied to the cells.

The collection of all table auto formats is represented by the service
com.sun.star.sheet.TableAutoFormats. There is only one instance of this collection in the
whole application. It contains all default and user-defined auto formats that are used in spread-
sheets and tables of the word- processing application. It is possible to iterate through all table auto
formats with an enumeration, or to access them directly using their index or their name.

The following example shows how to insert a new table auto format, fill it with properties, apply it
to a cell range and remove it from the format collection. (Spreadsheet /SpreadsheetSample.java)

Chapter 8 Spreadsheet Documents 585

Illustration 98: TableAutoFormats

public void doAutoFormatSample(
 com.sun.star.lang.XMultiServiceFactory xServiceManager,
 com.sun.star.sheet.XSpreadsheetDocument xDocument) throws RuntimeException, Exception {
 // get the global collection of table auto formats, use global service manager
 Object aAutoFormatsObj = xServiceManager.createInstance("com.sun.star.sheet.TableAutoFormats");
 com.sun.star.container.XNameContainer xAutoFormatsNA = (com.sun.star.container.XNameContainer)
 UnoRuntime.queryInterface(com.sun.star.container.XNameContainer.class, aAutoFormatsObj);

 // create a new table auto format and insert into the container
 String aAutoFormatName = "Temp_Example";
 boolean bExistsAlready = xAutoFormatsNA.hasByName(aAutoFormatName);
 Object aAutoFormatObj = null;
 if (bExistsAlready)
 // auto format already exists -> use it
 aAutoFormatObj = xAutoFormatsNA.getByName(aAutoFormatName);
 else {
 // create a new auto format (with document service manager!)
 com.sun.star.lang.XMultiServiceFactory xDocServiceManager =
 (com.sun.star.lang.XMultiServiceFactory) UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, xDocument);
 aAutoFormatObj = xDocServiceManager.createInstance("com.sun.star.sheet.TableAutoFormat");
 xAutoFormatsNA.insertByName(aAutoFormatName, aAutoFormatObj);
 }
 // index access to the auto format fields
 com.sun.star.container.XIndexAccess xAutoFormatIA = (com.sun.star.container.XIndexAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class, aAutoFormatObj);

 // set properties of all auto format fields
 for (int nRow = 0; nRow < 4; ++nRow) {
 int nRowColor = 0;
 switch (nRow) {
 case 0: nRowColor = 0x999999; break;
 case 1: nRowColor = 0xFFFFCC; break;
 case 2: nRowColor = 0xEEEEEE; break;
 case 3: nRowColor = 0x999999; break;
 }

 for (int nColumn = 0; nColumn < 4; ++nColumn) {
 int nColor = nRowColor;
 if ((nColumn == 0) || (nColumn == 3))
 nColor -= 0x333300;

 // get the auto format field and apply properties
 Object aFieldObj = xAutoFormatIA.getByIndex(4 * nRow + nColumn);
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xPropSet.setPropertyValue("CellBackColor", new Integer(nColor));
 }
 }

 // set the auto format to the second spreadsheet
 com.sun.star.sheet.XSpreadsheets xSheets = xDocument.getSheets();
 com.sun.star.container.XIndexAccess xSheetsIA = (com.sun.star.container.XIndexAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class, xSheets);

 com.sun.star.sheet.XSpreadsheet xSheet =
 (com.sun.star.sheet.XSpreadsheet) xSheetsIA.getByIndex(1);

 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName("A5:H25");
 com.sun.star.table.XAutoFormattable xAutoForm = (com.sun.star.table.XAutoFormattable)
 UnoRuntime.queryInterface(com.sun.star.table.XAutoFormattable.class, xCellRange);

 xAutoForm.autoFormat(aAutoFormatName);

 // remove the auto format
 if (!bExistsAlready)
 xAutoFormatsNA.removeByName(aAutoFormatName);
}

586 OpenOffice.org 1.1 Developer's Guide • June 2003

Conditional Formats
A cell can be formatted automatically with a conditional format, depending on its contents or the
result of a formula. A conditional format consists of several condition entries that contain the
condition and name of a cell style. The style of the first met condition, true or “not zero”, is
applied to the cell.

A cell or cell range object contains the properties ConditionalFormat and ConditionalFormat-
Local. These properties return the interface com.sun.star.sheet.XSheetConditionalEntries
of the conditional format container com.sun.star.sheet.TableConditionalFormat. The objects
of both properties are equal, except for the representation of formulas. The ConditionalFormat-
Local property uses function names in the current language.

Chapter 8 Spreadsheet Documents 587

Illustration 99: TableConditionalFormats

After a conditional format is changed, it has to be reinserted into the property set of the cell or cell range.

A condition entry of a conditional format is represented by the service
com.sun.star.sheet.TableConditionalEntry. It implements two interfaces:

• The interface com.sun.star.sheet.XSheetCondition gets and sets the operator, the first and
second formula and the base address for relative references.

• The interface com.sun.star.sheet.XSheetConditionalEntry gets and sets the cell style
name.

The service com.sun.star.sheet.TableConditionalFormat contains all format conditions and
returns com.sun.star.sheet.TableConditionalEntry objects. The interface
com.sun.star.sheet.XSheetConditionalEntries inserts new conditions and removes them.

• The method addNew() inserts a new condition. It expects a sequence of
com.sun.star.beans.PropertyValue objects. The following properties are supported:

• Operator: A com.sun.star.sheet.ConditionOperator constant describing the opera-
tion to perform.

• Formula1 and Formula2: Strings that contain the values or formulas to evaluate.
Formula2 is used only if the property Operator contains BETWEEN or NOT_BETWEEN.

• SourcePosition: A com.sun.star.table.CellAddress struct that contains the base
address for relative cell references in formulas.

• StyleName: The name of the cell style to apply.

• The methods removeByIndex() removes the condition entry at the specified position.

• The method clear() removes all condition entries.

The following example applies a conditional format to a cell range. It uses the cell style “MyNew-
CellStyle” that is applied to each cell containing a value greater than 1. The xSheet is the
com.sun.star.sheet.XSpreadsheet interface of a spreadsheet.
(Spreadsheet /SpreadsheetSample.java)
 // get the conditional format object of the cell range
 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName("A1:B10");
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);
 com.sun.star.sheet.XSheetConditionalEntries xEntries =
 (com.sun.star.sheet.XSheetConditionalEntries) xPropSet.getPropertyValue("ConditionalFormat");

 // create a condition and apply it to the range
 com.sun.star.beans.PropertyValue[] aCondition = new com.sun.star.beans.PropertyValue[3];
 aCondition[0] = new com.sun.star.beans.PropertyValue();
 aCondition[0].Name = "Operator";
 aCondition[0].Value = com.sun.star.sheet.ConditionOperator.GREATER;
 aCondition[1] = new com.sun.star.beans.PropertyValue();
 aCondition[1].Name = "Formula1";
 aCondition[1].Value = "1";
 aCondition[2] = new com.sun.star.beans.PropertyValue();
 aCondition[2].Name = "StyleName";
 aCondition[2].Value = "MyNewCellStyle";
 xEntries.addNew(aCondition);
 xPropSet.setPropertyValue("ConditionalFormat", xEntries);

8.3.3 Navigating
Unlike other document models that provide access to their content by content suppliers, the
spreadsheet document contains properties that allow direct access to various containers.

588 OpenOffice.org 1.1 Developer's Guide • June 2003

This design inconsistency may be changed in future versions. The properties remain for compatibility.

The properties allow access to various containers:

• NamedRanges: The container with all the named ranges. See 8.3.3 Spreadsheet Documents -
Working with Spreadsheets - Navigating - Named Ranges.

• ColumnLabelRanges and RowLabelRanges: Containers with row labels and column labels. See
8.3.3 Spreadsheet Documents - Working with Spreadsheets - Navigating - Label Ranges.

• DatabaseRanges: The container with all database ranges. See 8.3.5 Spreadsheet Documents -
Working with Spreadsheets - Database Operations - Database Ranges.

• SheetLinks, AreaLinks and DDELinks: Containers with external links. See 8.3.6 Spreadsheet
Documents - Working with Spreadsheets - Linking External Data - Sheet Links.

Chapter 8 Spreadsheet Documents 589

Cell Cursor
A cell cursor is a cell range with extended functionality and is represented by the service
com.sun.star.sheet.SheetCellCursor. With a cell cursor it is possible to move through a cell
range. Each table can contain only one cell cursor.

It implements all interfaces described in 8.3.1 Spreadsheet Documents - Working with Spreadsheets -
Document Structure - Cell Ranges and the basic cursor interfaces of the service
com.sun.star.table.CellCursor that represents the cell or cell range cursor of a table.

The interface com.sun.star.sheet.XSpreadsheet of a spreadsheet creates the cell cursors. The
methods return the interface com.sun.star.sheet.XSheetCellCursor of the cursor. It is derived
from the interface com.sun.star.sheet.XSheetCellRange that provides access to cells and cell
ranges. Refer to 8.3.1 Spreadsheet Documents - Working with Spreadsheets - Document Structure - Cell
Ranges for additional information.

• The method createCursor() creates a cursor that spans over the whole spreadsheet.

• The method createCursorByRange() creates a cursor that spans over the given cell range.

The SheetCellCursor includes the CellCursor service from the table module:

590 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 100: Cell cursor

Illustration 101: Table cell cursor

Cursor Movement
The service com.sun.star.table.CellCursor implements the interface
com.sun.star.table.XCellCursor that provides methods to move to specific cells of a cell
range. This interface is derived from com.sun.star.table.XCellRange so all methods that access
single cells can be used.

Chapter 8 Spreadsheet Documents 591

Methods of com.sun.star.table.XCellCursor
gotoStart() Moves to the first filled cell. This cell may be outside of the current range

of the cursor.

gotoEnd() Moves to the last filled cell. This cell may be outside of the current range
of the cursor.

gotoOffset() Moves the cursor relative to the current position, even if the cursor is a
range.

gotoPrev() Moves the cursor to the latest available unprotected cell. In most
cases,this is the cell to the left of the current cell.

gotoNext() Moves the cursor to the next available unprotected cell. In most
cases,this is the cell to the right of the current cell.

The following example shows how to modify a cell beyond a filled area.The xCursor may be an
initialized cell cursor. (Spreadsheet /GeneralTableSample.java)
 // *** Use the cell cursor to add some data below of the filled area ***
 // Move to the last filled cell.
 xCursor.gotoEnd();
 // Move one row down.
 xCursor.gotoOffset(0, 1);
 xCursor.getCellByPosition(0, 0).setFormula("Beyond of the last filled cell.");

The interface com.sun.star.sheet.XSheetCellCursor sets the cursor to specific ranges in the
sheet.

• The method collapseToCurrentRegion() expands the cursor to the shortest cell range filled
with any data. A few examples from the spreadsheet below are: the cursor C2:C2 expands to
B2:D3, cursor C1:C2 expands to B1:D3 and cursor A1:D4 is unchanged.

A B C D E F G
1
2 1 3 {=C2:D3} {=C2:D3}
3 Text 2 4 {=C2:D3} {=C2:D3}
4

592 OpenOffice.org 1.1 Developer's Guide • June 2003

• The method collapseToCurrentArray() expands or shortens the cursor range to an array
formula range. This works only if the top- left cell of the current cursor contains an array
formula. An example using the spreadsheet above: All the cursors with a top- left cell located in
the range F2:G3 are modified to this array formula range, F2:F2 or G2:G4.

• The method collapseToMergedArea() expands the current cursor range so that all merged
cell ranges intersecting the current range fit completely.

• The methods expandToEntireColumns() and expandToEntireRows() expand the cursor
range so that it contains all cells of the columns or rows of the current range.

• The method collapseToSize() resizes the cursor range to the given dimensions. The start
address of the range is left unmodified. To move the cursor range without changing the current
size, use the method gotoOffset() from the interface com.sun.star.table.XCellCursor.

Some of the methods above have misleading names: collapseToCurrentRegion() and collapse-
ToMergedArea() expand the cursor range,but never shorten it and collapseToCurrentArray()may
expand or shorten the cursor range.

The following example tries to find the range of the array formula in cell F22.The xSheet is a
com.sun.star.sheet.XSpreadsheet interface of a spreadsheet and getCellRangeAddress-
String() is a helper method that returns the range address as a string.
(Spreadsheet /SpreadsheetSample.java)
 // --- find the array formula using a cell cursor ---
 com.sun.star.table.XCellRange xRange = xSheet.getCellRangeByName("F22");
 com.sun.star.sheet.XSheetCellRange xCellRange = (com.sun.star.sheet.XSheetCellRange)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetCellRange.class, xRange);
 com.sun.star.sheet.XSheetCellCursor xCursor = xSheet.createCursorByRange(xCellRange);

 xCursor.collapseToCurrentArray();
 com.sun.star.sheet.XArrayFormulaRange xArray = (com.sun.star.sheet.XArrayFormulaRange)
 UnoRuntime.queryInterface(com.sun.star.sheet.XArrayFormulaRange.class, xCursor);
 System.out.println(
 "Array formula in " + getCellRangeAddressString(xCursor, false)
 + " contains formula " + xArray.getArrayFormula());

Used Area
The cursor interface com.sun.star.sheet.XUsedAreaCursor contains methods to locate the used
area of the entire sheet. The used area is the smallest cell range that contains all cells of the spread-
sheet with any contents, such as values, text, and formulas, or visible formatting, such as borders
and background color. In the following example, xSheet is a
com.sun.star.sheet.XSpreadsheet interface of a spreadsheet.
(Spreadsheet /SpreadsheetSample.java)
 // --- Find the used area ---
 com.sun.star.sheet.XSheetCellCursor xCursor = xSheet.createCursor();
 com.sun.star.sheet.XUsedAreaCursor xUsedCursor = (com.sun.star.sheet.XUsedAreaCursor)
 UnoRuntime.queryInterface(com.sun.star.sheet.XUsedAreaCursor.class, xCursor);
 xUsedCursor.gotoStartOfUsedArea(false);
 xUsedCursor.gotoEndOfUsedArea(true);
 System.out.println("The used area is: " + getCellRangeAddressString(xCursor, true));

Referencing Ranges by Name
Cell ranges can be assigned a name that they may be addressed by in formulas. This is done with
named ranges. Another way to use names for cell references in formulas is the automatic label
lookup which is controlled using label ranges.

Chapter 8 Spreadsheet Documents 593

Named Ranges
A named range is a named formula expression, where a cell range is just one possible content.
Thus, the content of a named range is always set as a string.

The collection of named ranges is accessed using the document's NamedRanges property. A new
named range is added by calling the com.sun.star.sheet.XNamedRanges interface's addNewBy-
Name() method. The method's parameters are:

• The name for the new named range.

594 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 102: Named ranges

• The content. This must be a string containing a valid formula expression. A commonly used
type of expression is an absolute cell range reference like “$Sheet1.$A1:$C3”.

• A reference position for relative references. If the content contains relative cell references, and
the named range is used in a formula, the references are adjusted for the formula's position.
The reference position states which cell the references are relative to.

• The type of the named range that controls if the named range is included in some dialogs. The
type must be a combination of the com.sun.star.sheet.NamedRangeFlag constants:

• If the FILTER_CRITERIA bit is set, the named range is offered as a criteria range in the
“Advanced Filter” dialog.

• If the PRINT_AREA, COLUMN_HEADER or ROW_HEADER bit is set, the named range is selected as
“Print range”, “Columns to repeat” or “Rows to repeat” in the Edit Print Ranges dialog.

The addNewFromTitles() method creates named ranges from header columns or rows in a cell
range. The com.sun.star.sheet.Border enum parameter selects which named ranges are
created:

• If the value is TOP, a named range is created for each column of the cell range with the name
taken from the range's first row, and the other cells of that column within the cell range as
content.

• For BOTTOM, the names are taken from the range's last row.

• If the value is LEFT, a named range is created for each row of the cell range with the name
taken from the range's first column, and the other cells of that row within the cell range as
content.

• For RIGHT, the names are taken from the range's last column.

The removeByName() method is used to remove a named range. The outputList() method writes
a list of all the named ranges into the document, starting at the specified cell position.

The com.sun.star.sheet.NamedRange service accesses an existing named range. The
com.sun.star.container.XNamed interface changes the name, and the
com.sun.star.sheet.XNamedRange interface changes the other settings. See the addNewByName
description above for the meaning of the individual values.

If the content of the name is a single cell range reference, the
com.sun.star.sheet.XCellRangeReferrer interface is used to access that cell range.

The following example creates a named range that calculates the sum of the two cells above the
position where it is used. This is done by using the relative reference “G43:G44” with the reference
position G45. Then, the example uses the named range in two formulas.
(Spreadsheet /SpreadsheetSample.java)
 // insert a named range
 com.sun.star.beans.XPropertySet xDocProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xDocument);
 Object aRangesObj = xDocProp.getPropertyValue("NamedRanges");
 com.sun.star.sheet.XNamedRanges xNamedRanges = (com.sun.star.sheet.XNamedRanges)
 UnoRuntime.queryInterface(com.sun.star.sheet.XNamedRanges.class, aRangesObj);
 com.sun.star.table.CellAddress aRefPos = new com.sun.star.table.CellAddress();
 aRefPos.Sheet = 0;
 aRefPos.Column = 6;
 aRefPos.Row = 44;
 xNamedRanges.addNewByName("ExampleName", "SUM(G43:G44)", aRefPos, 0);

 // use the named range in formulas
 xSheet.getCellByPosition(6, 44).setFormula("=ExampleName");
 xSheet.getCellByPosition(7, 44).setFormula("=ExampleName");

Chapter 8 Spreadsheet Documents 595

Label Ranges
A label range consists of a label area containing the labels, and a data area containing the data that
the labels address. There are label ranges for columns and rows of data, which are kept in two
separate collections in the document.

The com.sun.star.sheet.LabelRanges service contains the document's column label ranges or
row label ranges, depending if the ColumnLabelRanges or RowLabelRanges property was used to
get it. The com.sun.star.sheet.XLabelRanges interface's addNew() method is used to add a new
label range, specifying the label area and data area. The removeByIndex() method removes a
label range.

The com.sun.star.sheet.LabelRange service represents a single label range and contains the
com.sun.star.sheet.XLabelRange interface to modify the label area and data area.

596 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 103: Label Ranges

The following example inserts a column label range with the label area G48:H48 and the data area
G49:H50, that is, the content of G48 is used as a label for G49:G50 and the content of H48 is used
as a label for H49:H50, as shown in the two formulas the example inserts.
(Spreadsheet /SpreadsheetSample.java)
 com.sun.star.table.XCellRange xRange = xSheet.getCellRangeByPosition(6, 47, 7, 49);
 com.sun.star.sheet.XCellRangeData xData = (com.sun.star.sheet.XCellRangeData)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeData.class, xRange);
 Object[][] aValues =
 {
 {"Apples", "Oranges"},
 {new Double(5), new Double(7)},
 {new Double(6), new Double(8)}
 };
 xData.setDataArray(aValues);

 // insert a column label range
 Object aLabelsObj = xDocProp.getPropertyValue("ColumnLabelRanges");
 com.sun.star.sheet.XLabelRanges xLabelRanges = (com.sun.star.sheet.XLabelRanges)
 UnoRuntime.queryInterface(com.sun.star.sheet.XLabelRanges.class, aLabelsObj);
 com.sun.star.table.CellRangeAddress aLabelArea = new com.sun.star.table.CellRangeAddress();
 aLabelArea.Sheet = 0;
 aLabelArea.StartColumn = 6;
 aLabelArea.StartRow = 47;
 aLabelArea.EndColumn = 7;
 aLabelArea.EndRow = 47;
 com.sun.star.table.CellRangeAddress aDataArea = new com.sun.star.table.CellRangeAddress();
 aDataArea.Sheet = 0;
 aDataArea.StartColumn = 6;
 aDataArea.StartRow = 48;
 aDataArea.EndColumn = 7;
 aDataArea.EndRow = 49;
 xLabelRanges.addNew(aLabelArea, aDataArea);

 // use the label range in formulas
 xSheet.getCellByPosition(8, 48).setFormula("=Apples+Oranges");
 xSheet.getCellByPosition(8, 49).setFormula("=Apples+Oranges");

Querying for Cells with Specific Properties
Cells, cell ranges and collections of cell ranges are queried for certain cell contents through the
service com.sun.star.sheet.SheetRangesQuery. It implements interfaces to query cells and cell
ranges with specific properties.

The methods of the interface com.sun.star.sheet.XCellRangesQuery search for cells with
specific contents or properties inside of the given cell range. The methods of the interface
com.sun.star.sheet.XFormulaQuery search for cells in the entire spreadsheet that are reference
to or are referenced from formula cells in the given range.

Chapter 8 Spreadsheet Documents 597

Due to a bug in the current implementation, both methods queryPrecedents() and queryDependents
() of the interface com.sun.star.sheet.XFormulaQuery cause an endless loop in recursive mode, if
parameter bRecursive is true.

All methods return the interface com.sun.star.sheet.XSheetCellRanges of a cell range collec-
tion. Cell range collections are described in the chapter 8.3.1 Spreadsheet Documents - Working with
Spreadsheets - Document Structure - Cell Ranges and Cells Container.

 Methods of com.sun.star.sheet.XCellRangesQuery
queryVisibleCells() Returns all cells that are not hidden.

queryEmptyCells() Returns all cells that do not have any content.

queryContentCells() Returns all cells that have the contents described by the passed parameter. The
flags are defined in com.sun.star.sheet.CellFlags.

queryFormulaCells() Returns all formula cells whose results have a specific type described by the
passed parameter. The result flags are defined in
com.sun.star.sheet.FormulaResult.

queryColumnDifferences() Returns all cells of the range that have different contents than the cell in the same
column of the specified row. See the example below.

queryRowDifferences() Returns all cells of the range that have different contents than the cell in the same
row of the specified column. See the example below.

queryIntersection() Returns all cells of the range that are contained in the passed range address.

Example:

A B C D E F G
1 1 1 2
2 1 2 2
3 1 2 1
4 1 1 1

The queried range is A1:C4 and the passed cell address is B2.

598 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 104: Query sheet ranges

• queryColumnDifferences(): (the row number is of interest) The cells of column A are
compared with cell A2, the cells of column B with B2 and so on. The function returns the cell
range list B1:B1, B4:B4, C3:C4.

• queryRowDifferences(): (the column index is of interest) The function compares row 1 with
cell B1, row 2 with cell B2 and so on. It returns the cell range list C1:C1, A2:A2, A3:A3, C3:C3.

Chapter 8 Spreadsheet Documents 599

The following code queries all cells with text content: (Spreadsheet /SpreadsheetSample.java)
 // --- Cell Ranges Query ---
 // query addresses of all cells containing text
 com.sun.star.sheet.XCellRangesQuery xRangesQuery = (com.sun.star.sheet.XCellRangesQuery)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangesQuery.class, xCellRange);

 com.sun.star.sheet.XSheetCellRanges xCellRanges =
 xRangesQuery.queryContentCells((short)com.sun.star.sheet.CellFlags.STRING);
 System.out.println("Cells containing text: " + xCellRanges.getRangeAddressesAsString());

Search and Replace
The cell range interface com.sun.star.util.XReplaceable is derived from
com.sun.star.util.XSearchable providing search and replacement of text.

• The method createReplaceDescriptor() creates a new descriptor that contains all data for
the replace action. It returns the interface com.sun.star.util.XReplaceDescriptor of this
descriptor.

• The method replaceAll() performs a replacement in all cells according to the passed replace
descriptor.

The following example replaces all occurrences of “cell” with “text”:
(Spreadsheet /SpreadsheetSample.java)
 // --- Replace text in all cells. ---
 com.sun.star.util.XReplaceable xReplace = (com.sun.star.util.XReplaceable)
 UnoRuntime.queryInterface(com.sun.star.util.XReplaceable.class, xCellRange);
 com.sun.star.util.XReplaceDescriptor xReplaceDesc = xReplace.createReplaceDescriptor();
 xReplaceDesc.setSearchString("cell");
 xReplaceDesc.setReplaceString("text");
 // property SearchWords searches for whole cells!
 xReplaceDesc.setPropertyValue("SearchWords", new Boolean(false));
 int nCount = xReplace.replaceAll(xReplaceDesc);
 System.out.println("Search text replaced " + nCount + " times.");

The property SearchWords has a different meaning in spreadsheets: If true, only cells containing the
whole search text and nothing else is found. If false, cells containing the search string as a substring is
found.

8.3.4 Sorting

Table Sort Descriptor
A sort descriptor describes all properties of a sort operation. The service
com.sun.star.table.TableSortDescriptor extends the service
com.sun.star.util.SortDescriptor with table specific sorting properties, such as:

The sorting orientation using the enumeration com.sun.star.table.TableOrientation property
Orientation.
A sequence of sorting fields using the SortFields property that contains a sequence of
com.sun.star.util.SortField structs.

The size of the sequence using the MaxFieldCount property.

The existence of column or row headers using the boolean property ContainsHeader.

600 OpenOffice.org 1.1 Developer's Guide • June 2003

To sort the contents of a cell range, the sort() method from the com.sun.star.util.XSortable
interface is called, passing a sequence of property values with properties from the
com.sun.star.sheet.SheetSortDescriptor service. The sequence can be constructed from
scratch containing the properties that should be set, or the return value of the createSortDe-
scriptor() method can be used and modified. If the cell range is a database range that has a
stored sort operation, createSortDescriptor() returns a sequence with the options of this sort
operation.

The fields that the cell range is sorted by are specified in the SortFields property as a sequence of
com.sun.star.util.SortField elements. In the com.sun.star.util.SortField struct, the
Field member specifies the field number by which to sort, and the boolean SortAscending
member switches between ascending and descending sorting for that field.

Chapter 8 Spreadsheet Documents 601

Illustration 105: SheetSortDescriptor

The FieldType member, that is used to select textual or numeric sorting in text documents is ignored in the
spreadsheet application. In a spreadsheet, a cell always has a known type of text or value, which is used for
sorting, with numbers sorted before text cells.

The CopyOutputData and OutputPosition properties are analogous to the filter descriptor's prop-
erties of the same name. The SortAscending property from the
com.sun.star.util.SortDescriptor service is ignored, as the direction is selected for each field
individually.

If the IsUserListEnabled property is true, a user-defined sort list is used that specifies an order
for the strings it contains. The UserListIndex property selects an entry from the UserLists prop -
erty of the com.sun.star.sheet.GlobalSheetSettings service to find the sort list that is used.

The CollatorLocale is used to sort according to the sorting rules of a given locale. For some
locales, several different sorting rules exist. In this case, the CollatorAlgorithm is used to select
one of the sorting rules. The com.sun.star.i18n.Collator service is used to find the possible
CollatorAlgorithm values for a locale.

The following example sorts the cell range by the second column in ascending order: (Spread-
sheet /SpreadsheetSample.java)
 // --- sort by second column, ascending ---

 // define the fields to sort
 com.sun.star.util.SortField[] aSortFields = new com.sun.star.util.SortField[1];
 aSortFields[0] = new com.sun.star.util.SortField();
 aSortFields[0].Field = 1;
 aSortFields[0].SortAscending = true;

 // define the sort descriptor
 com.sun.star.beans.PropertyValue[] aSortDesc = new com.sun.star.beans.PropertyValue[2];
 aSortDesc[0] = new com.sun.star.beans.PropertyValue();
 aSortDesc[0].Name = "SortFields";
 aSortDesc[0].Value = aSortFields;
 aSortDesc[1] = new com.sun.star.beans.PropertyValue();
 aSortDesc[1].Name = "ContainsHeader";
 aSortDesc[1].Value = new Boolean(true);

 // perform the sorting
 com.sun.star.util.XSortable xSort = (com.sun.star.util.XSortable)
 UnoRuntime.queryInterface(com.sun.star.util.XSortable.class, xRange);
 xSort.sort(aSortDesc);

8.3.5 Database Operations
This section discusses the operations that treat the contents of a cell range as database data, organ-
ized in rows and columns like a database table. These operations are filtering, sorting, adding of
subtotals and importing from an external database. Each of the operations is controlled using a
descriptor service. The descriptors can be used in two ways:

• Performing an operation on a cell range. This is described in the following sections about the
individual descriptors.

• Accessing the settings that are stored with a database range. This is described in the section
about database ranges.

602 OpenOffice.org 1.1 Developer's Guide • June 2003

Filtering
A com.sun.star.sheet.SheetFilterDescriptor object is created using the createFilterDe-
scriptor() method from the range's com.sun.star.sheet.XSheetFilterable interface to filter

Chapter 8 Spreadsheet Documents 603

Illustration 106: DatabaseRange

data in a cell range. After applying the settings to the descriptor, it is passed to the filter()
method.

If true is passed as a bEmpty parameter to createFilterDescriptor(), the returned descriptor
contains default values for all settings. If false is passed and the cell range is a database range
that has a stored filter operation, the settings for that filter are used.

The com.sun.star.sheet.XSheetFilterDescriptor interface is used to set the filter criteria as a
sequence of com.sun.star.sheet.TableFilterField elements. The
com.sun.star.sheet.TableFilterField struct describes a single condition and contains the
following members:

604 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 107: SheetFilterDescriptor

• Connection has the values AND or OR, and specifies how the condition is connected to the
previous condition in the sequence. For the first entry, Connection is ignored.

• Field is the number of the field that the condition is applied to.

• Operator is the type of the condition, such as EQUAL or GREATER
• IsNumeric selects a numeric or textual condition.

• NumericValue contains the value that is used in the condition if IsNumeric is true.

• StringValue contains the text that is used in the condition if IsNumeric is false.

Additionally, the filter descriptor contains a com.sun.star.beans.XPropertySet interface for
settings that affect the whole filter operation.

If the property CopyOutputData is true, the data that matches the filter criteria is copied to a cell
range in the document that starts at the position specified by the OutputPosition property.
Otherwise, the rows that do not match the filter criteria are filtered (hidden) in the original cell
range.

The following example filters the range that is in the variable xRange for values greater or equal to
1998 in the second column: (Spreadsheet /SpreadsheetSample.java)
 // --- filter for second column >= 1998 ---
 com.sun.star.sheet.XSheetFilterable xFilter = (com.sun.star.sheet.XSheetFilterable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetFilterable.class, xRange);
 com.sun.star.sheet.XSheetFilterDescriptor xFilterDesc =
 xFilter.createFilterDescriptor(true);
 com.sun.star.sheet.TableFilterField[] aFilterFields =
 new com.sun.star.sheet.TableFilterField[1];
 aFilterFields[0] = new com.sun.star.sheet.TableFilterField();
 aFilterFields[0].Field = 1;
 aFilterFields[0].IsNumeric = true;
 aFilterFields[0].Operator = com.sun.star.sheet.FilterOperator.GREATER_EQUAL;
 aFilterFields[0].NumericValue = 1998;
 xFilterDesc.setFilterFields(aFilterFields);
 com.sun.star.beans.XPropertySet xFilterProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xFilterDesc);
 xFilterProp.setPropertyValue("ContainsHeader", new Boolean(true));
 xFilter.filter(xFilterDesc);

The com.sun.star.sheet.XSheetFilterableEx interface is used to create a filter descriptor from
criteria in a cell range in the same manner as the “Advanced Filter” dialog. The
com.sun.star.sheet.XSheetFilterableEx interface must be queried from the range that
contains the conditions, and the com.sun.star.sheet.XSheetFilterable interface of the range
to be filtered must be passed to the createFilterDescriptorByObject() call.

The following example performs the same filter operation as the example before, but reads the
filter criteria from a cell range:
 // --- do the same filter as above, using criteria from a cell range ---
 com.sun.star.table.XCellRange xCritRange = xSheet.getCellRangeByName("B27:B28");
 com.sun.star.sheet.XCellRangeData xCritData = (com.sun.star.sheet.XCellRangeData)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeData.class, xCritRange);
 Object[][] aCritValues = {{"Year"}, {">= 1998"}};
 xCritData.setDataArray(aCritValues);
 com.sun.star.sheet.XSheetFilterableEx xCriteria = (com.sun.star.sheet.XSheetFilterableEx)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetFilterableEx.class, xCritRange);
 xFilterDesc = xCriteria.createFilterDescriptorByObject(xFilter);
 if (xFilterDesc != null)
 xFilter.filter(xFilterDesc);

Subtotals
A com.sun.star.sheet.SubTotalDescriptor object is created using the createSubTotalDe-
scriptor() method from the range's com.sun.star.sheet.XSubTotalCalculatable interface to
create subtotals for a cell range. After applying the settings to the descriptor, it is passed to the
applySubTotals() method.

Chapter 8 Spreadsheet Documents 605

The bEmpty parameter to the createSubTotalDescriptor() method works in the same manner
as the parameter to the createFilterDescriptor() method described in the filtering section. If
the bReplace parameter to the applySubTotals() method is true, existing subtotal rows are
deleted before inserting new ones.

The removeSubTotals() method removes the subtotal rows from the cell range without modi-
fying the stored subtotal settings, so that the same subtotals can later be restored.

New fields are added to the subtotal descriptor using the
com.sun.star.sheet.XSubTotalDescriptor interface's addNew() method. The nGroupColumn
parameter selects the column by which values are grouped. The subtotals are inserted at changes
of the column's values. The aSubTotalColumns parameter specifies which column subtotal values
are calculated. It is a sequence of com.sun.star.sheet.SubTotalColumn entries where each entry
contains the column number and the function to be calculated.

To query or modify the fields in a subtotal descriptor, the
com.sun.star.container.XIndexAccess interface is used to access the fields. Each field's
com.sun.star.sheet.XSubTotalField interface gets and sets the group and subtotal columns.

The example below creates subtotals, grouping by the first column and calculating the sum of the
third column: (Spreadsheet /SpreadsheetSample.java)
 // --- insert subtotals ---
 com.sun.star.sheet.XSubTotalCalculatable xSub = (com.sun.star.sheet.XSubTotalCalculatable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSubTotalCalculatable.class, xRange);
 com.sun.star.sheet.XSubTotalDescriptor xSubDesc = xSub.createSubTotalDescriptor(true);
 com.sun.star.sheet.SubTotalColumn[] aColumns = new com.sun.star.sheet.SubTotalColumn[1];
 // calculate sum of third column
 aColumns[0] = new com.sun.star.sheet.SubTotalColumn();
 aColumns[0].Column = 2;
 aColumns[0].Function = com.sun.star.sheet.GeneralFunction.SUM;
 // group by first column
 xSubDesc.addNew(aColumns, 0);
 xSub.applySubTotals(xSubDesc, true);

Database Import
The com.sun.star.util.XImportable interface imports data from an external data source (data-
base) into spreadsheet cells. The database has to be registered in OpenOffice.org API, so that it can

606 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 108: SubtotalDescriptor

be selected using its name. The doImport call takes a sequence of property values that select the
data to import.

Similar to the sort descriptor, the import descriptor's sequence of property values can be
constructed from scratch, or the return value of the createImportDescriptor() method can be
used and modified. The createImportDescriptor() method returns a description of the previ-
ously imported data if the cell range is a database range with stored import settings and the
bEmpty parameter is false.

The DatabaseName property selects a database. The SourceType selects the kind of object from the
database that is imported. It can have the following values:

• If SourceType is TABLE, the whole table that is named by SourceObject is imported.

• If SourceType is QUERY, the SourceObject must be the name of a named query.

• If SourceType is SQL, the SourceObject is used as a literal SQL command string.

If a database name is in the aDatabase variable and a table name in aTableName, the following
code imports that table from the database: (Spreadsheet /SpreadsheetSample.java)
 // --- import from database ---
 com.sun.star.beans.PropertyValue[] aImportDesc = new com.sun.star.beans.PropertyValue[3];
 aImportDesc[0] = new com.sun.star.beans.PropertyValue();
 aImportDesc[0].Name = "DatabaseName";
 aImportDesc[0].Value = aDatabase;
 aImportDesc[1] = new com.sun.star.beans.PropertyValue();
 aImportDesc[1].Name = "SourceType";
 aImportDesc[1].Value = com.sun.star.sheet.DataImportMode.TABLE;
 aImportDesc[2] = new com.sun.star.beans.PropertyValue();
 aImportDesc[2].Name = "SourceObject";
 aImportDesc[2].Value = aTableName;
 com.sun.star.table.XCellRange xImportRange = xSheet.getCellRangeByName("B33:B33");
 com.sun.star.util.XImportable xImport = (com.sun.star.util.XImportable)
 UnoRuntime.queryInterface(com.sun.star.util.XImportable.class, xImportRange);
 xImport.doImport(aImportDesc);

Chapter 8 Spreadsheet Documents 607

Database Ranges
A database range is a name for a cell range that also stores filtering, sorting, subtotal and import
settings, as well as some options.

The com.sun.star.sheet.SpreadsheetDocument service has a property DatabaseRanges that is
used to get the document's collection of database ranges. A new database range is added using the
com.sun.star.sheet.XDatabaseRanges interface's addNewByName() method that requires the
name of the new database range, and a com.sun.star.table.CellRangeAddress with the
address of the cell range as arguments. The removeByName() method removes a database range.

The com.sun.star.container.XNameAccess interface is used to get a single
com.sun.star.sheet.DatabaseRange object. Its com.sun.star.sheet.XCellRangeReferrer
interface is used to access the cell range that it is pointed to. The
com.sun.star.sheet.XDatabaseRange interface retrieves or changes the
com.sun.star.table.CellRangeAddress that is named, and gets the stored descriptors.

All descriptors of a database range are updated when a database operation is carried out on the
cell range that the database range points to. The stored filter descriptor and subtotal descriptor can
also be modified by changing the objects that are returned by the getFilterDescriptor() and
getSubTotalDescriptor() methods. Calling the refresh() method carries out the stored opera-
tions again.

Whenever a database operation is carried out on a cell range where a database range is not
defined, a temporary database range is used to hold the settings. This temporary database range
has its IsUserDefined property set to false and is valid until another database operation is
performed on a different cell range. In this case, the temporary database range is modified to refer
to the new cell range.

The following example uses the IsUserDefined property to find the temporary database range,
and applies a background color to the corresponding cell range. If run directly after the database
import example above, this marks the imported data. (Spreadsheet /SpreadsheetSample.java)
 // use the temporary database range to find the imported data's size
 com.sun.star.beans.XPropertySet xDocProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, getDocument());
 Object aRangesObj = xDocProp.getPropertyValue("DatabaseRanges");
 com.sun.star.container.XNameAccess xRanges = (com.sun.star.container.XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, aRangesObj);
 String[] aNames = xRanges.getElementNames();
 for (int i=0; i<aNames.length; i++) {
 Object aRangeObj = xRanges.getByName(aNames[i]);
 com.sun.star.beans.XPropertySet xRangeProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aRangeObj);
 boolean bUser = ((Boolean) xRangeProp.getPropertyValue("IsUserDefined")).booleanValue();
 if (!bUser) {
 // this is the temporary database range - get the cell range and format it
 com.sun.star.sheet.XCellRangeReferrer xRef = (com.sun.star.sheet.XCellRangeReferrer)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeReferrer.class, aRangeObj);
 com.sun.star.table.XCellRange xResultRange = xRef.getReferredCells();
 com.sun.star.beans.XPropertySet xResultProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xResultRange);
 xResultProp.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));
 xResultProp.setPropertyValue("CellBackColor", new Integer(0xFFFFCC));
 }
 }

8.3.6 Linking External Data
This section explains different ways to link data from external sources into a spreadsheet docu-
ment. Refer to the 8.3.5 Spreadsheet Documents - Working with Spreadsheets - Database Operations -
Database Import chapter for linking data from a database.

608 OpenOffice.org 1.1 Developer's Guide • June 2003

Sheet Links
Each sheet in a spreadsheet document can be linked to a sheet from a different document. The
spreadsheet document has a collection of all the sheet links to different source documents.

The interface com.sun.star.sheet.XSheetLinkable is relevant if the current sheet is used as
buffer for an external sheet link. The interfaces provides access to the data of the link. A link is
established using the com.sun.star.sheet.XSheetLinkable interface's link() method. The
method's parameters are:

• The source document's URL. When a sheet link is inserted or updated, the source document is
loaded from its URL. Unsaved changes in a source document that is open in memory are not
included. All URL types that can be used to load files can also be used in links, including HTTP
to link to data from a web server.

• The name of the sheet in the source document from the contents are copied from. If this string
is empty, the source document's first sheet is used, regardless of its name.

• The filter name and options that are used to load the source document. Refer to the 6.1.5 Office
Development - OpenOffice.org Application Environment - Handling Documents chapter. All spread -
sheet file filters can be used, so it is possible, for example, to link to a CSV text file.

• A com.sun.star.sheet.SheetLinkMode enum value that controls how the contents are
copied:

• If the mode is NORMAL, all cells from the source sheet are copied, including formulas.

• If the mode is VALUE, formulas are replaced by their results in the copy.

The link mode, source URL and source sheet name can also be queried and changed using the
getLinkMode(), setLinkMode(), getLinkUrl(), setLinkUrl(), getLinkSheetName() and
setLinkSheetName() methods. Setting the mode to NONE removes the link.

The com.sun.star.sheet.SheetLinks collection contains an entry for every source document
that is used in sheet links. If several sheets are linked to different sheets from the same source
document, there is only one entry for them. The name that is used for the
com.sun.star.container.XNameAccess interface is the source document's URL.

The com.sun.star.sheet.SheetLink service changes a link's source URL, filter or filter options
through the com.sun.star.beans.XPropertySet interface. The
com.sun.star.util.XRefreshable interface is used to update the link. This affects all sheets that
are linked to any sheet from the link's source document.

External references in cell formulas are implemented using hidden linked sheets that show as sheet link
objects.

Cell Area Links
A cell area link is a cell area (range) in a spreadsheet that is linked to a cell area from a different
document.

Chapter 8 Spreadsheet Documents 609

To insert an area link, the com.sun.star.sheet.XAreaLinks interface's insertAtPosition()
method is used with the following parameters:

• The position where the link is placed in the document as a com.sun.star.table.CellAddress
struct.

• The source document's URL is used in the same manner as sheet links.

• A string describing the source range in the source document. This can be the name of a named
range or database range, or a direct cell reference, such as “sheet1.a1:c5”. Note that the
WebQuery import filter creates a named range for each HTML table. These names can be used
also.

• The filter name and filter options are used in the same manner as sheet links.

The removeByIndex() method is used to remove a link.

The com.sun.star.sheet.CellAreaLink service is used to modify or refresh an area link. The
com.sun.star.sheet.XAreaLink interface queries and modifies the link's source range and its
output range in the document. Note that the output range changes in size after updating if the size
of the source range changes.

The com.sun.star.beans.XPropertySet interface changes the link's source URL, filter name and
filter options. Unlike sheet links, these changes affect only one linked area. Additionally, the
RefreshDelay property is used to set an interval in seconds to periodically update the link. If the
value is 0, no automatic updates occur.

The com.sun.star.util.XRefreshable interface is used to update the link.

610 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 111: CellAreaLinks

DDE Links
A DDE link is created whenever the DDE spreadsheet function is used in a cell formula.

The com.sun.star.sheet.DDELink service is only used to query the link's parameters using the
com.sun.star.sheet.XDDELink interface, and refresh it using the
com.sun.star.util.XRefreshable interface. The DDE link's parameters, Application, Topic and
Item are determined by the formula that contains the DDE function, therefore it is not possible to
change these parameters in the link object.

The link's name used for the com.sun.star.container.XNameAccess interface consists of the
three parameter strings concatenated.

8.3.7 DataPilot

DataPilot Tables
The com.sun.star.sheet.DataPilotTables and related services create and modify DataPilot
tables in a spreadsheet.

The method getDataPilotTables() of the interface
com.sun.star.sheet.XDataPilotTablesSupplier returns the interface
com.sun.star.sheet.XDataPilotTables of the collection of all data pilot tables contained in the
spreadsheet.

Chapter 8 Spreadsheet Documents 611

Illustration 112: DDELink

The com.sun.star.sheet.DataPilotTables service is accessed by getting the
com.sun.star.sheet.XDataPilotTablesSupplier interface from a spreadsheet object and
calling the getDataPilotTables() method.

612 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 113: DataPilotTables

Only DataPilot tables that are based on cell data are supported by these services. DataPilot tables created
directly from external data sources or using the com.sun.star.sheet.DataPilotSource service cannot
be created or modified this way.

Creating a New DataPilot Table
The first step to creating a new DataPilot table is to create a new
com.sun.star.sheet.DataPilotDescriptor object by calling the
com.sun.star.sheet.XDataPilotTables interface's createDataPilotDescriptor() method.
The descriptor is then used to describe the DataPilot table's layout and options, and passed to the
insertNewByName() method of XDataPilotTables. The other parameters for insertNewByName
() are the name for the new table, and the position where the table is to be placed on the spread-
sheet.

The com.sun.star.sheet.XDataPilotDescriptor interface offers methods to change the DataP-
ilot table settings:

• The cell range that contains the source data is set with the setSourceRange() method. It is a
com.sun.star.table.CellRangeAddress struct.

• The individual fields are handled using the getDataPilotFields(), getColumnFields(),
getRowFields(), getPageFields(), getDataFields() and getHiddenFields() methods.
The details are discussed below.

• The setTag() method sets an additional string that is stored with the DataPilot table, but does
not influence its results.

• The getFilterDescriptor() method returns a
com.sun.star.sheet.SheetFilterDescriptor object that can be used to apply filter criteria
to the source data. Refer to the section on data operations for details on how to use a filter
descriptor.

The layout of the DataPilot table is controlled using the com.sun.star.sheet.DataPilotFields
service. Each com.sun.star.sheet.DataPilotField object has a property Orientation that
controls where in the DataPilot table the field is used. The
com.sun.star.sheet.DataPilotFieldOrientation enum contains the possible orientations:

• HIDDEN: The field is not used in the table.

• COLUMN: Values from this field are used to determine the columns of the table.

• ROW: Values from this field are used to determine the rows of the table.

• PAGE: The field is used in the table's “page” area, where single values from the field can be
selected.

• DATA: The values from this field are used to calculate the table's data area.

The Function property is used to assign a function to the field. For instance, if the field has a DATA
orientation, this is the function that is used for calculation of the results. If the field has COLUMN or
ROW orientation, it is the function that is used to calculate subtotals for the values from this field.

The getDataPilotFields() method returns a collection containing one
com.sun.star.sheet.DataPilotField entry for each column of source data, and one additional
entry for the “Data” column that becomes visible when two or more fields get the DATA orienta -
tion. Each source column appears only once, even if it is used with several orientations or func-
tions.

The getColumnFields(), getRowFields(), getPageFields() and getDataFields() methods
each return a collection of the fields with the respective orientation. In the case of getDataFields

Chapter 8 Spreadsheet Documents 613

(), a single source column can appear several times if it is used with different functions. The
getHiddenFields() method returns a collection of those fields from the getDataPilotFields()
collection that are not in any of the other collections.

Note: Page fields and the PAGE orientation are not supported by the current implementation. Setting a field's
orientation to PAGE has the same effect as using HIDDEN. The getPageFields() method always returns
an empty collection.

The exact effect of changing a field orientation depends on which field collection the field object
was taken from. If the object is from the getDataPilotFields() collection, the field is added to
the collection that corresponds to the new Orientation value. If the object is from any of the other
collections, the field is removed from the old orientation and added to the new orientation.

The following example creates a simple DataPilot table with one column, row and data field.
(Spreadsheet /SpreadsheetSample.java)
 // --- Create a new DataPilot table ---
 com.sun.star.sheet.XDataPilotTablesSupplier xDPSupp = (com.sun.star.sheet.XDataPilotTablesSupplier)
 UnoRuntime.queryInterface(com.sun.star.sheet.XDataPilotTablesSupplier.class, xSheet);
 com.sun.star.sheet.XDataPilotTables xDPTables = xDPSupp.getDataPilotTables();
 com.sun.star.sheet.XDataPilotDescriptor xDPDesc = xDPTables.createDataPilotDescriptor();

 // set source range (use data range from CellRange test)
 com.sun.star.table.CellRangeAddress aSourceAddress = createCellRangeAddress(xSheet, "A10:C30");
 xDPDesc.setSourceRange(aSourceAddress);

 // settings for fields
 com.sun.star.container.XIndexAccess xFields = xDPDesc.getDataPilotFields();
 Object aFieldObj;
 com.sun.star.beans.XPropertySet xFieldProp;

 // use first column as column field
 aFieldObj = xFields.getByIndex(0);
 xFieldProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xFieldProp.setPropertyValue("Orientation", com.sun.star.sheet.DataPilotFieldOrientation.COLUMN);

 // use second column as row field
 aFieldObj = xFields.getByIndex(1);
 xFieldProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xFieldProp.setPropertyValue("Orientation", com.sun.star.sheet.DataPilotFieldOrientation.ROW);

 // use third column as data field, calculating the sum
 aFieldObj = xFields.getByIndex(2);
 xFieldProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xFieldProp.setPropertyValue("Orientation", com.sun.star.sheet.DataPilotFieldOrientation.DATA);
 xFieldProp.setPropertyValue("Function", com.sun.star.sheet.GeneralFunction.SUM);

 // select output position
 com.sun.star.table.CellAddress aDestAddress = createCellAddress(xSheet, "A40");
 xDPTables.insertNewByName("DataPilotExample", aDestAddress, xDPDesc);

Modifying a DataPilot Table
The com.sun.star.sheet.DataPilotTable service is used to modify an existing DataPilot table.
The object for an existing table is available through the com.sun.star.container.XNameAccess
interface of the com.sun.star.sheet.DataPilotTables service. It implements the
com.sun.star.sheet.XDataPilotDescriptor interface, so that the DataPilot table can be modi-
fied in the same manner as the descriptor for a new table in the preceding section. After any
change to a DataPilot table's settings, the table is automatically recalculated.

Additionally, the com.sun.star.sheet.XDataPilotTable interface offers a getOutputRange()
method that is used to find which range on the spreadsheet the table occupies, and a refresh()
method that recalculates the table without changing any settings.

The following example modifies the table from the previous example to contain a second data
field using the same source column as the existing data field, but using the “average” function
instead. (Spreadsheet /SpreadsheetSample.java)

614 OpenOffice.org 1.1 Developer's Guide • June 2003

 // --- Modify the DataPilot table ---
 Object aDPTableObj = xDPTables.getByName("DataPilotExample");
 xDPDesc = (com.sun.star.sheet.XDataPilotDescriptor)
 UnoRuntime.queryInterface(com.sun.star.sheet.XDataPilotDescriptor.class, aDPTableObj);
 xFields = xDPDesc.getDataPilotFields();

 // add a second data field from the third column, calculating the average
 aFieldObj = xFields.getByIndex(2);
 xFieldProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aFieldObj);
 xFieldProp.setPropertyValue("Orientation", com.sun.star.sheet.DataPilotFieldOrientation.DATA);
 xFieldProp.setPropertyValue("Function", com.sun.star.sheet.GeneralFunction.AVERAGE);

Note how the field object for the third column is taken from the collection returned by getDataPilot-
Fields() to create a second data field. If the field object was taken from the collection returned by getDa-
taFields(), only the existing data field's function would be changed by the setPropertyValue() calls
to that object.

Removing a DataPilot Table
To remove a DataPilot table from a spreadsheet, call the
com.sun.star.sheet.XDataPilotTables interface's removeByName() method, passing the
DataPilot table's name.

DataPilot Sources
The DataPilot feature in OpenOffice.org API Calc makes use of an external component that
provides the tabular results in the DataPilot table using the field orientations and other settings
that are made in the DataPilot dialog or interactively by dragging the fields in the spreadsheet.

Such a component might, for example, connect to an OLAP server, allowing the use of a DataPilot
table to interactively display results from that server.

Chapter 8 Spreadsheet Documents 615

The example that is used here provides four dimensions with the same number of members each,
and one data dimension that uses these members as digits to form integer numbers. A resulting
DataPilot table look similar to the following:

616 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 114: DataPilotSource

hundreds

ones tens 0 1 2

0 0 0 100 200

1 10 110 210

2 20 120 220

1 0 1 101 201

1 11 111 211

2 21 121 221

2 0 2 102 202

1 12 112 212

2 22 122 222

The example uses the following class to hold the settings that are applied to the DataPilot source:
(Spreadsheet /ExampleDataPiloSource.java)
class ExampleSettings
{
 static public final int nDimensionCount = 6;
 static public final int nValueDimension = 4;
 static public final int nDataDimension = 5;
 static public final String [] aDimensionNames = {
 "ones", "tens", "hundreds", "thousands", "value", "" };

 static public final String getMemberName(int nMember) {
 return String.valueOf(nMember);
 }

 public int nMemberCount = 3;
 public java.util.List aColDimensions = new java.util.ArrayList();
 public java.util.List aRowDimensions = new java.util.ArrayList();
}

To create a DataPilot table using a DataPilot source component, three steps are carried out:

1. The application gets the list of available dimensions (fields) from the component.

2. The application applies the user-specified settings to the component.

3. The application gets the results from the component.

The same set of objects are used for all three steps. The root object from which the other objects are
accessed is the implementation of the com.sun.star.sheet.DataPilotSource service.

The com.sun.star.sheet.DataPilotSourceDimensions,
com.sun.star.sheet.DataPilotSourceHierarchies,
com.sun.star.sheet.DataPilotSourceLevels and
com.sun.star.sheet.DataPilotSourceMembers services are accessed using their parent object
interfaces. That is:

• com.sun.star.sheet.DataPilotSourceDimensions is the parent object of
com.sun.star.sheet.XDimensionsSupplier

• com.sun.star.sheet.DataPilotSourceHierarchies is the parent object of
com.sun.star.sheet.XHierarchiesSupplier

• com.sun.star.sheet.DataPilotSourceLevels is the parent object of
com.sun.star.sheet.XLevelsSupplier

• com.sun.star.sheet.DataPilotSourceMembers is the parent object of
com.sun.star.sheet.XMembersSupplier

All contain the com.sun.star.container.XNameAccess interface to access their children.

Chapter 8 Spreadsheet Documents 617

Source Object
An implementation of the com.sun.star.sheet.DataPilotSource service must be registered, so
that a component can be used as a DataPilot source. If any implementations for the service are
present, the External source/interface option in the DataPilot Select Source dialog is enabled. Any
of the implementations can then be selected by its implementation name in the External Source
dialog, along with four option strings labeled “Source”, “Name”, “User” and “Password”. The
four options are passed to the component unchanged.

The option strings are passed to the com.sun.star.lang.XInitialization interface's
initialize() method if that interface is present. The sequence that is passed to the call contains
four strings with the values from the dialog. Note that the “Password” string is only saved in
OpenOffice.org API's old binary file format, but not in the XML-based format. If the component
needs a password, for example, to connect to a database, it must be able to prompt for that pass-
word.

The example below uses the first of the strings to determine how many members each dimension
should have: (Spreadsheet /ExampleDataPiloSource.java)
private ExampleSettings aSettings = new ExampleSettings();

public void initialize(Object[] aArguments) {
 // If the first argument (Source) is a number between 2 and 10,
 // use it as member count, otherwise keep the default value.
 if (aArguments.length >= 1) {
 String aSource = (String) aArguments[0];
 if (aSource != null) {
 try {
 int nValue = Integer.parseInt(aSource);
 if (nValue >= 2 && nValue <= 10)
 aSettings.nMemberCount = nValue;
 } catch (NumberFormatException e) {
 }
 }
 }
}

The source object's com.sun.star.beans.XPropertySet interface is used to apply two settings:
The ColumnGrand and RowGrand properties control if grand totals for columns or rows should be
added. The settings are taken from the DataPilot dialog. The example does not use them.

The com.sun.star.sheet.XDataPilotResults interface is used to query the results from the
component. This includes only the numeric “data” part of the table. In the example table above, it
would be the 9x3 area of cells that are right-aligned. The getResults() call returns a sequence of
rows, where each row is a sequence of the results for that row. The
com.sun.star.sheet.DataResult struct contains the numeric value in the Value member, and a
Flags member contains a combination of the com.sun.star.sheet.DataResultFlags constants:

• HASDATA is set if there is a valid result at the entry's position. A result value of zero is different
from no result, so this must be set only if the result is not empty.

• SUBTOTAL marks a subtotal value that is formatted differently in the DataPilot table output.

• ERROR is set if the result at the entry's position is an error.

In the example table above, all entries have different Value numbers, and a Flags value of
HASDATA. The implementation for the example looks like this:
(Spreadsheet /ExampleDataPiloSource.java)

618 OpenOffice.org 1.1 Developer's Guide • June 2003

public com.sun.star.sheet.DataResult[][] getResults() {
 int[] nDigits = new int[ExampleSettings.nDimensionCount];
 int nValue = 1;
 for (int i=0; i<ExampleSettings.nDimensionCount; i++) {
 nDigits[i] = nValue;
 nValue *= 10;
 }

 int nMemberCount = aSettings.nMemberCount;
 int nRowDimCount = aSettings.aRowDimensions.size();
 int nColDimCount = aSettings.aColDimensions.size();

 int nRows = 1;
 for (int i=0; i<nRowDimCount; i++)
 nRows *= nMemberCount;
 int nColumns = 1;
 for (int i=0; i<nColDimCount; i++)
 nColumns *= nMemberCount;

 com.sun.star.sheet.DataResult[][] aResults = new com.sun.star.sheet.DataResult[nRows][];
 for (int nRow=0; nRow<nRows; nRow++) {
 int nRowVal = nRow;
 int nRowResult = 0;
 for (int nRowDim=0; nRowDim<nRowDimCount; nRowDim++) {
 int nDim = ((Integer)aSettings.aRowDimensions.get(nRowDimCount-nRowDim-1)).intValue();
 nRowResult += (nRowVal % nMemberCount) * nDigits[nDim];
 nRowVal /= nMemberCount;
 }

 aResults[nRow] = new com.sun.star.sheet.DataResult[nColumns];
 for (int nCol=0; nCol<nColumns; nCol++) {
 int nColVal = nCol;
 int nResult = nRowResult;
 for (int nColDim=0; nColDim<nColDimCount; nColDim++) {
 int nDim = ((Integer)
 aSettings.aColDimensions.get(nColDimCount-nColDim-1)).intValue();
 nResult += (nColVal % nMemberCount) * nDigits[nDim];
 nColVal /= nMemberCount;
 }

 aResults[nRow][nCol] = new com.sun.star.sheet.DataResult();
 aResults[nRow][nCol].Flags = com.sun.star.sheet.DataResultFlags.HASDATA;
 aResults[nRow][nCol].Value = nResult;
 }
 }
 return aResults;
}

The com.sun.star.util.XRefreshable interface contains a refresh() method that tells the
component to discard cached results and recalculate the results the next time they are needed. The
addRefreshListener() and removeRefreshListener() methods are not used by OpenOffice.org
API Calc. The refresh() implementation in the example is empty, because the results are always
calculated dynamically.

Dimensions
The com.sun.star.sheet.DataPilotSourceDimensions service contains an entry for each
dimension that can be used as column, row or page dimension, for each possible data (measure)
dimension, and one for the “data layout” dimension that contains the names of the data dimen-
sions.

The example below initializes a dimension's orientation as DATA for the data dimension, and is
otherwise HIDDEN. Thus, when the user creates a new DataPilot table using the example compo-
nent, the data dimension is already present in the “Data” area of the DataPilot dialog. (Spread-
sheet /ExampleDataPiloSource.java)
private ExampleSettings aSettings;
private int nDimension;
private com.sun.star.sheet.DataPilotFieldOrientation eOrientation;

public ExampleDimension(ExampleSettings aSet, int nDim) {
 aSettings = aSet;
 nDimension = nDim;
 eOrientation = (nDim == ExampleSettings.nValueDimension) ?
 com.sun.star.sheet.DataPilotFieldOrientation.DATA :
 com.sun.star.sheet.DataPilotFieldOrientation.HIDDEN;
}

Chapter 8 Spreadsheet Documents 619

The com.sun.star.sheet.DataPilotSourceDimension service contains a
com.sun.star.beans.XPropertySet interface that is used for the following properties of a
dimension:

• Original (read-only) contains the dimension object from which a dimension was cloned, or
null if it was not cloned. A description of the com.sun.star.util.XCloneable interface is
described below.

620 OpenOffice.org 1.1 Developer's Guide • June 2003

• IsDataLayoutDimension (read-only) must contain true if the dimension is the “data layout”
dimension, otherwise false.

• Orientation controls how a dimension is used in the DataPilot table. If it contains the
com.sun.star.sheet.DataPilotFieldOrientation enum values COLUMN or ROW, the dimen -
sion is used as a column or row dimension, respectively. If the value is DATA, the dimension is
used as data (measure) dimension. The PAGE designates a page dimension, but is not currently
used in OpenOffice.org API Calc. If the value is HIDDEN, the dimension is not used.

• Position contains the position of the dimension within the orientation. This controls the order
of the dimensions. If a dimension's orientation is changed, it is added at the end of the dimen-
sions for that orientation, and the Position property reflects that position.

• Function specifies the function that is used to aggregate data for a data dimension.

• UsedHierarchy selects which of the dimension's hierarchies is used in the DataPilot table. See
the section on hierarchies below.

• Filter specifies a list of filter criteria to be applied to the source data before processing. It is
currently not used by OpenOffice.org API Calc.

In the following example, the setPropertyValue() method for the dimension only implements
the modification of Orientation and Position, using two lists to store the order of column and
row dimensions. Page dimensions are not supported in the example.
(Spreadsheet /ExampleDataPiloSource.java)
public void setPropertyValue(String aPropertyName, Object aValue)
 throws com.sun.star.beans.UnknownPropertyException {
 if (aPropertyName.equals("Orientation")) {
 com.sun.star.sheet.DataPilotFieldOrientation eNewOrient =
 (com.sun.star.sheet.DataPilotFieldOrientation) aValue;
 if (nDimension != ExampleSettings.nValueDimension &&
 nDimension != ExampleSettings.nDataDimension &&
 eNewOrient != com.sun.star.sheet.DataPilotFieldOrientation.DATA) {

 // remove from list for old orientation and add for new one
 Integer aDimInt = new Integer(nDimension);
 if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.COLUMN)
 aSettings.aColDimensions.remove(aDimInt);
 else if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.ROW)
 aSettings.aRowDimensions.remove(aDimInt);
 if (eNewOrient == com.sun.star.sheet.DataPilotFieldOrientation.COLUMN)
 aSettings.aColDimensions.add(aDimInt);
 else if (eNewOrient == com.sun.star.sheet.DataPilotFieldOrientation.ROW)
 aSettings.aRowDimensions.add(aDimInt);

 // change orientation
 eOrientation = eNewOrient;
 }
 } else if (aPropertyName.equals("Position")) {
 int nNewPos = ((Integer) aValue).intValue();
 Integer aDimInt = new Integer(nDimension);
 if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.COLUMN) {
 aSettings.aColDimensions.remove(aDimInt);
 aSettings.aColDimensions.add(nNewPos, aDimInt);
 }
 else if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.ROW) {
 aSettings.aRowDimensions.remove(aDimInt);
 aSettings.aRowDimensions.add(nNewPos, aDimInt);
 }
 } else if (aPropertyName.equals("Function") || aPropertyName.equals("UsedHierarchy") ||
 aPropertyName.equals("Filter")) {
 // ignored
 } else
 throw new com.sun.star.beans.UnknownPropertyException();
}

The associated getPropertyValue() method returns the stored values for Orientation and
Position. If it is the data layout dimension, then IsDataLayoutDimension is true, and the
values default for the remaining properties. (Spreadsheet /ExampleDataPiloSource.java)

Chapter 8 Spreadsheet Documents 621

public Object getPropertyValue(String aPropertyName)
 throws com.sun.star.beans.UnknownPropertyException {
 if (aPropertyName.equals("Original"))
 return null;
 else if (aPropertyName.equals("IsDataLayoutDimension"))
 return new Boolean(nDimension == ExampleSettings.nDataDimension);
 else if (aPropertyName.equals("Orientation"))
 return eOrientation;
 else if (aPropertyName.equals("Position")) {
 int nPosition;
 if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.COLUMN)
 nPosition = aSettings.aColDimensions.indexOf(new Integer(nDimension));
 else if (eOrientation == com.sun.star.sheet.DataPilotFieldOrientation.ROW)
 nPosition = aSettings.aRowDimensions.indexOf(new Integer(nDimension));
 else
 nPosition = nDimension;
 return new Integer(nPosition);
 }
 else if (aPropertyName.equals("Function"))
 return com.sun.star.sheet.GeneralFunction.SUM;
 else if (aPropertyName.equals("UsedHierarchy"))
 return new Integer(0);
 else if (aPropertyName.equals("Filter"))
 return new com.sun.star.sheet.TableFilterField[0];
 else
 throw new com.sun.star.beans.UnknownPropertyException();
}

The dimension's com.sun.star.util.XCloneable interface is required when a dimension is used
in multiple positions. The DataPilot dialog allows the use of a column or row dimension addition-
ally as data dimension, and it also allows multiple use of a data dimension by assigning several
functions to it. In both cases, additional dimension objects are created from the original one by
calling the createClone() method. Each clone is given a new name using the
com.sun.star.container.XNamed interface's setName() method, then the different settings are
applied to the objects. A dimension object that was created using the createClone() method must
return the original object that it was created from in the Original property.

The example does not support multiple uses of a dimension, so it always returns null from the
createClone() method, and the Original property is also always null.

Hierarchies
A single dimension can have several hierarchies, that is, several ways of grouping the elements of
the dimension. For example, date values may be grouped:

• in a hierarchy with the levels “year”, “month” and “day of month”.

• in a hierarchy with the levels “year”, “week” and “day of week”.

The property UsedHierarchy of the com.sun.star.sheet.DataPilotSourceDimension service
selects which hierarchy of a dimension is used. The property contains an index into the sequence
of names that is returned by the dimension's getElementNames() method. OpenOffice.org API
Calc currently has no user interface to select a hierarchy, so it uses the hierarchy that the initial
value of the UsedHierarchy property selects.

The com.sun.star.sheet.DataPilotSourceHierarchy service serves as a container to access the
levels object.

In the example, each dimension has only one hierarchy, which in turn has one level.

Levels
Each level of a hierarchy that is used in a DataPilot table corresponds to a column or row showing
its members in the left or upper part of the table. The
com.sun.star.sheet.DataPilotSourceLevel service contains a
com.sun.star.beans.XPropertySet interface that is used to apply the following settings to a
level:

622 OpenOffice.org 1.1 Developer's Guide • June 2003

• The SubTotals property defines a list of functions that are used to calculate subtotals for each
member. If the sequence is empty, no subtotal columns or rows are generated. The
com.sun.star.sheet.GeneralFunction enum value AUTO is used to select “automatic” subto-
tals, determined by the type of the data.

• The ShowEmpty property controls if result columns or rows are generated for members that
have no data.

Both of these settings can be modified by the user in the “Data Field” dialog. The example does
not use them.

The com.sun.star.sheet.XDataPilotMemberResults interface is used to get the result header
column that is displayed below the level's name for a row dimension, or the header row for a
column dimension. The sequence returned from the getResults() call must have the same size as
the data result's columns or rows respectively, or be empty. If the sequence is empty, or none of
the entries contains the HASMEMBER flag, the level is not shown.

The com.sun.star.sheet.MemberResult struct contains the following members:

• Name is the name of the member that is represented by the entry, exactly as returned by the
member object's getName() method. It is used to find the member object, for example when the
user double-clicks on the cell.

• Caption is the string that will be displayed in the cell. It may or may not be the same as Name.

• Flags indicates the kind of result the entry represents. It can be a combination of the
com.sun.star.sheet.MemberResultFlags constants:

• HASMEMBER indicates there is a member that belongs to this entry.

• SUBTOTAL marks an entry that corresponds to a subtotal column or row. The HASMEMBER
should be set.

• CONTINUE marks an entry that is a continuation of the previous entry. In this case, none of
the others are set, and the Name and Caption members are both empty.

In the example table shown above, the resulting sequence for the “ones” level would consist of:

• an entry containing the name and caption “1” and the HASMEMBER flag

• two entries containing only the CONTINUE flag

• the same repeated for member names “2” and “3”.

The implementation for the example looks similar to this:
(Spreadsheet /ExampleDataPiloSource.java)

Chapter 8 Spreadsheet Documents 623

private ExampleSettings aSettings;
private int nDimension;

public com.sun.star.sheet.MemberResult[] getResults() {
 int nDimensions = 0;
 int nPosition = aSettings.aColDimensions.indexOf(new Integer(nDimension));
 if (nPosition >= 0)
 nDimensions = aSettings.aColDimensions.size();
 else {
 nPosition = aSettings.aRowDimensions.indexOf(new Integer(nDimension));
 if (nPosition >= 0)
 nDimensions = aSettings.aRowDimensions.size();
 }

 if (nPosition < 0)
 return new com.sun.star.sheet.MemberResult[0];

 int nMembers = aSettings.nMemberCount;
 int nRepeat = 1;
 int nFill = 1;
 for (int i=0; i<nDimensions; i++) {
 if (i < nPosition)
 nRepeat *= nMembers;
 else if (i > nPosition)
 nFill *= nMembers;
 }
 int nSize = nRepeat * nMembers * nFill;

 com.sun.star.sheet.MemberResult[] aResults = new com.sun.star.sheet.MemberResult[nSize];
 int nResultPos = 0;
 for (int nOuter=0; nOuter<nRepeat; nOuter++) {
 for (int nMember=0; nMember<nMembers; nMember++) {
 aResults[nResultPos] = new com.sun.star.sheet.MemberResult();
 aResults[nResultPos].Name = ExampleSettings.getMemberName(nMember);
 aResults[nResultPos].Caption = aResults[nResultPos].Name;
 aResults[nResultPos].Flags = com.sun.star.sheet.MemberResultFlags.HASMEMBER;
 ++nResultPos;

 for (int nInner=1; nInner<nFill; nInner++) {
 aResults[nResultPos] = new com.sun.star.sheet.MemberResult();
 aResults[nResultPos].Flags = com.sun.star.sheet.MemberResultFlags.CONTINUE;
 ++nResultPos;
 }
 }
 }
 return aResults;
}

Members
The com.sun.star.sheet.DataPilotSourceMember service contains two settings that are
accessed through the com.sun.star.beans.XPropertySet interface:

• If the boolean IsVisible property is false, the member and its data are hidden. There is
currently no user interface to change this property.

• The boolean ShowDetails property controls if the results for a member should be detailed in
the following level. If a member has this property set to false, only a single result column or
row is generated for each data dimension. The property can be changed by the user by double-
clicking on a result header cell for the member.

These properties are not used in the example.

8.3.8 Protecting Spreadsheets
The interface com.sun.star.document.XActionLockable protects this cell from painting or
updating during changes. The interface can be used to optimize the performance of complex
changes, for instance, inserting or deleting formatted text.

The interface com.sun.star.util.XProtectable contains methods to protect and unprotect the
spreadsheet with a password. Protecting the spreadsheet protects the locked cells only.

624 OpenOffice.org 1.1 Developer's Guide • June 2003

• The methods protect() and unprotect() to switch the protection on and off. If a wrong pass-
word is used to unprotect the spreadsheet, it leads to an exception.

• The method isProtected() returns the protection state of the spreadsheet as a boolean value.

8.3.9 Sheet Outline
The spreadsheet interface com.sun.star.sheet.XSheetOutline contains all the methods to
control the row and column outlines of a spreadsheet:

 Methods of com.sun.star.sheet.XSheetOutline
group() Creates a new outline group and the method ungroup() removes the

innermost outline group for a cell range. The parameter nOrientation
(type com.sun.star.table.TableOrientation) selects the orien-
tation of the outline (columns or rows).

autoOutline() Inserts outline groups for a cell range depending on formula references.

clearOutline() Removes all outline groups from the sheet.

hideDetail() Collapses an outline group.

showDetail() Reopens an outline group.

showLevel() Shows the specified number of outline group levels and hides the others.

8.3.10 Detective
The spreadsheet interface com.sun.star.sheet.XSheetAuditing supports the detective func-
tionality of the spreadsheet.

Methods of com.sun.star.sheet.XSheetAuditing
hideDependents()
hidePrecedents()

Hides the last arrows to dependent or precedent cells of a formula cell.
Repeated calls of the methods shrink the chains of arrows.

showDependents()
showPrecedents()

Adds arrows to the next dependent or precedent cells of a formula cell.
Repeated calls of the methods extend the chains of arrows.

showErrors() Inserts arrows to all cells that cause an error in the specified cell.

showInvalid() Marks all cells that contain invalid values.

clearArrows() Removes all auditing arrows from the spreadsheet.

8.3.11 Other Table Operations

Data Validation
Data validation checks if a user entered valid entries.

Chapter 8 Spreadsheet Documents 625

A cell or cell range object contains the properties Validation and ValidationLocal. They return
the interface com.sun.star.beans.XPropertySet of the validation object
com.sun.star.sheet.TableValidation. The objects of both properties are equal, except the
representation of formulas. The ValidationLocal property uses function names in the current
language).

After the validation settings are changed, the validation object is reinserted into the property set of the cell or
cell range.

• Type (type com.sun.star.sheet.ValidationType): Describes the type of data the cells
contain. In text cells, it is possible to check the length of the text.

• IgnoreBlankCells: Determines if blank cells are valid.

• ShowInputMessage, InputTitle and InputMessage: These properties describe the message
that appears if a cell of the validation area is selected.

• ShowErrorMessage, ErrorTitle, ErrorMessage and ErrorAlertStyle (type
com.sun.star.sheet.ValidationAlertStyle): These properties describe the error message
that appear if an invalid value has been entered. If the alert style is STOP, all invalid values are
rejected. With the alerts WARNING and INFO, it is possible to keep invalid values. The alert
MACRO starts a macro on invalid values. The property ErrorTitle has to contain the name of
the macro.

The interface com.sun.star.sheet.XSheetCondition sets the conditions for valid values. The
comparison operator, the first and second formula and the base address for relative references in
formulas.

626 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 115: TableValidation

The following example enters values between 0.0 and 5.0 in a cell range. The xSheet is the inter -
face com.sun.star.sheet.XSpreadsheet of a spreadsheet.
(Spreadsheet /SpreadsheetSample.java)
 // --- Data validation ---
 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName("A7:C7");
 com.sun.star.beans.XPropertySet xCellPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xCellRange);

 // validation properties
 com.sun.star.beans.XPropertySet xValidPropSet = (com.sun.star.beans.XPropertySet)
 xCellPropSet.getPropertyValue("Validation");
 xValidPropSet.setPropertyValue("Type", com.sun.star.sheet.ValidationType.DECIMAL);
 xValidPropSet.setPropertyValue("ShowErrorMessage", new Boolean(true));
 xValidPropSet.setPropertyValue("ErrorMessage", "This is an invalid value!");
 xValidPropSet.setPropertyValue("ErrorAlertStyle", com.sun.star.sheet.ValidationAlertStyle.STOP);

 // condition
 com.sun.star.sheet.XSheetCondition xCondition = (com.sun.star.sheet.XSheetCondition)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSheetCondition.class, xValidPropSet);
 xCondition.setOperator(com.sun.star.sheet.ConditionOperator.BETWEEN);
 xCondition.setFormula1("0.0");
 xCondition.setFormula2("5.0");

 // apply on cell range
 xCellPropSet.setPropertyValue("Validation", xValidPropSet);

Data Consolidation
The data consolidation feature calculates results based on several cell ranges.

The com.sun.star.sheet.XConsolidatable's method createConsolidationDescriptor()
returns the interface com.sun.star.sheet.XConsolidationDescriptor of a consolidation
descriptor (service com.sun.star.sheet.ConsolidationDescriptor). This descriptor contains
all data needed for a consolidation. It is possible to get and set all properties:

• getFunction() and setFunction(): The function for calculation, type
com.sun.star.sheet.GeneralFunction.

• getSources() and setSources(): A sequence of com.sun.star.table.CellRangeAddress
structs with all cell ranges containing the source data.

• getStartOutputPosition() and setStartOutputPosition(): A
com.sun.star.table.CellAddress containing the first cell of the result cell range.

• getUseColumnHeaders(), setUseColumnHeaders(), getUseRowHeaders() and setUseRow-
Headers(): Determine if the first column or row of each cell range is used to find matching
data.

Chapter 8 Spreadsheet Documents 627

Illustration 116: ConsolidationDescriptor

• getInsertLinks() and setInsertLinks(): Determine if the results are linked to the source
data (formulas are inserted) or not (only results are inserted).

The method consolidate() of the interface com.sun.star.sheet.XConsolidatable performs a
consolidation with the passed descriptor.

Charts

The service com.sun.star.table.TableChart represents a chart object. The interface
com.sun.star.table.XTableChart provides access to the cell range of the source data and
controls the existence of column and row headers.

628 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 117: TableCharts

The service com.sun.star.table.TableChart does not represent the chart document, but the object in
the table that contains the chart document. The interface
com.sun.star.document.XEmbeddedObjectSupplier provides access to that chart document. For
further information, see 10 Charts.

The interface com.sun.star.container.XNamed retrieves and changes the name of the chart
object.

For further information about charts, see 10 Charts.

The service com.sun.star.table.TableCharts represents the collection of all chart objects
contained in the table. It implements the interfaces:

• com.sun.star.table.XTableCharts to create new charts and accessing them by their names.

• com.sun.star.container.XIndexAccess to access the charts by the insertion index.

• com.sun.star.container.XEnumerationAccess to create an enumeration of all charts.

The following example shows how xCharts can be a com.sun.star.table.XTableCharts inter -
face of a collection of charts. (Spreadsheet /GeneralTableSample.java)
 // *** Inserting CHARTS ***
 String aName = "newChart";
 com.sun.star.awt.Rectangle aRect = new com.sun.star.awt.Rectangle();
 aRect.X = 10000;
 aRect.Y = 3000;
 aRect.Width = aRect.Height = 5000;

 com.sun.star.table.CellRangeAddress[] aRanges = new com.sun.star.table.CellRangeAddress[1];
 aRanges[0] = new com.sun.star.table.CellRangeAddress();
 aRanges[0].Sheet = aRanges[0].StartColumn = aRanges[0].EndColumn = 0;
 aRanges[0].StartRow = 0; aRanges[0].EndRow = 9;

 // Create the chart.
 xCharts.addNewByName(aName, aRect, aRanges, false, false);

 // Get the chart by name.
 Object aChartObj = xCharts.getByName(aName);
 com.sun.star.table.XTableChart xChart = (com.sun.star.table.XTableChart)
 UnoRuntime.queryInterface(com.sun.star.table.XTableChart.class, aChartObj);

 // Query the state of row and column headers.
 aText = "Chart has column headers: ";
 aText += xChart.getHasColumnHeaders() ? "yes" : "no";
 System.out.println(aText);
 aText = "Chart has row headers: ";
 aText += xChart.getHasRowHeaders() ? "yes" : "no";
 System.out.println(aText);

Scenarios
A set of scenarios contains different selectable cell contents for one or more cell ranges in a spread-
sheet. The data of each scenario in this set is stored in a hidden sheet following the scenario sheet.
To change the scenario's data, its hidden sheet has to be modified.

Chapter 8 Spreadsheet Documents 629

The com.sun.star.sheet.XScenariosSupplier's method getScenarios() returns the interface
com.sun.star.sheet.XScenarios of the scenario set of the spreadsheet. This scenario set is
represented by the service com.sun.star.sheet.Scenarios containing spreadsheet objects. It is
possible to access the scenarios through their names that is equal to the name of the corresponding
spreadsheet, their index, or using an enumeration (represented by the service
com.sun.star.sheet.ScenariosEnumeration).

The interface com.sun.star.sheet.XScenarios inserts and removes scenarios:

• The method addNewByName() adds a scenario with the given name that contains the specified
cell ranges.

• The method removeByName() removes the scenario (the spreadsheet) with the given name.

630 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 118: Scenarios

The following method shows how to create a scenario: (Spreadsheet /SpreadsheetSample.java)
/** Inserts a scenario containing one cell range into a sheet and applies the value array.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aRange The range address for the scenario.
 @param aValueArray The array of cell contents.
 @param aScenarioName The name of the new scenario.
 @param aScenarioComment The user comment for the scenario.
 */
public void insertScenario(
 com.sun.star.sheet.XSpreadsheet xSheet,
 String aRange,
 Object[][] aValueArray,
 String aScenarioName,
 String aScenarioComment) throws RuntimeException, Exception {
 // get the cell range with the given address
 com.sun.star.table.XCellRange xCellRange = xSheet.getCellRangeByName(aRange);

 // create the range address sequence
 com.sun.star.sheet.XCellRangeAddressable xAddr = (com.sun.star.sheet.XCellRangeAddressable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeAddressable.class, xCellRange);
 com.sun.star.table.CellRangeAddress[] aRangesSeq = new com.sun.star.table.CellRangeAddress[1];
 aRangesSeq[0] = xAddr.getRangeAddress();

 // create the scenario
 com.sun.star.sheet.XScenariosSupplier xScenSupp = (com.sun.star.sheet.XScenariosSupplier)
 UnoRuntime.queryInterface(com.sun.star.sheet.XScenariosSupplier.class, xSheet);
 com.sun.star.sheet.XScenarios xScenarios = xScenSupp.getScenarios();
 xScenarios.addNewByName(aScenarioName, aRangesSeq, aScenarioComment);
 // insert the values into the range
 com.sun.star.sheet.XCellRangeData xData = (com.sun.star.sheet.XCellRangeData)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeData.class, xCellRange);
 xData.setDataArray(aValueArray);
}

The service com.sun.star.sheet.Spreadsheet implements the interface
com.sun.star.sheet.XScenario to modify an existing scenario:

• The method getIsScenario() tests if this spreadsheet is used to store scenario data.

• The methods getScenarioComment() and setScenarioComment() retrieves and sets the user
comment for this scenario.

• The method addRanges() adds new cell ranges to the scenario.

• The method apply() copies the data of this scenario to the spreadsheet containing the scenario
set, that is, it makes the scenario visible.

The following method shows how to activate a scenario: (Spreadsheet /SpreadsheetSample.java)
/** Activates a scenario.
 @param xSheet The XSpreadsheet interface of the spreadsheet.
 @param aScenarioName The name of the scenario.
*/
public void showScenario(com.sun.star.sheet.XSpreadsheet xSheet,
 String aScenarioName) throws RuntimeException, Exception {
 // get the scenario set
 com.sun.star.sheet.XScenariosSupplier xScenSupp = (com.sun.star.sheet.XScenariosSupplier)
 UnoRuntime.queryInterface(com.sun.star.sheet.XScenariosSupplier.class, xSheet);
 com.sun.star.sheet.XScenarios xScenarios = xScenSupp.getScenarios();

 // get the scenario and activate it
 Object aScenarioObj = xScenarios.getByName(aScenarioName);
 com.sun.star.sheet.XScenario xScenario = (com.sun.star.sheet.XScenario)
 UnoRuntime.queryInterface(com.sun.star.sheet.XScenario.class, aScenarioObj);
 xScenario.apply();
}

Chapter 8 Spreadsheet Documents 631

8.4 Overall Document Features

8.4.1 Styles
A style contains all formatting properties for a specific object. All styles of the same type are
contained in a collection named a style family. Each style family has a specific name to identify it in
the collection. In OpenOffice.org API Calc, there are two style families named CellStyles and
PageStyles. A cell style can be applied to a cell, a cell range, or all cells of the spreadsheet. A page
style can be applied to a spreadsheet itself.

The collection of style families is available from the spreadsheet document with the
com.sun.star.style.XStyleFamiliesSupplier's method getStyleFamilies(). The general
handling of styles is described in 8.4.1 Spreadsheet Documents - Overall Document Features - Styles,
therefore this chapter focuses on the spreadsheet specific style properties.

632 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 119: StyleFamilies

A new style is inserted into the family container,then it is possible to set any properties.

Cell Styles
Cell styles are predefined packages of format settings that are applied in a single step.

A cell style is represented by the service com.sun.star.sheet.TableCellStyle. If a formatting
property is applied directly to a cell, it covers the property of the applied cell style. This service
does not support the property CellStyle. The name of the style is set with the interface
com.sun.star.container.XNamed.

The following example creates a new cell style with gray background. The xDocument is the
com.sun.star.sheet.XSpreadsheetDocument interface of a spreadsheet document. (Spread-
sheet /SpreadsheetSample.java)

Chapter 8 Spreadsheet Documents 633

Illustration 120: CellStyle

 // get the cell style container
 com.sun.star.style.XStyleFamiliesSupplier xFamiliesSupplier =
 (com.sun.star.style.XStyleFamiliesSupplier) UnoRuntime.queryInterface(
 com.sun.star.style.XStyleFamiliesSupplier.class, xDocument);
 com.sun.star.container.XNameAccess xFamiliesNA = xFamiliesSupplier.getStyleFamilies();
 Object aCellStylesObj = xFamiliesNA.getByName("CellStyles");
 com.sun.star.container.XNameContainer xCellStylesNA = (com.sun.star.container.XNameContainer)
 UnoRuntime.queryInterface(com.sun.star.container.XNameContainer.class, aCellStylesObj);

 // create a new cell style
 com.sun.star.lang.XMultiServiceFactory xServiceManager = (com.sun.star.lang.XMultiServiceFactory)
 UnoRuntime.queryInterface(com.sun.star.lang.XMultiServiceFactory.class, xDocument);
 Object aCellStyle = xServiceManager.createInstance("com.sun.star.style.CellStyle");
 xCellStylesNA.insertByName("MyNewCellStyle", aCellStyle);

 // modify properties of the new style
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aCellStyle);
 xPropSet.setPropertyValue("CellBackColor", new Integer(0x888888));
 xPropSet.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));

Page Styles
A page style is represented by the service com.sun.star.sheet.TablePageStyle. It contains the
service com.sun.star.style.PageStyle and additional spreadsheet specific page properties.

634 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 121: TablePageStyle

The properties LeftPageFooterContent, LeftPageHeaderContent, RightPageFooterContent
and RightPageHeaderContent return the interface
com.sun.star.sheet.XHeaderFooterContent for the headers and footers for the left and right
pages. Headers and footers are represented by the service
com.sun.star.sheet.HeaderFooterContent. Each header or footer object contains three text
objects for the left, middle and right portion of a header or footer. The methods getLeftText(),
getCenterText() and getRightText() return the interface com.sun.star.text.XText of these
text portions.

After the text of a header or footer is changed, it is reinserted into the property set of the page style.

8.4.2 Function Handling
This section describes the services which handle spreadsheet functions.

Calculating Function Results
The com.sun.star.sheet.FunctionAccess service calls any spreadsheet function and gets its
result without having to insert a formula into a spreadsheet document.

Chapter 8 Spreadsheet Documents 635

The service can be instantiated through the service manager. The
com.sun.star.sheet.XFunctionAccess interface contains only one method, callFunction().
The first parameter is the name of the function to call. The name has to be the function's program-
matic name.

636 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 122: FunctionAccess

• For a built-in function, the English name is always used, regardless of the application's UI
language.

• For an add- in function, the complete internal name that is the add- in component's service
name, followed by a dot and the function's name as defined in the interface. For the getIncre-
mented function in the example from the add- in section, this would be:
“com.sun.star.sheet.addin.ExampleAddIn.getIncremented”.

The second parameter to callFunction() is a sequence containing the function arguments. The
supported types for each argument are described in the com.sun.star.sheet.XFunctionAccess
interface description, and are similar to the argument types for add- in functions. The following
example passes two arguments to the ZTEST function, an array of values and a single value.
(Spreadsheet /SpreadsheetSample.java)
 // --- Calculate a function ---
 Object aFuncInst = xServiceManager.createInstance("com.sun.star.sheet.FunctionAccess");
 com.sun.star.sheet.XFunctionAccess xFuncAcc = (com.sun.star.sheet.XFunctionAccess)
 UnoRuntime.queryInterface(com.sun.star.sheet.XFunctionAccess.class, aFuncInst);
 // put the data into a two-dimensional array
 double[][] aData = {{1.0, 2.0, 3.0}};
 // construct the array of function arguments
 Object[] aArgs = new Object[2];
 aArgs[0] = aData;
 aArgs[1] = new Double(2.0);
 Object aResult = xFuncAcc.callFunction("ZTEST", aArgs);
 System.out.println("ZTEST result for data {1,2,3} and value 2 is "
 + ((Double)aResult).doubleValue());

The implementation of com.sun.star.sheet.FunctionAccess uses the same internal structures as a
spreadsheet document, therefore it is bound by the same limitations, such as the limit of 32000 rows exist for
the function arguments.

Information about Functions
The services com.sun.star.sheet.FunctionDescriptions and
com.sun.star.sheet.FunctionDescription provide help texts about the available spreadsheet
cell functions, including add- in functions and their arguments. This is the same information that
OpenOffice.org API Calc displays in the function AutoPilot.

Chapter 8 Spreadsheet Documents 637

The com.sun.star.sheet.FunctionDescriptions service is instantiated through the service
manager. It provides three different methods to access the information for the different functions:

• By name through the com.sun.star.container.XNameAccess interface.

• By index through the com.sun.star.container.XIndexAccess interface.

• By function identifier through the com.sun.star.sheet.XFunctionDescriptions interface's
getById() method. The function identifier is the same used in the
com.sun.star.sheet.RecentFunctions service.

The com.sun.star.sheet.FunctionDescription that is returned by any of these calls is a
sequence of com.sun.star.beans.PropertyValue structs. To access one of these properties, loop
through the sequence, looking for the desired property's name in the Name member. The Argu-
ments property contains a sequence of com.sun.star.sheet.FunctionArgument structs, one for
each argument that the function accepts. The struct contains the name and description of the argu-
ment, as well as a boolean flag showing if the argument is optional.

All of the strings contained in the com.sun.star.sheet.FunctionDescription service are to be used
in user interaction, and therefore translated to the application's UI language. They cannot be used where
programmatic function names are expected, for example, the com.sun.star.sheet.FunctionAccess
service.

The Recently Used Functions section below provides an example on how to use the
com.sun.star.sheet.FunctionDescriptions service.

638 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 123: FunctionDescriptions

Recently Used Functions
The com.sun.star.sheet.RecentFunctions service provides access to the list of recently used
functions of the spreadsheet application, that is displayed in the AutoPilot:Functions and the
Function List window for example.

The service can be instantiated through the service manager. The
com.sun.star.sheet.XRecentFunctions interface's getRecentFunctionIds() method returns a
sequence of function identifiers that are used with the
com.sun.star.sheet.FunctionDescriptions service. The setRecentFunctionIds() method
changes the list. If the parameter to the setRecentFunctionIds() call contains more entries than
the application handles, only the first entries are used. The maximum size of the list of recently
used functions, currently 10, can be queried with the getMaxRecentFunctions() method.

The following example demonstrates the use of the com.sun.star.sheet.RecentFunctions and
com.sun.star.sheet.FunctionDescriptions services. (Spreadsheet /SpreadsheetSample.java)
 // --- Get the list of recently used functions ---
 Object aRecInst = xServiceManager.createInstance("com.sun.star.sheet.RecentFunctions");
 com.sun.star.sheet.XRecentFunctions xRecFunc = (com.sun.star.sheet.XRecentFunctions)
 UnoRuntime.queryInterface(com.sun.star.sheet.XRecentFunctions.class, aRecInst);
 int[] nRecentIds = xRecFunc.getRecentFunctionIds();
 // --- Get the names for these functions ---
 Object aDescInst = xServiceManager.createInstance("com.sun.star.sheet.FunctionDescriptions");
 com.sun.star.sheet.XFunctionDescriptions xFuncDesc = (com.sun.star.sheet.XFunctionDescriptions)
 UnoRuntime.queryInterface(com.sun.star.sheet.XFunctionDescriptions.class, aDescInst);
 System.out.print("Recently used functions: ");
 for (int nFunction=0; nFunction<nRecentIds.length; nFunction++) {
 com.sun.star.beans.PropertyValue[] aProperties = xFuncDesc.getById(nRecentIds[nFunction]);
 for (int nProp=0; nProp<aProperties.length; nProp++)
 if (aProperties[nProp].Name.equals("Name"))
 System.out.print(aProperties[nProp].Value + " ");
 }
 System.out.println();

8.4.3 Settings
The com.sun.star.sheet.GlobalSheetSettings service contains settings that affect the whole
spreadsheet application. It can be instantiated through the service manager. The properties are
accessed using the com.sun.star.beans.XPropertySet interface.

Chapter 8 Spreadsheet Documents 639

Illustration 124: RecentFunctions

The following example gets the list of user-defined sort lists from the settings and displays them:
(Spreadsheet /SpreadsheetSample.java)
 // --- Get the user defined sort lists ---
 Object aSettings = xServiceManager.createInstance("com.sun.star.sheet.GlobalSheetSettings");
 com.sun.star.beans.XPropertySet xPropSet = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, aSettings);
 String[] aEntries = (String[]) xPropSet.getPropertyValue("UserLists");
 System.out.println("User defined sort lists:");
 for (int i=0; i<aEntries.length; i++)
 System.out.println(aEntries[i]);

8.5 Spreadsheet Document Controller

8.5.1 Spreadsheet View
The com.sun.star.sheet.SpreadsheetView service is the spreadsheet's extension of the
com.sun.star.frame.Controller service and represents a table editing view for a spreadsheet
document.

640 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 125: GlobalSheetSettings

The page preview does not have an API representation.

The view object is the spreadsheet application's controller object as described in the chapter 6.1.1
Office Development - OpenOffice.org Application Environment - Overview - Framework API - Frame-
Controller-Model Paradigm. The com.sun.star.frame.XController,
com.sun.star.frame.XDispatchProvider and com.sun.star.ui.XContextMenuInterception
interfaces work as described in that chapter.

Chapter 8 Spreadsheet Documents 641

Illustration 126: SpreadsheetView

The com.sun.star.view.XSelectionSupplier interface queries and modifies the view's selec-
tion. The selection in a spreadsheet view can be a com.sun.star.sheet.SheetCell,
com.sun.star.sheet.SheetCellRange, com.sun.star.sheet.SheetCellRanges,
com.sun.star.drawing.Shape or com.sun.star.drawing.Shapes object.

The com.sun.star.sheet.XSpreadsheetView interface gives access to the spreadsheet that is
displayed in the view. The getActiveSheet() method returns the active sheet's object, the setAc-
tiveSheet() method switches to a different sheet. The parameter to setActiveSheet() must be a
sheet of the view's document.

The com.sun.star.sheet.XViewSplitable interface splits a view into two parts or panes, hori-
zontally and vertically. The splitAtPosition() method splits the view at the specified pixel posi-
tions. To remove the split, a position of 0 is passed. The getIsWindowSplit() method returns
true if the view is split, the getSplitHorizontal() and getSplitVertical() methods return
the pixel positions where the view is split. The getSplitColumn() and getSplitRow() methods
return the cell column or row that corresponds to the split position, and are used with frozen
panes as discussed below.

The com.sun.star.sheet.XViewFreezable interface is used to freeze a number of columns and
rows in the left and upper part of the view. The freezeAtPosition() method freezes the speci-
fied number of columns and rows. This also sets the split positions accordingly. The hasFrozen-
Panes() method returns true if the columns or rows are frozen. A view can only have frozen
columns or rows, or normal split panes at a time.

If a view is split or frozen, it has up to four view pane objects that represent the individual parts.
These are accessed using the com.sun.star.container.XIndexAccess interface. If a view is not
split, it contains only one pane object. The active pane of a spreadsheet view is also accessed using
the com.sun.star.sheet.SpreadsheetViewPane service's interfaces directly with the
com.sun.star.sheet.SpreadsheetView service that inherits them.

The com.sun.star.sheet.XRangeSelection interface is explained in the “Range Selection”
chapter below.

The following example uses the com.sun.star.sheet.XViewFreezable interface to freeze the
first column and the first two rows: (Spreadsheet /ViewSample.java)
 // freeze the first column and first two rows
 com.sun.star.sheet.XViewFreezable xFreeze = (com.sun.star.sheet.XViewFreezable)
 UnoRuntime.queryInterface(com.sun.star.sheet.XViewFreezable.class, xController);
 xFreeze.freezeAtPosition(1, 2);

8.5.2 View Panes
The com.sun.star.sheet.SpreadsheetViewPane service represents a pane in a view that shows
a rectangular area of the document. The exposed area of a view pane always starts at a cell
boundary. The com.sun.star.sheet.XViewPane interface's getFirstVisibleColumn(),
getFirstVisibleRow(), setFirstVisibleColumn() and setFirstVisibleRow() methods query
and set the start of the exposed area. The getVisibleRange() method returns a
com.sun.star.table.CellRangeAddress struct describing which cells are shown in the pane.
Columns or rows that are only partly visible at the right or lower edge of the view are not
included.

The com.sun.star.sheet.XCellRangeReferrer interface gives direct access to the same cell
range of exposed cells that are addressed by the getVisibleRange() return value.

The com.sun.star.view.XControlAccess interface's getControl() method gives access to a
control model's control for the view pane. Refer to the chapter 13.2 Forms - Models and Views for
additional information.

642 OpenOffice.org 1.1 Developer's Guide • June 2003

The example below retrieves the cell range that is shown in the second pane. It is the lower left one
after freezing both columns and rows, and assigns a cell background:
(Spreadsheet /ViewSample.java)
 // get the cell range shown in the second pane and assign a cell background to them
 com.sun.star.container.XIndexAccess xIndex = (com.sun.star.container.XIndexAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XIndexAccess.class, xController);
 Object aPane = xIndex.getByIndex(1);
 com.sun.star.sheet.XCellRangeReferrer xRefer = (com.sun.star.sheet.XCellRangeReferrer)
 UnoRuntime.queryInterface(com.sun.star.sheet.XCellRangeReferrer.class, aPane);
 com.sun.star.table.XCellRange xRange = xRefer.getReferredCells();
 com.sun.star.beans.XPropertySet xRangeProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xRange);
 xRangeProp.setPropertyValue("IsCellBackgroundTransparent", new Boolean(false));
 xRangeProp.setPropertyValue("CellBackColor", new Integer(0xFFFFCC));

8.5.3 View Settings
The properties from the com.sun.star.sheet.SpreadsheetViewSettings service are accessed
through the com.sun.star.beans.XPropertySet interface controlling the appearance of the
view. Most of the properties correspond to settings in the options dialog. The ShowObjects, Show-
Charts and ShowDrawing properties take values of 0 for “show”, 1 for “hide”, and 2 for “place-
holder display”.

The following example changes the view to display green grid lines:
(Spreadsheet /ViewSample.java)
 // change the view to display green grid lines
 com.sun.star.beans.XPropertySet xProp = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(com.sun.star.beans.XPropertySet.class, xController);
 xProp.setPropertyValue("ShowGrid", new Boolean(true));
 xProp.setPropertyValue("GridColor", new Integer(0x00CC00));

8.5.4 Range Selection
The view's com.sun.star.sheet.XRangeSelection interface is used to let a user interactively
select a cell range in the view, independently of the view's selection. This is used for dialogs that
require a cell reference as input. While the range selection is active, a small dialog is shown,
similar to the minimized state of OpenOffice.org API's own dialogs that allow cell reference input.

Chapter 8 Spreadsheet Documents 643

Before the range selection mode is started, a listener is registered using the addRangeSelection-
Listener() method. The listener implements the
com.sun.star.sheet.XRangeSelectionListener interface. Its done() or aborted() method is
called when the selection is finished or aborted. The com.sun.star.sheet.RangeSelectionEvent
struct that is passed to the calls contains the selected range in the RangeDescriptor member. It is
a string because the user can type into the minimized dialog during range selection.

In the following example, the listener implementation stores the result in a member in the done()
method, and notifies the main thread about the completion of the selection in the done() and
aborted() methods: (Spreadsheet /ViewSample.java)

644 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 127: XRangeSelection interface

private class ExampleRangeListener implements com.sun.star.sheet.XRangeSelectionListener {
 public String aResult;

 public void done(com.sun.star.sheet.RangeSelectionEvent aEvent) {
 aResult = aEvent.RangeDescriptor;
 synchronized (this) {
 notify();
 }
 }

 public void aborted(com.sun.star.sheet.RangeSelectionEvent aEvent) {
 synchronized (this) {
 notify();
 }
 }

 public void disposing(com.sun.star.lang.EventObject aObj) {
 }
}

It is also possible to add another listener using the addRangeSelectionChangeListener()
method. This listener implements the com.sun.star.sheet.XRangeSelectionChangeListener
interface, and its descriptorChanged() method is called during the selection when the selection
changes. Using this listener normally is not necessary.

After registering the listeners, the range selection mode is started using the startRangeSelection
() method. The parameter to that method is a sequence of property values with properties from
the com.sun.star.sheet.RangeSelectionArguments service:

• InitialValue specifies an existing selection value that is shown in the dialog and highlighted
in the view when the selection mode is started.

• Title is the title for the range selection dialog.

• CloseOnMouseRelease specifies when the selection mode is ended. If the value is true, selec-
tion is ended when the mouse button is released after selecting a cell range. If it is false or not
specified, the user presses the Shrink button in the dialog to end selection mode.

The startRangeSelection() method returns immediately after starting the range selection
mode. This allows it to be called from a dialog's event handler. The abortRangeSelection()
method is used to cancel the range selection mode programmatically.

The following example lets the user pick a range, and then selects that range in the view. Note that
the use of wait to wait for the end of the selection is not how a GUI application normally handles
the events. (Spreadsheet /ViewSample.java)
 // let the user select a range and use it as the view's selection
 com.sun.star.sheet.XRangeSelection xRngSel = (com.sun.star.sheet.XRangeSelection)
 UnoRuntime.queryInterface(com.sun.star.sheet.XRangeSelection.class, xController);
 ExampleRangeListener aListener = new ExampleRangeListener();
 xRngSel.addRangeSelectionListener(aListener);
 com.sun.star.beans.PropertyValue[] aArguments = new com.sun.star.beans.PropertyValue[2];
 aArguments[0] = new com.sun.star.beans.PropertyValue();
 aArguments[0].Name = "Title";
 aArguments[0].Value = "Please select a range";
 aArguments[1] = new com.sun.star.beans.PropertyValue();
 aArguments[1].Name = "CloseOnMouseRelease";
 aArguments[1].Value = new Boolean(true);
 xRngSel.startRangeSelection(aArguments);
 synchronized (aListener) {
 aListener.wait(); // wait until the selection is done
 }
 xRngSel.removeRangeSelectionListener(aListener);
 if (aListener.aResult != null && aListener.aResult.length() != 0)
 {
 com.sun.star.view.XSelectionSupplier xSel = (com.sun.star.view.XSelectionSupplier)
 UnoRuntime.queryInterface(com.sun.star.view.XSelectionSupplier.class, xController);
 com.sun.star.sheet.XSpreadsheetView xView = (com.sun.star.sheet.XSpreadsheetView)
 UnoRuntime.queryInterface(com.sun.star.sheet.XSpreadsheetView.class, xController);
 com.sun.star.sheet.XSpreadsheet xSheet = xView.getActiveSheet();
 com.sun.star.table.XCellRange xResultRange = xSheet.getCellRangeByName(aListener.aResult);
 xSel.select(xResultRange);
 }

Chapter 8 Spreadsheet Documents 645

8.6 Spreadsheet Add-Ins
An add- in component is used to add new functions to the spreadsheet application that can be
used in cell formulas, such as the built-in functions. A spreadsheet add- in is a UNO component.
The chapter 4 Writing UNO Components describes how to write and deploy a UNO component.

The functions that the add- in component exports to the spreadsheet application have to be defined
in a new interface. The function names in the interface, together with the component's service
name, are used internally to identify an add- in function. For a list of the supported types for func-
tion arguments and return values, see the com.sun.star.sheet.AddIn service description. An
example interface that defines two functions is similar to the following code:
(Spreadsheet /XExampleAddIn.idl)
#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/sheet/XVolatileResult.idl>

module com { module sun { module star { module sheet { module addin {

 interface XExampleAddIn : com::sun::star::uno::XInterface
 {
 /// Sample function that just increments a value.
 long getIncremented([in] long nValue);

 /// Sample function that returns a volatile result.
 com::sun::star::sheet::XVolatileResult getCounter([in] string aName);
 };

}; }; }; }; };

In addition to this interface, the add- in has to implement the interfaces from the
com.sun.star.sheet.AddIn service and the usual interfaces every component has to support.

8.6.1 Function Descriptions
The methods from the com.sun.star.sheet.XAddIn interface are used to provide descriptions of
the user-visible functions.

The getDisplayFunctionName() and getProgrammaticFuntionName() methods are used to map
between the internal function name, as defined in the interface and the function name as shown to
the user of the spreadsheet application. The user-visible name, as well as the function and argu-
ment descriptions, can be translated strings for the language which is set using setLocale().

646 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 128: AddIn

The getProgrammaticCategoryName() method sorts each add- in functions into one of the spread-
sheet application's function categories. It returns the category's internal (non-translated) name. In
addition, the getDisplayCategoryName() method provides a translated name for the category.

The getFunctionDescription(), getDisplayArgumentName() and getArgumentDescription()
methods provide descriptions of the function and its arguments that are shown to the user, for
example in the function AutoPilot.

The getProgrammaticFuntionName() method name is misspelled, but the wrong spelling has to be
retained for compatibility reasons.

8.6.2 Service Names
The add- in component has to support two services, the com.sun.star.sheet.AddIn service, and
an additional service that is used to identify the set of functions that the add- in supplies. There
may be several implementations of the same set of functions. In that case, they all use the same
service name, but different implementation names. Therefore, a spreadsheet document that uses
the functions can make use of the implementation that is present.

The com.sun.star.lang.XServiceInfo methods supportsService() and getSupportedServ-
iceNames() handle both service names, and the component also has to be registered for both serv-
ices. In addition, the component has to implement the com.sun.star.lang.XServiceName inter -
face, and in its getServiceName() method return the name of the function-specific service.

8.6.3 Compatibility Names
Optionally, the component can implement the com.sun.star.sheet.XCompatibilityNames
interface, and in the getCompatibilityNames() method return a sequence of locale-dependent
compatibility names for a function. These names are used by the spreadsheet application when
loading or saving Excel files. They should only be present for a function if it is known to be an
Excel add- in function with equivalent functionality.

The sequence of compatibility names for a function may contain several names for a single locale.
In that case, all of these names are considered when importing a file. When exporting, the first
name is used. If a file is exported in a locale for which no entry is present, the first entry is used. If
there is a default locale, the entries for that locale are first in the sequence.

8.6.4 Custom Functions
The user-visible functions have to be implemented as defined in the interface. The spreadsheet
application does the necessary conversions to pass the arguments. For example, floating point
numbers are rounded if a function has integer arguments. To enable the application to find the
functions, it is important that the component implements the
com.sun.star.lang.XTypeProvider interface.

The getIncremented() function from the example interface above can be implemented like this:
(Spreadsheet /ExampleAddIn.java)
 public int getIncremented(int nValue) {
 return nValue + 1;
 }

Chapter 8 Spreadsheet Documents 647

8.6.5 Variable Results
It is also possible to implement functions with results that change over time. Whenever such a
result changes, the formulas that use the result are recalculated and the new values are shown in
the spreadsheet. This can be used to display data from a real-time data feed in a spreadsheet.

In its interface, a function with a variable result must be defined with a return type of
com.sun.star.sheet.XVolatileResult, such as the getCounter() function from the example
interface above. The function's implementation must return an object that implements the
com.sun.star.sheet.VolatileResult service. Subsequent calls to the same function with the
same arguments return the same object. An implementation that returns a different result object
for every name looks like this: (Spreadsheet /ExampleAddIn.java)
private java.util.Hashtable aResults = new java.util.Hashtable();

public com.sun.star.sheet.XVolatileResult getCounter(String aName) {
 ExampleAddInResult aResult = (ExampleAddInResult) aResults.get(aName);
 if (aResult == null) {
 aResult = new ExampleAddInResult(aName);
 aResults.put(aName, aResult);
 }
 return aResult;
}

The result object has to implement the addResultListener() and removeResultListener()
methods from the com.sun.star.sheet.XVolatileResult interface to maintain a list of listeners,
and notify each of these listeners by calling the com.sun.star.sheet.XResultListener inter -
face's modified() method whenever a new result is available. The
com.sun.star.sheet.ResultEvent object that is passed to the modified() call must contain the
new result in the Value member. The possible types for the result are the same as for a function's
return value if no volatile results are involved.

If a result is already available when addResultListener() is called, it can be publicized by imme-
diately calling modified() for the new listener. Otherwise, the spreadsheet application displays a
“#N/A” error value until a result is available.

The following example shows a simple implementation of a result object. Every time the incre-
mentValue method is called, for example, from a background thread, the result value is incre-
mented and the listeners are notified. (Spreadsheet /ExampleAddIn.java)

648 OpenOffice.org 1.1 Developer's Guide • June 2003

class ExampleAddInResult implements com.sun.star.sheet.XVolatileResult {
 private String aName;
 private int nValue;
 private java.util.Vector aListeners = new java.util.Vector();

 public ExampleAddInResult(String aNewName) {
 aName = aNewName;
 }

 private com.sun.star.sheet.ResultEvent getResult() {
 com.sun.star.sheet.ResultEvent aEvent = new com.sun.star.sheet.ResultEvent();
 aEvent.Value = aName + " " + String.valueOf(nValue);
 aEvent.Source = this;
 return aEvent;
 }

 public void addResultListener(com.sun.star.sheet.XResultListener aListener) {
 aListeners.addElement(aListener);

 // immediately notify of initial value
 aListener.modified(getResult());
 }

 public void removeResultListener(com.sun.star.sheet.XResultListener aListener) {
 aListeners.removeElement(aListener);
 }

 public void incrementValue() {
 ++nValue;
 com.sun.star.sheet.ResultEvent aEvent = getResult();

 java.util.Enumeration aEnum = aListeners.elements();
 while (aEnum.hasMoreElements())
 ((com.sun.star.sheet.XResultListener)aEnum.nextElement()).modified(aEvent);
 }
}

Chapter 8 Spreadsheet Documents 649

9 Drawing Documents
and Presentation Documents

9.1 Overview
Draw and Impress are vector-oriented applications with the ability to create drawings and presen-
tations. The drawing capabilities of Draw and Impress are identical. Both programs support a
number of different shape types, such as rectangle, text, curve, or graphic shapes, that can be
edited and arranged in various ways. Impress offers a presentation functionality where Draw does
not. Impress is the ideal application to create and show presentations. It supports special presenta-
tion features, such as an enhanced page structure, presentation objects, and many slide transition
and object effects. Draw is especially adapted for printed or standalone graphics, whereas
Impress is optimized to fit screen dimensions and offers effects for business presentations.

The following diagrams show the document structure of Draw and Impress Documents.

In contrast to text documents and spreadsheet documents, the main content of drawing and pres-
entation documents are their draw pages. Therefore the illustrations show the draw page
container as integral part of the drawing and presentation document model. The drawing
elements on the draw pages have to be created by the document service manager and are added to
the draw pages afterwards.

Note the master pages and the layer manager, which are specific to drawings and presentations.
Like for texts and spreadsheets, a controller is used to present the drawing in the GUI and services
for styles and layout are available to handle overall document features such as styles.

651

In addition to drawing documents, a presentation document has special presentation aspects,
which are shown on the lower left of Illustration 132 GraphicExportFilter. There is a presentation
supplier to obtain a presentation object, which is used to start and stop presentations, it is possible
to edit and run custom presentations and the page layout for presentation handouts is accessible
through a handout master supplier.

652 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 129: Drawing Document Overview

9.1.1 Example: Creating a Simple Organizational Chart
The following example creates a simple organizational chart with two levels. It consists of five
rectangle shapes and four connectors that connect the boxes on the second level with the root box
on the first level.

Chapter 9 Drawing Documents and Presentation Documents 653

Illustration 130: Presentation Document Overview

The method getRemoteServiceManager()that is used in the example connects to the office. The 2
First Steps discussed this method. First an empty drawing document is loaded and retrieves the
draw page object of slide number 1 to find the page dimensions. Then the organigram data is
prepared and the shape sizes are calculated. The shapes are added in a for loop that iterates over
the organigram data, and connectors are added for all shapes on the second level of the organi-
gram. (Drawing /Organigram.java).
public void drawOrganigram() throws java.lang.Exception {

 xRemoteServiceManager = this.getRemoteServiceManager(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");
 Object desktop = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", xRemoteContext);
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);
 PropertyValue[] loadProps = new PropertyValue[0];
 XComponent xDrawComponent = xComponentLoader.loadComponentFromURL(
 "private:factory/sdraw", "_blank", 0, loadProps);

 // get draw page by index
 com.sun.star.drawing.XDrawPagesSupplier xDrawPagesSupplier =
 (com.sun.star.drawing.XDrawPagesSupplier)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XDrawPagesSupplier.class, xDrawComponent);
 com.sun.star.drawing.XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();
 Object drawPage = xDrawPages.getByIndex(0);
 com.sun.star.drawing.XDrawPage xDrawPage = (com.sun.star.drawing.XDrawPage)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XDrawPage.class, drawPage);

 // find out page dimensions
 com.sun.star.beans.XPropertySet xPageProps = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, xDrawPage);
 int pageWidth = AnyConverter.toInt(xPageProps.getPropertyValue("Width"));
 int pageHeight = AnyConverter.toInt(xPageProps.getPropertyValue("Height"));
 int pageBorderTop = AnyConverter.toInt(xPageProps.getPropertyValue("BorderTop"));
 int pageBorderLeft = AnyConverter.toInt(xPageProps.getPropertyValue("BorderLeft"));
 int pageBorderRight = AnyConverter.toInt(xPageProps.getPropertyValue("BorderRight"));
 int drawWidth = pageWidth - pageBorderLeft - pageBorderRight;
 int horCenter = pageBorderLeft + drawWidth / 2;

 // data for organigram
 String[][] orgUnits = new String[2][4];
 orgUnits[0][0] = "Management"; // level 0
 orgUnits[1][0] = "Production"; // level 1
 orgUnits[1][1] = "Purchasing"; // level 1
 orgUnits[1][2] = "IT Services"; // level 1
 orgUnits[1][3] = "Sales"; // level 1
 int[] levelCount = {1, 4};

 // calculate shape sizes and positions
 int horSpace = 300;
 int verSpace = 3000;
 int shapeWidth = (drawWidth - (levelCount[1] - 1) * horSpace) / levelCount[1];
 int shapeHeight = pageHeight / 20;
 int shapeX = pageWidth / 2 - shapeWidth / 2;
 int levelY = 0;

 com.sun.star.drawing.XShape xStartShape = null;

 // get document factory

654 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 131: Sample Organigram

 com.sun.star.lang.XMultiServiceFactory xDocumentFactory = (com.sun.star.lang.XMultiServiceFactory)
 UnoRuntime.queryInterface(
 com.sun.star.lang.XMultiServiceFactory.class, xDrawComponent);
 // creating and adding RectangleShapes and Connectors
 for (int level = 0; level <= 1; level++) {
 levelY = pageBorderTop + 2000 + level * (shapeHeight + verSpace);
 for (int i = levelCount[level] - 1; i > -1; i--) {
 shapeX = horCenter -
 (levelCount[level] * shapeWidth + (levelCount[level] - 1) * horSpace) / 2 +
 i * shapeWidth + i * horSpace;
 Object shape = xDocumentFactory.createInstance("com.sun.star.drawing.RectangleShape");
 com.sun.star.drawing.XShape xShape = (com.sun.star.drawing.XShape)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XShape.class, shape);
 xShape.setPosition(new com.sun.star.awt.Point(shapeX, levelY));
 xShape.setSize(new com.sun.star.awt.Size(shapeWidth, shapeHeight));
 xDrawPage.add(xShape);

 // set the text
 com.sun.star.text.XText xText = (com.sun.star.text.XText)
 UnoRuntime.queryInterface(
 com.sun.star.text.XText.class, xShape);
 xText.setString(orgUnits[level][i]);
 // memorize the root shape, for connectors
 if (level == 0 && i == 0)
 xStartShape = xShape;

 // add connectors for level 1
 if (level == 1) {
 Object connector = xDocumentFactory.createInstance(
 "com.sun.star.drawing.ConnectorShape");
 com.sun.star.drawing.XShape xConnector = (com.sun.star.drawing.XShape)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XShape.class, connector);
 xDrawPage.add(xConnector);
 com.sun.star.beans.XPropertySet xConnectorProps = (com.sun.star.beans.XPropertySet)
 UnoRuntime.queryInterface(
 com.sun.star.beans.XPropertySet.class, connector);
 xConnectorProps.setPropertyValue("StartShape", xStartShape);
 xConnectorProps.setPropertyValue("EndShape", xShape);
 // glue point positions: 0=top 1=left 2=bottom 3=right
 xConnectorProps.setPropertyValue("StartGluePointIndex", new Integer(2));
 xConnectorProps.setPropertyValue("EndGluePointIndex", new Integer(0));
 }

 }
 }
}

9.2 Handling Drawing Document Files

9.2.1 Creating and Loading Drawing Documents
If a document in OpenOffice.org is required, begin by getting the com.sun.star.frame.Desktop
service from the service manager. The desktop handles all document components in
OpenOffice.org among other things. It is discussed thoroughly in the chapter 6 Office Development.
Office documents are often called components because they support the
com.sun.star.lang.XComponent interface. An XComponent is a UNO object that can be disposed
explicitly and broadcast an event to other UNO objects when this happens.

The Desktop loads new and existing components from a URL. The desktop has a
com.sun.star.frame.XComponentLoader interface that has one single method to load and instan-
tiate components from a URL into a frame:

com::sun::star::lang::XComponent loadComponentFromURL([in] string aURL,
 [in] string aTargetFrameName,
 [in] long nSearchFlags,
 [in] sequence< com::sun::star::beans::PropertyValue > aArgs)

Chapter 9 Drawing Documents and Presentation Documents 655

The parameters in our context are the URL that describes the resource to be loaded, and the load
arguments. For the target frame pass in "_blank" and set the search flags to 0. In most cases, you
will not want to reuse an existing frame.

The URL can be a file: URL, an http: URL, an ftp: URL or a private: URL. The correct URL
format is located in the load URL box at the function bar of OpenOffice.org. For new Draw docu-
ments, a special URL scheme is used. The scheme is "private:", followed by "factory" as the host-
name and the resource is "sdraw" for OpenOffice.org Draw documents. Thus, for a new Draw
document, use "private:factory/sdraw".
The load arguments are described in com.sun.star.document.MediaDescriptor. The properties
AsTemplate and Hidden are boolean values and used for programming. If AsTemplate is true,
the loader creates a new untitled document from the given URL. If it is false, template files are
loaded for editing. If Hidden is true, the document is loaded in the background. This is useful to
generate a document in the background without letting the user observe what is happening. For
instance, use it to generate a document and print it out without previewing. Refer to 6 Office
Development or other available options.

The introductory example shows how to load a drawing document. This snippet loads a new
drawing document in hidden mode:
 // the method getRemoteServiceManager is described in the chapter First Steps
 mxRemoteServiceManager = this.getRemoteServiceManager();

 // retrieve the Desktop object, we need its XComponentLoader
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);

 // query the XComponentLoader interface from the Desktop service
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // define load properties according to com.sun.star.document.MediaDescriptor
 // the boolean property Hidden tells the office to open a file in hidden mode
 PropertyValue[] loadProps = new PropertyValue[1];
 loadProps[0] = new PropertyValue();
 loadProps[0].Name = "Hidden";
 loadProps[0].Value = new Boolean(true);

 /* or simply create an empty array of com.sun.star.beans.PropertyValue structs:
 PropertyValue[] loadProps = new PropertyValue[0]
 */

 // load
 com.sun.star.lang.XComponent xComponentLoader.loadComponentFromURL(
 "private:factory/sdraw", "_blank", 0, loadProps);

9.2.2 Saving Drawing Documents
The normal File – Save command for drawing documents can only store the current document in
the native OpenOffice.org Draw format and its predecessors. There are other formats that can be
stored through the File – Export option. This is mirrored in the API. Exporting in the current
version of OpenOffice.org Draw and Impress is a different procedure than storing.

Storing
Documents are storable through their interface com.sun.star.frame.XStorable. The 6 Office
Development discusses this in detail. An XStorable implements these operations:

boolean hasLocation()
string getLocation()
boolean isReadonly()
void store()
void storeAsURL([in] string aURL, [in] sequence < com::sun::star::beans::PropertyValue > aArgs)
void storeToURL([in] string aURL, [in] sequence < com::sun::star::beans::PropertyValue > aArgs)

656 OpenOffice.org 1.1 Developer's Guide • June 2003

The method names should be evident. The method storeAsUrl() is the exact representation of
File – Save As, that is, it changes the current document location. In contrast, storeToUrl() stores
a copy to a new location, but leaves the current document URL untouched. There are also store
arguments. A filter name can be passed that tells OpenOffice.org to use older StarOffice Draw file
formats. Exporting is a different matter as shown below. The property needed is FilterName
which is a string argument that takes filter names defined in the configuration file:

<OfficePath>\share\config\registry \instance\org\openoffice\Office\TypeDetection.xml

In TypeDetection.xml, find <Filter/> elements, their cfg:name attribute contains the required
strings for FilterName. The correct filter name for StarDraw 5.x files is "StarDraw 5.0". The
following is the element in TypeDetection.xml that describes the StarDraw 5.0 document filter:
<Filter cfg:name="StarDraw 5.0">
 <Installed cfg:type="boolean">true</Installed>
 <UIName cfg:type="string" cfg:localized="true">
 <cfg:value xml:lang="en-US">StarDraw 5.0</cfg:value>
 </UIName>
 <Data cfg:type="string">
 10,draw_StarDraw_50,com.sun.star.drawing.DrawingDocument,,268435559,,5050,,
 </Data>
</Filter>

The following method stores a document using this filter:
/** Store a document, using the StarDraw 5.0 Filter */
protected void storeDocComponent(XComponent xDoc, String storeUrl) throws java.lang.Exception {
 XStorable xStorable = (XStorable)UnoRuntime.queryInterface(XStorable.class, xDoc);
 PropertyValue[] storeProps = new PropertyValue[1];
 storeProps[0] = new PropertyValue();
 storeProps[0].Name = "FilterName";
 storeProps[0].Value = "StarDraw 5.0";
 xStorable.storeAsURL(storeUrl, storeProps);
}

If an empty array of PropertyValue structs is passed, the native .sxd format of OpenOffice.org is
used.

Exporting
Exporting is not a feature of drawing documents. There is a separate service available from the
global service manager for exporting, com.sun.star.drawing.GraphicExportFilter. It
supports three interfaces: com.sun.star.document.XFilter,
com.sun.star.document.XExporter and com.sun.star.document.XMimeTypeInfo.

Exporting is a simple process. After getting a GraphicExportFilter from the ServiceManager,
use its XExporter interface to inform the filter which draw page, shape or shape collection to
export.

Method of com.sun.star.document.XExporter:
void setSourceDocument ([in] com::sun::star::lang::XComponent xDoc)

Chapter 9 Drawing Documents and Presentation Documents 657

Illustration 132: GraphicExportFilter

The method name setSourceDocument() may be confusing. Actually, the method would allow
exporting entire documents, however, it is only possible to export draw pages, single shapes or
shape collections from a drawing document. Since these objects support the XComponent interface,
the method specification allows maximum flexibility.

Next, run the method filter() at the XFilter interface. To interrupt the exporting process, call
cancel() on the same interface.

Methods of com.sun.star.document.XFilter:
boolean filter([in] sequence< com::sun::star::beans::PropertyValue > aDescriptor)
void cancel()

Filter Options
The method filter() takes a sequence of PropertyValue structs describing the filter parameters.
The following properties from the com.sun.star.document.MediaDescriptor are supported:

Properties of com.sun.star.document.MediaDescriptor supported by GraphicExportFilter
MediaType Depending on the export filters supported by this component, this is the

mime type of the target graphic file. The mime types currently supported
are:

image /x- MS-bmp
application /dxf
application /postscript
image /gif
image /jpeg
image /png
image /x- pict
image /x- pcx
image /x- portable-bitmap
image /x- portable-graymap
image /x- portable-pixmap
image /x- cmu-raster
image / targa
image / tiff
image /x- xbitmap
image /x- xpixmap
image /svg+xml

FilterName This property can been used if no MediaType exists with "Windows
Metafile" or "Enhanced Metafile". FilterName has to be set to the extension
of these graphic formats (WMF, EMF, BMP).

URL The target URL of the file that is created during export.

If necessary, use the interface XMimeTypeInfo to get all mime types supported by the GraphicExport-
Filter. It offers the following methods:

boolean supportsMimeType ([in] string MimeTypeName)

sequence< string > getSupportedMimeTypeNames()

XMimeTypeInfo is currently not supported by the GraphicExportFilter

The following example exports a draw page xPage from a given document xDrawDoc:
(Drawing /GraphicExportDemo.java)

658 OpenOffice.org 1.1 Developer's Guide • June 2003

 //get draw pages
 com.sun.star.drawing.XDrawPagesSupplier xPageSupplier = (com.sun.star.drawing.XDrawPagesSupplier)
 UnoRuntime.queryInterface(com.sun.star.drawing.XDrawPagesSupplier.class, xDrawDoc);
 com.sun.star.drawing.XDrawPages xDrawPages = xPageSupplier.getDrawPages();

 // first page
 Object page = xDrawPages.getByIndex(0);
 com.sun.star.drawing.XDrawPage xPage = (com.sun.star.drawing.XDrawPage)UnoRuntime.queryInterface(
 com.sun.star.drawing.XDrawPage.class, page);

 Object GraphicExportFilter = xServiceFactory.createInstance(
 "com.sun.star.drawing.GraphicExportFilter");

 // use the XExporter interface to set xPage as source component
 // for the GraphicExportFilter
 XExporter xExporter = (XExporter)UnoRuntime.queryInterface(
 XExporter.class, GraphicExportFilter);

 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class, xPage);
 xExporter.setSourceDocument(xComp);

 // prepare the media descriptor for the filter() method in XFilter
 PropertyValue aProps[] = new PropertyValue[2];

 aProps[0] = new PropertyValue();
 aProps[0].Name = "MediaType";
 aProps[0].Value = "image/gif";

 // for some graphic formats, e.g. Windows Metafile, there is no Mime type,
 // therefore it is also possible to use the property FilterName with
 // Filter names as defined in the file TypeDetection.xml (see "Storing")
 /* aProps[0].Name = "FilterName";
 aProps[0].Value = "WMF - MS Windows Metafile";
 */

 aProps[1] = new PropertyValue();
 aProps[1].Name = "URL";
 aProps[1].Value = "file:///home/images/page1.gif";

 // get XFilter interface and launch the export
 XFilter xFilter = (XFilter) UnoRuntime.queryInterface(
 XFilter.class, GraphicExportFilter);
 xFilter.filter(aProps);

9.2.3 Printing Drawing Documents

Printer and Print Job Settings
Printing is a common office functionality. Refer to Chapter 6 Office Development for additional
information. The Draw document implements the com.sun.star.view.XPrintable interface for
printing. It consists of three methods:

sequence< com::sun::star::beans::PropertyValue > getPrinter()
void setPrinter([in] sequence< com::sun::star::beans::PropertyValue > aPrinter)
void print([in] sequence< com::sun::star::beans::PropertyValue > xOptions)

To print to the standard printer without settings, use the snippet below with a given document
xDoc:
 // query the XPrintable interface from your document
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);

 // create an empty printOptions array
 PropertyValue[] printOpts = new PropertyValue[0];

 // kick off printing
 xPrintable.print(printOpts);

There are two groups of properties involved in general printing. The first one is used with
setPrinter() and getPrinter(),and controls the printer, the second one is passed to print()
and controls the print job.

Chapter 9 Drawing Documents and Presentation Documents 659

The method getPrinter() returns a sequence of PropertyValue structs describing the printer
containing the properties specified in the service com.sun.star.view.PrinterDescriptor. It
comprises the following properties:

Properties of com.sun.star.view.PrinterDescriptor
Name string — Specifies the name of the printer queue to be used.

PaperOrientation com.sun.star.view.PaperOrientation. Specifies the orientation of
the paper.

PaperFormat com.sun.star.view.PaperFormat. Specifies a predefined paper size
or if the paper size is a user-defined size.

PaperSize com.sun.star.awt.Size. Specifies the size of the paper in 1/100 mm.

IsBusy boolean — Indicates if the printer is busy.

CanSetPaperOrientation boolean — Indicates if the printer allows changes to PaperOrienta-
tion.

CanSetPaperFormat boolean — Indicates if the printer allows changes to PaperFormat.

CanSetPaperSize boolean — Indicates if the printer allows changes to PaperSize.

The PrintOptions offer the following choices for a print job:

Properties of com.sun.star.view.PrintOptions
CopyCount short — Specifies the number of copies to print.

FileName string — If set, specifies the name of a file to print to.

Collate boolean — Advises the printer to collate the pages of the copies. If true, a
whole document is printed prior to the next copy, otherwise copies for
each page are completed together.

Pages string — Specifies the pages to print. It has the same format as in the
print dialog of the GUI, for example, 1, 3, 4-7, 9.

The following method uses PrinterDescriptor and PrintOptions to print to a specific printer,
and preselect the pages to print:

The following method uses both, PrinterDescriptor and PrintOptions, to print to a specific
printer and preselect the pages to print:
protected void printDocComponent(XComponent xDoc) throws java.lang.Exception {
 XPrintable xPrintable = (XPrintable)UnoRuntime.queryInterface(XPrintable.class, xDoc);
 PropertyValue[] printerDesc = new PropertyValue[1];
 printerDesc[0] = new PropertyValue();
 printerDesc[0].Name = "Name";
 printerDesc[0].Value = "5D PDF Creator";

 xPrintable.setPrinter(printerDesc);

 PropertyValue[] printOpts = new PropertyValue[1];
 printOpts[0] = new PropertyValue();
 printOpts[0].Name = "Pages";
 printOpts[0].Value = "1-4,7";

 xPrintable.print(printOpts);
}

In Draw documents, one slide is printed as one page on the printer by default. In the example
above, slide one through four and slide seven are printed.

660 OpenOffice.org 1.1 Developer's Guide • June 2003

Special Print Settings
The printed drawing view (drawings, notes, handout pages, outline), the print quality (color,
grayscale), the page options (tile, fit to page, brochure, paper tray) and additional options (page
name, date, time, hidden pages) can all be controlled. 9.6.2 Drawing - Overall Document Features -
Settings describes how these settings are used.

9.3 Working with Drawing Documents

9.3.1 Drawing Document

Document Structure

Chapter 9 Drawing Documents and Presentation Documents 661

Illustration 133: DrawingDocument Structure

Draw documents maintain their drawing content on draw pages, master pages and layers. If a
new draw document is opened, it contains one slide that corresponds to a
com.sun.star.drawing.DrawPage service. Switching to Master View brings up the master page
handled by the service com.sun.star.drawing.MasterPage. The Layer View allows access to
layers to structure your drawings. These layers can be controlled through
com.sun.star.drawing.Layer and com.sun.star.drawing.LayerManager.

Page Handling
Draw and Impress documents supply their pages (slides) through the interface
com.sun.star.drawing.XDrawPagesSupplier. The method
com.sun.star.drawing.XDrawPagesSupplier:getDrawPages() returns a container of draw
pages with a com.sun.star.drawing.XDrawPages interface that is derived from
com.sun.star.container.XIndexAccess. That is, XDrawPages allows accessing, inserting and
removing pages of a drawing document:

type getElementType()
boolean hasElements()
long getCount()
any getByIndex(long Index)
com::sun::star::drawing::XDrawPage insertNewByIndex(long nIndex)
void remove(com::sun::star::drawing::XDrawPage xPage)

The example below demonstrates how to access and create draw and master pages. Layers will be
described later.
 XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);

 // XDrawPages inherits from com.sun.star.container.XIndexAccess
 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();

 // get the page count for standard pages
 int nPageCount = xDrawPages.getCount();

 // get draw page by index
 XDrawPage xDrawPage = (XDrawPage)xDrawPages.getByIndex(nIndex);

 /* create and insert a draw page into the given position,
 the method returns the newly created page
 */
 XDrawPage xNewDrawPage = xDrawPages.insertNewByIndex(0);

 // remove the given page
 xDrawPages.remove(xDrawPage);

 /* now repeat the same procedure as described above for the master pages,
 the main difference is to get the XDrawPages from the XMasterPagesSupplier
 interface
 */
 XMasterPagesSupplier xMasterPagesSupplier = (XMasterPagesSupplier)UnoRuntime.queryInterface(
 XMasterPagesSupplier.class, xComponent);

 XDrawPages xMasterPages = xMasterPagesSupplier.getMasterPages();

 // xMasterPages can now be used in the same manner as xDrawPages is used above

Each draw page always has one master page. The interface
com.sun.star.drawing.XMasterPageTarget offers methods to get and set the master page that
is correlated to a draw page.
 // query for MasterPageTarget
 XMasterPageTarget xMasterPageTarget = (XMasterPageTarget)UnoRuntime.queryInterface(
 XMasterPageTarget.class, xDrawPage);

 // now we can get the corresponding master page
 XDrawPage xMasterPage = xMasterPageTarget.getMasterPage();

 /* this method now sets a new master page,
 it is important to mention that the applied page must be part of the MasterPages
 */
 xMasterPageTarget.setMasterPage(xMasterPage);

662 OpenOffice.org 1.1 Developer's Guide • June 2003

It is possible to copy pages using the interface com.sun.star.drawing.XDrawPageDuplicator of
drawing or presentation documents.

Methods of com.sun.star.drawing.XDrawPageDuplicator:
com::sun::star::drawing::XDrawPage duplicate([in] com::sun::star::drawing::XDrawPage xPage)

Pass a draw page reference to the method duplicate(). It appends a new draw page at the end
of the page list, using the default naming scheme for pages, “slide n”.

Page Partitioning
All units and dimensions are measured in 1/100th of a millimeter. The coordinates are increasing
from left to right, and from top to bottom. The upper- left position of a page is (0, 0).

The page size, margins and orientation can be determined using the following properties of a
draw page:

Properties of com.sun.star.drawing.DrawPage
Height long — Height of the page.

Width long — Width of the page.

BorderBottom long — Bottom margin of the page.

BorderLeft long — Left margin of the page.

BorderRight long — Right margin of the page.

BorderTop long — Top margin of the page.

Orientation com.sun.star.view.PaperOrientation. Determines if the
printer output should be turned by 90°. Possible values are:
PORTRAIT and LANDSCAPE.

9.3.2 Shapes
Drawings consist of shapes on draw pages. Shapes are drawing elements, such as rectangles,
circles, polygons, and lines. To create a drawing, get a shape by its service name at the Service-
Factory of a drawing document and add it to the appropriate DrawPage.

The code below demonstrates how to create shapes. It consists of a static helper method located in
the class ShapeHelper and will be used throughout this chapter to create shapes. The parameter
xComponent must be a reference to a loaded drawing document. The x, y, height and width are
the desired position and size, and sShapeType expects a service name for the shape, such as
"com.sun.star.drawing.RectangleShape". The method does not actually insert the shape into a
page. It instantiates it and returns the instance to the caller.

Chapter 9 Drawing Documents and Presentation Documents 663

The size and position of a shape can be set before adding a shape to a page. After adding the
shape, change the shape properties through com.sun.star.beans.XPropertySet.
(Drawing / Helper.java)
public static XShape createShape(XComponent xComponent,
 int x, int y, int width, int height, String sShapeType) throws java.lang.Exception {
 // query the document for the document-internal service factory
 XMultiServiceFactory xFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, xComponent);

 // get the given Shape service from the factory
 Object xObj = xFactory.createInstance(sShapeType);
 Point aPos = new Point(x, y);
 Size aSize = new Size(width, height);

 // use its XShape interface to determine position and size before insertion
 xShape = (XShape)UnoRuntime.queryInterface(XShape.class, xObj);
 xShape.setPosition(aPos);
 xShape.setSize(aSize);
 return xShape;
}

Notice, the following restrictions: A shape cannot be inserted into multiple pages, and most methods do not
work before the shape is inserted into a draw page.

The previously declared method will be used to create a simple rectangle shape with a size of 10
cm x 5 cm that is positioned in the upper- left, and inserted into a drawing page.

664 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 134: Shape

 // query DrawPage for XShapes interface
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);

 // create the shape
 XShape xShape = createShape(xComponent, 0, 0, 10000, 5000, “com.sun.star.drawing.RectangleShape”);

 // add shape to DrawPage
 xShapes.add(xShape);

 // set text
 XText xText = (XText)UnoRuntime.queryInterface(XText.class, xShape);
 xText.setString("My new RectangleShape");

 // to be able to set Properties a XPropertySet interface is needed
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);

 xPropSet.setPropertyValue("CornerRadius", new Integer(1000));

 xPropSet.setPropertyValue("Shadow", new Boolean(true));
 xPropSet.setPropertyValue("ShadowXDistance", new Integer(250));
 xPropSet.setPropertyValue("ShadowYDistance", new Integer(250));

 // blue fill color
 xPropSet.setPropertyValue("FillColor", new Integer(0xC0C0C0));
 // black line color
 xPropSet.setPropertyValue("LineColor", new Integer(0x000000));

 xPropSet.setPropertyValue("Name", "Rounded Gray Rectangle");

The UML diagram in Illustration 131 describes all services that are included by the
com.sun.star.drawing.RectangleShape service and provides an overview of properties that
can be used with such a simple shape.

Chapter 9 Drawing Documents and Presentation Documents 665

666 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 135: RectangleShape

Shape Types

The following table lists all shapes supported in Draw and Impress documents. They come from
the com.sun.star.drawing. Each shape is based on com.sun.star.drawing.Shape. Addition -
ally, there are five services in the module com.sun.star.drawing that most of the shapes have in
common:

com.sun.star.drawing.Text, com.sun.star.drawing.LineProperties,
com.sun.star.drawing.FillProperties and com.sun.star.drawing.ShadowProperties
handle shape formatting, whereas com.sun.star.drawing.RotationDescriptor controls rota-
tion and shearing. The section 9.3.2 Drawing - Working with Drawing Documents - Shapes - Shape
Operations - General Drawing Properties below discusses shape formatting in more detail. Refer to
the section 9.3.2 Drawing - Working with Drawing Documents - Shapes - Shape Operations for informa -
tion on rotation and shearing.

The service com.sun.star.drawing.Text is different from other Text services. It consists of the service
com.sun.star.drawing.TextProperties and the interface com.sun.star.text.XText that was
introduced in the chapter 2 First Steps. Drawing text does not supports text contents other than paragraphs
consisting of character strings.

An x denotes which of these services are supported by each shape. The rightmost column shows
the services, interfaces and properties that are specific for the various shapes.

Chapter 9 Drawing Documents and Presentation Documents 667

Illustration 136 ShapeTypes

ShapeType

Te
xt

Li
ne

Pr
op

er
tie

s

Fi
llP

ro
pe

rti
es

Sh
ad

ow
Pr

op
er

tie
s

Ro
ta

tio
nD

es
cr

ip
to

r supported services,

exported interfaces,

properties

ClosedBezierShape x x x x x included service:
com.sun.star.drawing.PolyPolygo
nBezierDescriptor

[IDLScom.sun.star.drawi
ng:ConnectorShape]

x x x x included service:
com.sun.star.drawing.ConnectorP
roperties
properties:
com.sun.star.drawing.XShape
StartShape
com.sun.star.drawing.XShape
EndShape
com.sun.star.awt.Point StartPosition
com.sun.star.awt.Point EndPosition
long StartGluePointIndex
long EndGluePointIndex
long EdgeLine1Delta
long EdgeLine2Delta
long EdgeLine3Delta

ControlShape exported interface:
com.sun.star.drawing.XControlShape

EllipseShape x x x x x properties:
com.sun.star.drawing.CircleKind
CircleKind
long CircleStartAngle
long CircleEndAngle

GraphicObjectShape x x x properties:
string GraphicURL
string GraphicStreamURL
short AdjustLuminance
short AdjustContrast
short AdjustRed
short AdjustGreen
short AdjustBlue
double Gamma
short Transparency
com.sun.star.drawing.ColorMode
GraphicColorMode
optional properties:
com.sun.star.awt.XBitmap
GraphicObjectFillBitmap
com.sun.star.container.XIndexCo
ntainer ImageMap

GroupShape exported interfaces:
com.sun.star.drawing.XShapeGrou
p
com.sun.star.drawing.XShapes

LineShape x x x x included service:
com.sun.star.drawing.PolyPolygo
nDescriptor

MeasureShape x x x x included service:
com.sun.star.drawing.MeasureProperties

properties:
com.sun.star.awt.Point StartingPosition
com.sun.star.awt.Point EndPosition

668 OpenOffice.org 1.1 Developer's Guide • June 2003

ShapeType

Te
xt

Li
ne

Pr
op

er
tie

s

Fi
llP

ro
pe

rti
es

Sh
ad

ow
Pr

op
er

tie
s

Ro
ta

tio
nD

es
cr

ip
to

r supported services,

exported interfaces,

properties

OLE2Shape properties:
string CLSID

readonly properties:
com.sun.star.frame.XModel Model
boolean IsInternal

OpenBezierShape x x x x included service:
com.sun.star.drawing.PolyPolygo
nBezierDescriptor

PageShape
PolyLineShape x x x x included service:

com.sun.star.drawing.PolyPolygo
nDescriptor

PolyPolygonBezierShape x x x x x included service:
com.sun.star.drawing.PolyPolygo
nBezierDescriptor

PolyPolygonShape x x x x x included service:
com.sun.star.drawing.PolyPolygo
nDescriptor

RectangleShape x x x x x properties:
long CornerRadius

TextShape x x x x x properties:
long CornerRadius

PluginShape properties:
string PluginMimeType
string PluginURL
sequence<
com.sun.star.beans.PropertyValu
e > PluginCommands

Bezier Shapes
Draw supports three different kinds of Bezier curves: OpenBezierShape, ClosedBezierShape and
PolyPolygonBezierShape. They are all controlled by
com.sun.star.drawing.PolyPolygonBezierDescriptor which is made up of the following
properties:

Chapter 9 Drawing Documents and Presentation Documents 669

Properties of com.sun.star.drawing.PolyPolygonDescriptor
PolygonKind [readonly] com.sun.star.drawing.PolygonKind. Type of the

polygon. Possible values are:

LINE for a LineShape.

POLY for a PolyPolygonShape.

PLIN for a PolyLineShape.

PATHLINE for an OpenBezierShape.

PATHFILL for a ClosedBezierShape.

PolyPolygonBezier struct com.sun.star.drawing.PolyPolygonBezierCoords.
These are the bezier points of the polygon. The struct members are
Coordinates and Flags, which are both sequences of sequences.
The Coordinates sequence contains com.sun.star.awt.Point
structs and the Flags sequence contains
com::com.sun.star.drawing.PolygonFlags enums. Point
members are X and Y. Possible PolygonFlags values are:

• NORMAL the point is normal, from the curve discussion view.

• SMOOTH the point is smooth, the first derivation from the curve
discussion view.

• CONTROL the point is a control point, to control the curve from
the user interface.

• SYMMETRIC the point is symmetric, the second derivation from
the curve discussion view.

Geometry com.sun.star.drawing.PolyPolygonBezierCoords. These
are the untransformed bezier coordinates of the polygon. The prop-
erty has the same type as PolyPolygonBezier.

The next Java example will demonstrate how to create a ClosedBezierShape that looks like the
following picture. (Drawing /DrawingDemo.java)

670 OpenOffice.org 1.1 Developer's Guide • June 2003

 XShape xPolyPolygonBezier = createShape(xComponent, 0, 0, 0, 0,
 "com.sun.star.drawing.ClosedBezierShape");

 // take care of the fact that the shape must have been added
 // to the page before it is possible to apply changes
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);
 xShapes.add(xPolyPolygonBezier);

 // now it is possible to edit the PropertySet
 XPropertySet xShapeProperties = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xPolyPolygonBezier);

 // The following values are exemplary and provokes that a PolyPolygon of
 // sixteen single polygons containing four points each is created. The
 // PolyPolygon total point count will be 64.
 // If control points are used they are allowed to appear as pair only,
 // before and after such pair has to be a normal point.

 // A bezier point sequence may look like
 // this (n=normal, c=control) : n c c n c c n n c c n

 int nPolygonCount = 16;
 int nPointCount = 4;
 int nWidth = 10000;
 int nHeight = 10000;

 PolyPolygonBezierCoords aCoords = new PolyPolygonBezierCoords();

 // allocating the outer sequence
 aCoords.Coordinates = new Point[nPolygonCount][];
 aCoords.Flags = new PolygonFlags[nPolygonCount][];
 int i, n, nY;

 // fill the inner point sequence now
 for (nY = 0, i = 0; i < nPolygonCount; i++, nY += nHeight / nPolygonCount) {
 // create a polygon using two normal and two control points
 // allocating the inner sequence

 Point[] pPolyPoints = new Point[nPointCount];
 PolygonFlags[] pPolyFlags = new PolygonFlags[nPointCount];

 for (n = 0; n < nPointCount; n++)
 pPolyPoints[n] = new Point();

 pPolyPoints[0].X = 0;
 pPolyPoints[0].Y = nY;
 pPolyFlags [0] = PolygonFlags.NORMAL;

 pPolyPoints[1].X = nWidth / 2;
 pPolyPoints[1].Y = nHeight;
 pPolyFlags[1] = PolygonFlags.CONTROL;

 pPolyPoints[2].X = nWidth / 2;

Chapter 9 Drawing Documents and Presentation Documents 671

 pPolyPoints[2].Y = nHeight;
 pPolyFlags [2] = PolygonFlags.CONTROL;

 pPolyPoints[3].X = nWidth;
 pPolyPoints[3].Y = nY;
 pPolyFlags [3] = PolygonFlags.NORMAL;

 aCoords.Coordinates[i] = pPolyPoints;
 aCoords.Flags[i] = pPolyFlags;
 }
 try {
 xShapeProperties.setPropertyValue("PolyPolygonBezier", aCoords);
 } catch (Exception ex)
 {
 }

Shape Operations

Moving and Scaling
Moving and scaling of a shape can be done by using the corresponding methods getPosition(),
setPosition(), getSize() and setSize() of the com.sun.star.drawing.XShape interface:

string getShapeType()
com::sun::star::awt::Point getPosition()
void setPosition([in] com::sun::star::awt::Point aPosition)
com::sun::star::awt::Size getSize()
void setSize([in] com::sun::star::awt::Size aSize)

Point and Size are IDL structs. In Java, these structs are mapped to classes with constructors that
take values for the struct members. Therefore, when new is used to instantiate these classes, the
coordinates and dimensions are passed to initialize the class members X, Y, Width and Height.

Rotating and Shearing
Most shapes, except OLE and group objects, can be rotated and sheared. All of these objects include
the com.sun.star.drawing.RotationDescriptor service that has the properties RotateAngle
and ShearAngle.

Setting the com.sun.star.drawing.RotationDescriptor rotates or shears a shape:

Properties of com.sun.star.drawing.RotationDescriptor
RotateAngle long — This is the angle for rotation of this shape in 1/100th of a degree.

The shape is rotated counter-clockwise around the center of the
bounding box.

ShearAngle long — This is the amount of shearing for this shape in 1/100th of a
degree. The shape is sheared clockwise around the center of the
bounding box.

Notice that the rotation works counter- clockwise, while shearing works clockwise.

672 OpenOffice.org 1.1 Developer's Guide • June 2003

The following example shows how a shape can be rotated by 25 degrees counterclockwise:

// xShape will be rotated by 25 degrees
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xShape);
 xPropSet.setPropertyValue("RotateAngle", new Integer(2500));

Transforming
Changing the size, rotation and shearing of an object can be done by using the transformation
mechanism provided by OpenOffice.org. The matrix of our API is a standard homogenous 3x3
matrix that may be used together with the java.awt.geom.AffineTransform class from Java. The
transformation received describes the actual values of the transformations as a linear combination
of the single matrices. The basic object without transformation has a size of (1, 1) and a position of
(0, 0), and is not rotated or sheared. Thus, to transform an object get its matrix and multiply from
the left side to influence the current appearance. To set the whole transformation directly, build a
combined matrix of the single values mentioned above and apply it to the object.
(Drawing /ObjectTransformationDemo.java)
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);

 // take the current tranformation matrix
 HomogenMatrix3 aHomogenMatrix3 = (HomogenMatrix3)xPropSet.getPropertyValue("Transformation");

 java.awt.geom.AffineTransform aOriginalMatrix = new java.awt.geom.AffineTransform(
 aHomogenMatrix3.Line1.Column1, aHomogenMatrix3.Line2.Column1,
 aHomogenMatrix3.Line1.Column2, aHomogenMatrix3.Line2.Column2,
 aHomogenMatrix3.Line1.Column3, aHomogenMatrix3.Line2.Column3);

 // rotate the object by 15 degrees
 AffineTransform aNewMatrix1 = new AffineTransform();
 aNewMatrix1.setToRotation(Math.PI /180 * 15);
 aNewMatrix1.concatenate(aOriginalMatrix);

 // and translate the object by 2cm on the x-axis
 AffineTransform aNewMatrix2 = new AffineTransform();
 aNewMatrix2.setToTranslation(2000, 0);
 aNewMatrix2.concatenate(aNewMatrix1);

 double aFlatMatrix[] = new double[6];
 aNewMatrix2.getMatrix(aFlatMatrix);

 // convert the flatMatrix to our HomogenMatrix3 structure
 aHomogenMatrix3.Line1.Column1 = aFlatMatrix[0];
 aHomogenMatrix3.Line2.Column1 = aFlatMatrix[1];
 aHomogenMatrix3.Line1.Column2 = aFlatMatrix[2];
 aHomogenMatrix3.Line2.Column2 = aFlatMatrix[3];
 aHomogenMatrix3.Line1.Column3 = aFlatMatrix[4];
 aHomogenMatrix3.Line2.Column3 = aFlatMatrix[5];

 xPropSet.setPropertyValue("Transformation", aHomogenMatrix3);

Chapter 9 Drawing Documents and Presentation Documents 673

Illustration 137 Rotation and Shearing by 25 degrees

Ordering
The property ZOrder of the com.sun.star.drawing.Shape service defines the order a shape is
drawn. That is, if there are many shapes on a page, the shape that has the lowest ZOrder value is
drawn first, and the shape that has the highest ZOrder is drawn last. By using this property it is
possible to bring an object to the back or front of a page. It is also possible to switch the order of
two shapes as demonstrated in the following example: (Drawing /ChangeOrderDemo.java)
 XPropertySet xPropSet1 = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape1);
 XPropertySet xPropSet2 = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape2);

 // get current positions
 int nOrderOfShape1 = ((Integer)xPropSet1.getPropertyValue("ZOrder")).intValue();
 int nOrderOfShape2 = ((Integer)xPropSet2.getPropertyValue("ZOrder")).intValue();

 // set new positions
 xPropSet1.setPropertyValue("ZOrder", new Integer(nOrderOfShape2));
 xPropSet2.setPropertyValue("ZOrder", new Integer(nOrderOfShape1));

Grouping, Combining and Binding
The DrawPage plays an important role for the handling of multiple shapes. It has three interfaces
for this purpose. Its interface com.sun.star.drawing.XShapeGrouper is used to create a group
shape from a ShapeCollection and ungroup existing groups.

 Methods of com.sun.star.drawing.XShapeGrouper
group() Parameter:

com.sun.star.drawing.XShapes xShapes

Groups the shapes inside a collection. They must all
be inserted into the same GenericDrawPage .

Returns a recently created GroupShape that contains
all shapes from xShapes, and is also added to the
GenericDrawPage of the Shapes in xShapes.

ungroup() Parameter:
com.sun.star.drawing.XShapeGroup

Ungroups a given GroupShape. Moves all Shapes
from this GroupShape to the parent XShapes of the
GroupShape. The GroupShape is then removed
from the GenericDrawPage and disposed.

The example below creates a group using the com.sun.star.drawing.XShapeGrouper interface.
For this purpose, the shapes that are to be grouped have to be added to a
com.sun.star.drawing.ShapeCollection that is created by the
com.sun.star.lang.XMultiServiceFactory of the global service manager. It is a container of
shapes that is accessed using the interface com.sun.star.drawing.XShapes. The following
example accesses the XShapes interface of the DrawPage to locate two shapes on the DrawPage,
and uses the XShapes interface of the ShapeCollection to add these shapes to the ShapeCollec-
tion. Finally, it employs the XShapeGrouper interface of the DrawPage to move the shapes from
the ShapeCollection into a new GroupShape. (Drawing /ControlAndSelectDemo)
 /* try to group the first two objects of the drawpage */

 // create a container that will receive the
 // shapes that are to be grouped
 Object xObj = xMultiServiceFactory.createInstance("com.sun.star.drawing.ShapeCollection");
 XShapes xToGroup = (XShapes)UnoRuntime.queryInterface(XShapes.class, xObj);

 // query for the shape collection of xDrawPage
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);

 // test if the shape collection of the page has at least two shapes
 if (xShapes.getCount() >= 2) {

674 OpenOffice.org 1.1 Developer's Guide • June 2003

 // collect shapes we want to group
 xToGroup.add(xShapes.getByIndex(0));
 xToGroup.add(xShapes.getByIndex(1));

 // now group the shapes we have collected by using the XShapeGrouper
 XShapeGrouper xShapeGrouper = (XShapeGrouper)UnoRuntime.queryInterface(
 XShapeGrouper.class, xDrawPage);
 xShapeGrouper.group(xToGroup);
 }

The service com.sun.star.drawing.GroupShape includes com.sun.star.drawing.Shape and
supports two additional interfaces:

• com.sun.star.drawing.XShapes is used to access the shapes in the group.

• com.sun.star.drawing.XShapeGroup handles access to the group.

The interface XShapes inherits from com.sun.star.container.XIndexAccess, and introduces
add() and remove(). It contains the following methods:

type getElementType ()
boolean hasElements()
long getCount()
any getByIndex([in] long Index)
void add([in] com::sun::star::drawing::XShape xShape)
void remove([in] com::sun::star::drawing::XShape xShape)

Methods of com.sun.star.drawing.XShapeGroup:
string getShapeType()
com::sun::star::awt::Point getPosition()
void setPosition([in] com::sun::star::awt::Point aPosition)
com::sun::star::awt::Size getSize()
void setSize([in] com::sun::star::awt::Size aSize)

It is also possible to create GroupShapes directly without using the XShapeGrouper interface. The
following code demonstrates the creation of a com.sun.star.drawing.GroupShape that takes up
three other shapes. (Drawing /DrawingDemo.java)
 // create a group shape first. The size and position does not matter, because
 // it depends to the position and size of objects that will be inserted later
 XShape xGroup = createShape(xComponent, 0, 0, 0, 0, "com.sun.star.drawing.GroupShape");

 // before it is possible to insert shapes,
 // the group shape must have been added to the page
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);
 xShapes.add(xGroup);

 // query for the XShapes interface, which will take our new shapes
 XShapes xShapesGroup = (XShapes)UnoRuntime.queryInterface(XShapes.class, xGroup);

 // new shapes can be inserted into the shape collection directly
 xShapesGroup.add(createShape(xComponent, 1000, 1000, 2000, 4000,
 "com.sun.star.drawing.EllipseShape"));
 xShapesGroup.add(createShape(xComponent, 8000, 8000, 2000, 2000,
 "com.sun.star.drawing.EllipseShape"));
 xShapesGroup.add(createShape(xComponent, 2000, 3000, 7000, 6000,
 "com.sun.star.drawing.LineShape"));

The interface com.sun.star.drawing.XShapeCombiner combines shapes and is equivalent to
Modify – Combine in the user interface.

Chapter 9 Drawing Documents and Presentation Documents 675

 Methods of com.sun.star.drawing.XShapeCombiner
combine() Parameter:

com.sun.star.drawing.XShapes

Combines shapes. The shapes inside this container
are converted to PolyPolygonBezierShapes and
are than combined into one PolyPolygonBezier-
Shape. The shapes in xShape are removed from the
GenericDrawPage and disposed.

Returns a recently created PolyPolygonBezier-
Shape that contains all the converted PolyPoly-
gonBezierShapes combined. It is also added to the
GenericDrawPage of the source Shapes.

split() Parameter:
com.sun.star.drawing.XShape

Splits shapes. The Shape is converted to a Poly-
PolygonBezierShape and then split into several
PolyPolygonBezierShapes. The shape s in xSha-
peare removed from the GenericDrawPage and
disposed.

The draw page interface com.sun.star.drawing.XShapeBinder draws a connection line between
the ending point of a line shape (or curve) to the starting point of another line shape (or curve),
merging the connected lines into a single shape object. This function corresponds to Modify –
Connect in the user interface. It works for area shapes as well, but the connection line usually can
not resolve them.

Methods of com.sun.star.drawing.XShapeBinder
bind() Parameter:

com.sun.star.drawing.XShapes

binds shapes together. A container with shapes that
will be bound together. All shapes are converted to a
PolyPolygonBezierShape and the lines are
connected. The Shapes in xShape are removed from
the GenericDrawPage and disposed.

Returns a recently created PolyPolygonBezier-
Shape that contains all line segments from the
supplied Shapes. It is also added to the
GenericDrawPage of the source Shapes.

unbind() Parameter:
com.sun.star.drawing.XShape

breaks a shape into its line segments. The given
shape will be converted to a PolyPolygonBezier-
Shape and the line segments of this shape are used
to create new PolyPolygonBezierShape shapes.
The original shape is removed from its
GenericDrawPage and disposed.

General Drawing Properties
This chapter introduces the relevant drawing attributes provided by services, such as
com.sun.star.drawing.LineProperties, com.sun.star.drawing.FillProperties and
com.sun.star.drawing.TextProperties. The service is described by listing all its properties,

676 OpenOffice.org 1.1 Developer's Guide • June 2003

followed by an example that uses and explains some of the properties. Each of the following Java
examples assumes an already existing valid shape xShape that has already been inserted into the
page.

Colors are given in Hex ARGB format, a four-byte value containing the alpha, red, green and blue
components of a color in the format 0xAARRGGBB. The leading component can be omitted if it is
zero. The hex format 0xFF0000 is light red, 0xFF00 is green, and 0xFF is blue.

Angles must be given in steps of 1/100th of a degree.

Measures, such as line widths and lengths are given in 100th of a millimeter.

Properties provided by the service :

Properties of com.sun.star.drawing.LineProperties
LineStyle com.sun.star.drawing.LineStyle. This enumeration selects the style of

the line.

LineDash com.sun.star.drawing.LineDash. This enumeration selects the dash of
the line

LineColor long — Color of the line.

LineTransparence short — Degree of transparency.

LineWidth long — Width of the line in 1/100th of a millimeter.

LineJoint com.sun.star.drawing.LineJoint. Rendering of joints between thick
lines.

LineStartName [optional] string — Name of the line that starts poly polygon bezier.

LineStart [optional] com.sun.star.drawing.PolyPolygonBezierCoords.
Line starts in the form of a poly polygon bezier.

LineEnd [optional] com.sun.star.drawing.PolyPolygonBezierCoords.
Line ends in the form of a poly polygon bezier.

LineStartCenter [optional] boolean — If true, the line starts from the center of the
polygon.

LineStartWidth [optional] long — Width of the line start polygon.

LineEndCenter [optional] boolean — If true, the line ends in the center of the polygon.

LineEndWidth [optional] long — Width of the line end polygon.

(Drawing /FillAndLineStyleDemo.java)
 /* create a blue line with dashes and dots */
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xShape);
 xPropSet.setPropertyValue("LineStyle", LineStyle.DASH);
 LineDash aLineDash = new LineDash();
 aLineDash.Dots = 3;
 aLineDash.DotLen = 150;
 aLineDash.Dashes = 3;
 aLineDash.DashLen = 300;
 aLineDash.Distance = 150;
 xPropSet.setPropertyValue("LineDash", aLineDash);
 xPropSet.setPropertyValue("LineColor", new Integer(0x0000ff));
 xPropSet.setPropertyValue("LineWidth", new Integer(200));

Properties of com.sun.star.drawing.FillProperties
FillStyle com.sun.star.drawing.FillStyle. This enumeration selects the style

that the area is filled with.

FillColor long — If the FillStyle is set to SOLID, this is the color used.

Chapter 9 Drawing Documents and Presentation Documents 677

Properties of com.sun.star.drawing.FillProperties
FillTransparence short — The transparency of the filled area in percent.

FillTransparenceGradi-
entName

string — This is the name of the transparent gradient style used if a
gradient is used for transparency, or it is empty. This style is used to set the
name of a transparent gradient style contained in the document.

FillTransparenceGra-
dient

[optional]com.sun.star.awt.Gradient. Transparency of the fill area as
a gradient.

FillGradientName string — If the FillStyle is set to GRADIENT, this is the name of the fill
gradient style used.

FillGradient [optional]com.sun.star.awt.Gradient. If the FillStyle is set to
GRADIENT, this describes the gradient used.

FillHatchName string — If the FillStyle is set to GRADIENT, this is the name of the fill
hatch style used.

FillHatch [optional]com.sun.star.drawing.Hatch. If the FillStyle is set to
HATCH, this describes the hatch used.

FillBitmapName string — If the FillStyle is set to BITMAP, this is the name of the fill
bitmap style used.

FillBitmap [optional]com.sun.star.awt.XBitmap. If the FillStyle is set to
BITMAP, this is the bitmap used.

FillBitmapURL [optional] string. If the FillStyle is set to BITMAP, this is a URL to
the bitmap used.

FillBitmapOffsetX short — Horizontal offset where the tile starts.

FillBitmapOffsetY short — Vertical offset where the tile starts. It is given in percent in rela-
tion to the width of the bitmap.

FillBitmapPositionOff-
setX

short — Every second line of tiles is moved the given percent of the width
of the bitmap.

FillBitmapPositionOff-
setY

short — Every second row of tiles is moved the given percent of the width
of the bitmap.

FillBitmapRectangle-
Point

com.sun.star.drawing.RectanglePoint. The RectanglePoint
specifies the position inside of the bitmap to use as the top-left position for
rendering.

FillBitmapLogicalSize boolean — Specifies if the size is given in percentage or as an absolute
value.

FillBitmapSizeX long — Width of the tile for filling.

FillBitmapSizeY long — Height of the tile for filling.

FillBitmapMode com.sun.star.drawing.BitmapMode. Enumeration selects how an area
is filled with a single bitmap.

FillBackground boolean — If true , the transparent background of a hatch filled area is
drawn in the current background color.

(Drawing /FillAndLineStyleDemo.java)
 /* apply a gradient fill style that goes from top left to bottom
 right and is changing its color from green to yellow */

 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xShape);

 xPropSet.setPropertyValue("FillStyle", FillStyle.GRADIENT);
 Gradient aGradient = new Gradient();
 aGradient.Style = GradientStyle.LINEAR;
 aGradient.StartColor = 0x00ff00;
 aGradient.EndColor = 0xffff00;

678 OpenOffice.org 1.1 Developer's Guide • June 2003

 aGradient.Angle = 450;
 aGradient.Border = 0;
 aGradient.XOffset = 0;
 aGradient.YOffset = 0;
 aGradient.StartIntensity = 100;
 aGradient.EndIntensity = 100;
 aGradient.StepCount = 10;
 xPropSet.setPropertyValue("FillGradient", aGradient);

Properties of com.sun.star.drawing.TextProperties
IsNumbering [optional] boolean — If true, numbering is on for the text of this

shape.

NumberingRules [optional] com.sun.star.container.XIndexReplace. Describes
the numbering levels.

TextAutoGrowHeight boolean — If true, the height of the shape is automatically expanded
or shrunk when text is added or removed from the shape.

TextAutoGrowWidth boolean — If true, the width of the shape is automatically expanded
or shrunk when text is added or removed from the shape.

TextContourFrame boolean — If true, the left edge of every line of text is aligned with the
left edge of this shape.

TextFitToSize
com.sun.star.drawing.TextFitToSizeType. Determines how the
text inside of the Shape is stretched to fit in the Shape. Possible values
are NONE, PROPORTIONAL, ALLLINES, and RESIZEATTR.

TextHorizontalAdjust com.sun.star.drawing.TextHorizontalAdjust. Adjusts the
horizontal position of the text inside of the shape.

TextVerticalAdjust com.sun.star.drawing.TextVerticalAdjust. Adjusts the
vertical position of the text inside of the shape.

TextLeftDistance long — Distance from the left edge of the shape to the left edge of the
text.

TextRightDistance long — Distance from the right edge of the shape to the right edge of
the text.

TextUpperDistance long — Distance from the upper edge of the shape to the upper edge of
the text.

TextLowerDistance long — Distance from the lower edge of the shape to the lower edge of
the text.

TextMaximumFrameHeight long — Maximum height of the surrounding frame.

TextMaximumFrameWidth long — Maximum width of the surrounding frame.

TextMinimumFrameHeight long — Minimum height of the surrounding frame.

TextMinimumFrameWidth long — Minimum width of the surrounding frame.

TextAnimationAmount short — Number of pixels that the text is moved in each animation
step.

TextAnimationCount short — Defines how many times the text animation is repeated.

TextAnimationDelay short — Delay between the animation steps in thousandths of a second.

TextAnimationDirection com.sun.star.drawing.TextAnimationDirection. This
enumeration defines the direction that the text moves.

TextAnimationKind com.sun.star.drawing.TextAnimationKind. Defines the type of
animation.

TextAnimationStartInside boolean. If true, the text is visible at the start of the animation.

TextAnimationStopInside boolean. If true, the text is visible at the end of the animation.

Chapter 9 Drawing Documents and Presentation Documents 679

Properties of com.sun.star.drawing.TextProperties
TextWritingMode com.sun.star.text.WritingMode. This value selects the writing

mode for the text.

The service com.sun.star.drawing.TextProperties includes
com.sun.star.style.ParagraphProperties and com.sun.star.style.CharacterProperties.
Since these services contain optional properties, the properties actually supported by drawing
shapes are listed. Refer to the API reference or explanations or 7.3.2 Text Documents - Working with
Text Documents - Formatting.

The service com.sun.star.drawing.TextProperties includes
com.sun.star.style.ParagraphProperties and com.sun.star.style.CharacterProperties.
Since these services contain many optional properties, we list the properties actually supported by
drawing shapes. Please look up the explanations in the API reference or in 7.3.2 Text Documents -
Working with Text Documents - Formatting.

com.sun.star.style.CharacterProperties of drawing text
CharAutoKerning boolean
CharColor long
CharContoured boolean
CharCrossedOut boolean
CharEmphasis short
CharEscapement short
CharEscapementHeight byte
CharFontCharSet short
CharFontFamily short
CharFontName string
CharFontPitch short
CharFontStyleName string
CharHeight float
CharKerning short
CharLocale com.sun.star.lang.Locale
CharPosture com.sun.star.awt.FontSlant
CharRelief short
CharScaleWidth short
CharShadowed boolean
CharStrikeout short
CharUnderline short
CharUnderlineColor long
CharUnderlineHasColor boolean
CharWeight float
CharWordMode boolean

There are Asian counterparts for a number of character properties.

com.sun.star.style.CharacterPropertiesAsian of drawing shapes
CharFontPitchAsian short
CharFontStyleNameAsian string

680 OpenOffice.org 1.1 Developer's Guide • June 2003

com.sun.star.style.CharacterPropertiesAsian of drawing shapes
CharHeightAsian float
CharPostureAsian com.sun.star.awt.FontSlant
CharLocaleAsian com.sun.star.lang.Locale
CharWeightAsian float

There is also a Complex flavor of the same properties:

com.sun.star.style.CharacterPropertiesComplex of drawing text
CharFontPitchComplex short
CharFontStyleNameComplex string
CharHeightComplex float
CharLocaleComplex com.sun.star.lang.Locale
CharPostureComplex com.sun.star.awt.FontSlant
CharWeightComplex float

Paragraphs in drawing text support a selection of com.sun.star.style.ParagraphProperties:

Properties of com.sun.star.style.ParagraphProperties
ParaAdjust short
ParaBottomMargin long
ParaFirstLineIndent long
ParaIsCharacterDistance boolean
ParaIsForbiddenRules boolean
ParaIsHangingPunctuation boolean
ParaIsHyphenation boolean
ParaLastLineAdjust short
ParaLeftMargin long
ParaLineSpacing com.sun.star.style.LineSpacing
ParaRightMargin long
ParaTabStops sequence <com.sun.star.style.TabStop >

ParaTopMargin long
ParaUserDefinedAttributes com.sun.star.uno.XInterface

The next example introduces a method that appends single text portions to a shape. It returns the
XPropertySet interface of the text range that has been added. (Drawing /ShapeHelper.java)
/** add text to a shape.
 the return value is the PropertySet of the text range that has been added
 */
public static XPropertySet addPortion(XShape xShape, String sText, boolean bNewParagraph)
 throws com.sun.star.lang.IllegalArgumentException {
 XText xText = (XText)UnoRuntime.queryInterface(XText.class, xShape);

 XTextCursor xTextCursor = xText.createTextCursor();
 xTextCursor.gotoEnd(false);
 if (bNewParagraph) {
 xText.insertControlCharacter(xTextCursor, ControlCharacter.PARAGRAPH_BREAK, false);
 xTextCursor.gotoEnd(false);
 }
 XTextRange xTextRange = (XTextRange)UnoRuntime.queryInterface(XTextRange.class, xTextCursor);
 xTextRange.setString(sText);
 xTextCursor.gotoEnd(true);
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xTextRange);
 return xPropSet;
}

Chapter 9 Drawing Documents and Presentation Documents 681

Using the previous method, the next example creates a rectangle shape that has a border of 2.5 cm
with the text of two paragraphs is stretched by using the
com.sun.star.drawing.TextFitToSizeType property. The text of the first paragraph is then
colored green, and the second red. The 7.3.1 Text Documents - Working with Text Documents - Word
Processing - Editing Text provides further details of handling text. (Drawing /TextDemo.java)
 createShape(xComponent, new Point(0,0),
 new Size(21000, 12500), "com.sun.star.drawing.RectangleShape");
 xShapes.add(xRectangle);
 xShapePropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xRectangle);

 // TextFitToSize
 xShapePropSet.setPropertyValue("TextFitToSize", TextFitToSizeType.PROPORTIONAL);

 // border size
 xShapePropSet.setPropertyValue("TextLeftDistance", new Integer(2500));
 xShapePropSet.setPropertyValue("TextRightDistance", new Integer(2500));
 xShapePropSet.setPropertyValue("TextUpperDistance", new Integer(2500));
 xShapePropSet.setPropertyValue("TextLowerDistance", new Integer(2500));

 xTextPropSet = ShapeHelper.addPortion(xRectangle, "using TextFitToSize", false);
 xTextPropSet.setPropertyValue("ParaAdjust", ParagraphAdjust.CENTER);
 xTextPropSet.setPropertyValue("CharColor", new Integer(0xff00));
 xTextPropSet = ShapeHelper.addPortion(xRectangle, "and a Border distance of 2,5 cm", true);
 xTextPropSet.setPropertyValue("CharColor", new Integer(0xff0000));

Many shapes cast shadow s. The ShadowProperties controls how this shadow looks:

Properties of com.sun.star.drawing.ShadowProperties
Shadow boolean — Enables or disables the shadow of a shape.

ShadowColor long — Color of the shadow of the shape.

ShadowTransparence short — Defines the degree of transparency of the shadow in percent.

ShadowXDistance long — Horizontal distance between the left edge of the shape and the shadow.

ShadowYDistance long — Vertical distance between the top edge of the shape and the shadow.

Glue Points and Connectors
By default, there are four glue points available that are used within the properties StartGlue-
PointIndex and EndGluePointIndex. If a connector connects to the top, bottom, left or right of a
shape, a new glue point is not created. The four directions are declared in the following example.

The first example demonstrates how to create a com.sun.star.drawing.ConnectorShape and
connect it to two other shapes using the glue point index property.
(Drawing /GluePointDemo.java)
 XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);
 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();
 XPage xDrawPages.getByIndex(0);

 XShapes xShapes = (XShapes) UnoRuntime.queryInterface(XShapes.class, xPage);

 // create two rectangles
 XShape xShape1 = ShapeHelper.createShape(xDrawDoc, new Point(15000, 1000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");

 XShape xShape2 = ShapeHelper.createShape(xDrawDoc, new Point(2000, 15000), new Size(5000, 5000),
 "com.sun.star.drawing.EllipseShape");

 // and a connector
 XShape xConnector = ShapeHelper.createShape(xDrawDoc,
 new Point(0, 0), new Size(0, 0), "com.sun.star.drawing.ConnectorShape");

 xShapes.add(xShape1);
 xShapes.add(xShape2);
 xShapes.add(xConnector);

 XPropertySet xConnectorPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xConnector);

 // Index value of 0 : the shape is connected at the top

682 OpenOffice.org 1.1 Developer's Guide • June 2003

 // Index value of 1 : the shape is connected at the left
 // Index value of 2 : the shape is connected at the bottom
 // Index value of 3 : the shape is connected at the right

 int nStartIndex = 3;
 int nEndIndex = 1;

 // the "StartPosition" or "EndPosition" property needs not to be set
 // if there is a shape to connect
 xConnectorPropSet.setPropertyValue("StartShape", xShape1);
 xConnectorPropSet.setPropertyValue("StartGluePointIndex", new Integer(nStartIndex));

 xConnectorPropSet.setPropertyValue("EndShape", xShape2);
 xConnectorPropSet.setPropertyValue("EndGluePointIndex", new Integer(nEndIndex));

The next example demonstrates the usage of user defined glue points.
(Drawing /GluePointDemo.java)
 XGluePointsSupplier xGluePointsSupplier;
 XIndexContainer xIndexContainer;
 XIdentifierContainer xIdentifierContainer;

 /* take care to use the structure GluePoint2 and not
 GluePoint, because otherwise the XIdentifierContainer
 won't accept it
 */
 GluePoint2 aGluePoint = new GluePoint2();
 aGluePoint.IsRelative = false;
 aGluePoint.PositionAlignment = Alignment.CENTER;
 aGluePoint.Escape = EscapeDirection.SMART;
 aGluePoint.IsUserDefined = true;
 aGluePoint.Position.X = 0;
 aGluePoint.Position.Y = 0;

 // create and insert a glue point at shape1
 xGluePointsSupplier = (XGluePointsSupplier)UnoRuntime.queryInterface(
 XGluePointsSupplier.class, xShape1);
 xIndexContainer = xGluePointsSupplier.getGluePoints();
 xIdentifierContainer = (XIdentifierContainer)UnoRuntime.queryInterface(
 XIdentifierContainer.class, xIndexContainer);
 int nIndexOfGluePoint1 = xIdentifierContainer.insert(aGluePoint);

 // create and insert a glue point at shape2
 xGluePointsSupplier = (XGluePointsSupplier)
 UnoRuntime.queryInterface(XGluePointsSupplier.class, xShape2);
 xIndexContainer = xGluePointsSupplier.getGluePoints();
 xIdentifierContainer = (XIdentifierContainer)UnoRuntime.queryInterface(
 XIdentifierContainer.class, xIndexContainer);
 int nIndexOfGluePoint2 = xIdentifierContainer.insert(aGluePoint);

 // create and add a connector
 XShape xConnector2 = ShapeHelper.createShape(xDrawDoc,
 new Point(0, 0), new Size(0, 0), "com.sun.star.drawing.ConnectorShape");
 xShapes.add(xConnector2);

 XPropertySet xConnector2PropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xConnector2);

 xConnector2PropSet.setPropertyValue("StartShape", xShape1);
 xConnector2PropSet.setPropertyValue("StartGluePointIndex", new Integer(nIndexOfGluePoint1));

 xConnector2PropSet.setPropertyValue("EndShape", xShape2);
 xConnector2PropSet.setPropertyValue("EndGluePointIndex", new Integer(nIndexOfGluePoint2));

Layer Handling
In Draw and Impress, each shape is associated to exactly one layer. The layer has properties that
specify if connected shapes are visible, printable or editable.

The service com.sun.star.drawing.DrawingDocument implements the interface
com.sun.star.drawing.XLayerSupplier that gives access to the
com.sun.star.drawing.XLayerManager interface. The com.sun.star.drawing.XLayerManager
interface is used to create and edit a layer, and is used to attach a layer to a shape.
(Drawing /LayerDemo.java)
 XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xPage);

 XShape xRect1 = ShapeHelper.createShape(xComponent, new Point(1000, 1000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");

Chapter 9 Drawing Documents and Presentation Documents 683

 XShape xRect2 = ShapeHelper.createShape(xComponent, new Point(1000, 7000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");

 xShapes.add(xRect1);
 xShapes.add(xRect2);
 XPropertySet xTextProp = ShapeHelper.addPortion(xRect2, "this shape is locked", false);
 xTextProp.setPropertyValue("ParaAdjust", ParagraphAdjust.CENTER);
 ShapeHelper.addPortion(xRect2, "and the shape above is not visible", true);
 ShapeHelper.addPortion(xRect2, "(switch to the layer view to gain access)", true);

 // query for the XLayerManager
 XLayerSupplier xLayerSupplier = (XLayerSupplier)UnoRuntime.queryInterface(
 XLayerSupplier.class, xComponent);
 XNameAccess xNameAccess = xLayerSupplier.getLayerManager();
 XLayerManager xLayerManager = (XLayerManager)UnoRuntime.queryInterface(
 XLayerManager.class, xNameAccess);

 // create a layer and set its properties
 XPropertySet xLayerPropSet;
 XLayer xNotVisibleAndEditable = xLayerManager.insertNewByIndex(xLayerManager.getCount());
 xLayerPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xNotVisibleAndEditable);
 xLayerPropSet.setPropertyValue("Name", "NotVisibleAndEditable");
 xLayerPropSet.setPropertyValue("IsVisible", new Boolean(false));
 xLayerPropSet.setPropertyValue("IsLocked", new Boolean(true));

 // create a second layer
 XLayer xNotEditable = xLayerManager.insertNewByIndex(xLayerManager.getCount());
 xLayerPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xNotEditable);
 xLayerPropSet.setPropertyValue("Name", "NotEditable");
 xLayerPropSet.setPropertyValue("IsVisible", new Boolean(true));
 xLayerPropSet.setPropertyValue("IsLocked", new Boolean(true));

 // attach the layer to the rectangles
 xLayerManager.attachShapeToLayer(xRect1, xNotVisibleAndEditable);
 xLayerManager.attachShapeToLayer(xRect2, xNotEditable);

9.3.3 Inserting Files
Currently it is not possible to insert slides from a drawing or presentation into a drawing docu-
ment through API. To accomplish this, use the Insert – File command from the menu.

9.3.4 Navigating
Initially, shapes in a document can only be accessed by their index. The only method to get more
information about a shape on the page is to test for the shape type, so it is impossible to identify a
particular shape. However, after a shape is inserted, you can name it in the user interface or
through the shape interface com.sun.star.container.XNamed, and identify the shape by its
name after retrieving it by index. Shapes cannot be accessed by their names.

Searching and replacing text in Drawing documents retrieves the shapes that contain the text that
is searched for. For more information, refer to 6.2.9 Office Development - Common Application
Features - Search and Replace.

9.4 Handling Presentation Document Files

9.4.1 Creating and Loading Presentation Documents
The URL that must be used with loadComponentFromURL() for new presentation documents is
"private:factory/simpress".

684 OpenOffice.org 1.1 Developer's Guide • June 2003

To avoid the initial dialog in new presentation documents, set the property Silent defined in
com.sun.star.document.MediaDescriptor to true. This property has to be used with the
sequence of PropertyValue structs that is passed to loadComponentFromURL().

The snippet below loads a new presentation document in silent mode:
 // the method getRemoteServiceManager is described in the chapter First Steps
 mxRemoteServiceManager = this.getRemoteServiceManager();

 // retrieve the Desktop object, we need its XComponentLoader
 Object desktop = mxRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.frame.Desktop", mxRemoteContext);

 // query the XComponentLoader interface from the Desktop service
 XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface(
 XComponentLoader.class, desktop);

 // define load properties according to com.sun.star.document.MediaDescriptor
 // the boolean property Silent tells the office to suppress the impress startup wizard
 PropertyValue[] loadProps = new PropertyValue[1];
 loadProps[0] = new PropertyValue();
 loadProps[0].Name = "Silent";
 loadProps[0].Value = new Boolean(true);

 // load
 com.sun.star.uno.XComponent xComponentLoader.loadComponentFromURL(
 "private:factory/simpress", "_blank", 0, loadProps);

9.4.2 Printing Presentation Documents
Presentation documents have the following specific properties to define if the notes and outline
view should be printed:

Properties of com.sun.star.presentation.DocumentSettings
IsPrintNotes boolean — Specifies if the notes are also printed.

IsPrintOutline boolean — Specifies if the outline is also printed.

9.6.2 Drawing - Overall Document Features - Settings describes how these settings are used.

9.5 Working with Presentation Documents

9.5.1 Presentation Document
The structure of Impress documents is enhanced by a handout page per document, one notes page
per draw page, and one notes master page for each master page. This means that the creation of
normal draw and draw master pages automatically create corresponding notes and notes master
pages. Due to this fact there are no interfaces for creation or deletion of notes or notes master
pages.

The following UML diagram describes the whole page structure of Impress. The horizontal dotted
line illustrates the general page structure lying beneath the dotted line, and the enhanced page
structure of Impress lying above.

Chapter 9 Drawing Documents and Presentation Documents 685

Calling getDrawPages() at the com.sun.star.drawing.XDrawPagesSupplier interface of a
presentation document retrieves a collection of com.sun.star.presentation.DrawPage instances
with presentation specific properties.

686 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 138: PresentationDocument

The following two examples demonstrate how to access the notes pages and the handout page of
an Impress document: (Drawing /PageHelper.java)
/** in Impress documents each draw page as also each draw master page has
 a corresponding notes page
*/
static public XDrawPage getNotesPage(XDrawPage xDrawPage) {
 XDrawPage xNotesPage;

 XPresentationPage xPresentationPage = (XPresentationPage)UnoRuntime.queryInterface(
 XPresentationPage.class, xDrawPage);

 /* only Impress pages support the XPresentationPage interface,
 for all other pages the interface will be zero, so a test
 won't hurt
 */
 if (xPresentationPage != null)
 xNotesPage = xPresentationPage.getNotesPage();

 return xNotesPage;
}

The notes master page that corresponds to a notes page can be accessed by the
com.sun.star.presentation.XPresentation interface of the master page.
(Drawing /PageHelper.java)
/** in impress each document has one handout page */
static public XDrawPage getHandoutMasterPage(XComponent xComponent) {
 XHandoutMasterSupplier aHandoutMasterSupplier =
 (XHandoutMasterSupplier)UnoRuntime.queryInterface(
 XHandoutMasterSupplier.class, xComponent);

 return aHandoutMasterSupplier.getHandoutMasterPage();
}

9.5.2 Presentation Settings
Impress documents contain a Presentation service that controls a running presentation. This
com.sun.star.presentation.Presentation service can be accessed through the
com.sun.star.presentation.XPresentationSupplier interface through the method:

com::sun::star::presentation::XPresentation getPresentation()

The method getPresentation() returns a com.sun.star.presentation.Presentation service.
It contains properties for presentation settings and the interface
com.sun.star.presentation.XPresentation.

The presentation settings define the slide range, which custom show is used, and how the presen-
tation is executed. These settings are provided as properties of the service
com.sun.star.presentation.Presentation. This service also exports the
[IDL.com.sun.star.presentation.XPresentation] interface that starts and ends a presentation.

Methods of com.sun.star.presentation.XPresentation
start() Starts the presentation in full-screen mode.

end() Stops the presentation.

rehearseTimings() Starts the presentation from the beginning and shows the actual running
time to the user.

Properties of com.sun.star.presentation.Presentation
AllowAnimations boolean — Enables/disables the shape animations.

CustomShow string — Contains the name of a customized show that is used for the presenta-
tion.

Chapter 9 Drawing Documents and Presentation Documents 687

Properties of com.sun.star.presentation.Presentation
FirstPage string — Contains the name of the page where the presentation is started.

IsAlwaysOnTop boolean — If true, the window of the presentation is always on top of all the
other windows.

IsAutomatic boolean — If true, all pages are changed automatically.

IsEndless boolean — If true, the presentation is repeated endlessly.

IsFullScreen boolean — If true, the presentation runs in full-screen mode.

IsLivePresentation boolean — With this property, the presentation is set to live mode.

IsMouseVisible boolean — If true, the mouse is visible during the presentation.

Pause long — Duration of the black screen after the presentation has finished.

StartWithNavigator boolean — If true, the Navigator is opened at the start of the presentation.

UsePen boolean — If true, a pen is shown during presentation.

 IsShowAll boolean — Show all slides.

IsShowLogo boolean — Show OpenOffice.org logo on pause page in automatic mode.

IsTransitionOn-
Click

boolean — Slide change on mouse click, in addition to pressing cursor right.

The properties IsShowAll, IsShowLogo and IsTransitionOnClick are currently not documented
in the API reference.

The next example demonstrates how to start a presentation that is automatically repeated and
plays in full-screen mode by modifying the presentation settings.
(Drawing /PresentationDemo.java)
 XPresentationSupplier xPresSupplier = (XPresentationSupplier)UnoRuntime.queryInterface(
 XPresentationSupplier.class, xComponent);
 XPresentation xPresentation = xPresSupplier.getPresentation();
 XPropertySet xPresPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xPresentation);
 xPresPropSet.setPropertyValue("IsEndless", new Boolean(true));
 xPresPropSet.setPropertyValue("IsFullScreen", new Boolean(true));
 xPresPropSet.setPropertyValue("Pause", new Integer(0));
 xPresentation.start();

Custom Slide Show
Custom presentations are available at the
com.sun.star.presentation.XCustomPresentationSupplier interface of the presentation
document. It contains the method:

com::sun::star::container::XNameContainer getCustomPresentations()

The method getCustomPresentations() returns a
com.sun.star.presentation.CustomPresentationAccess service that consists of the interfaces
com.sun.star.container.XNameContainer and com.sun.star.lang.XSingleServiceFactory.
The standard API interface com.sun.star.container.XNameContainer derived from
com.sun.star.container.XNameReplace obtains existing Custom Presentations and to add new
custom presentations by name. It introduces the methods:

void replaceByName([in] string aName, [in] any aElement)
void insertByName([in] string aName, [in] any aElement)
void removeByName([in] string Name)

688 OpenOffice.org 1.1 Developer's Guide • June 2003

To add a new CustomPresentation, create it using createInstance() at the XSingleServ-
iceFactory interface of the CustomPresentationAccess.
Methods of com.sun.star.lang.XSingleServiceFactory:

com::sun::star::uno::XInterface createInstance()
com::sun::star::uno::XInterface createInstanceWithArguments([in] sequence< any aArguments >)

The CustomPresentation is now created. Its content consists of a
com.sun.star.presentation.CustomPresentation. From the API, it is a named container of
selected presentation draw pages. Draw pages can be added to a custom presentation or removed
using its interface com.sun.star.container.XIndexContainer. In addition to the methods of an
XIndexAccess, this standard API interface supports the following operations:

Methods introduced by com.sun.star.container.XIndexContainer:
void replaceByIndex([in] long Index, [in] any Element)
void insertByIndex([in] long Index, [in] any Element)
void removeByIndex([in] long Index)

The name of a CustomPresentation is read and written using the interface
com.sun.star.container.XNamed:

Methods of XNamed:
string getName()
void setName([in] string aName)

A custom show is a collection of slides in a user-defined order that can be executed as a presenta-
tion. It is also possible to use a slide twice or skip slides. For instance, it is possible to create a short
version of a presentation and a long version within the same document. The number of custom
shows is unlimited.

The next example demonstrates how to create two custom shows and set one of them as an active
presentation. (Drawing /CustomShowDemo.java)
 XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);
 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();

 // take care that this document has ten pages
 while (xDrawPages.getCount() < 10)
 xDrawPages.insertNewByIndex(0);

 // assign a name to each page
 String aNameArray[] = {"Introduction", "page one", "page two", "page three", "page four",
 "page five", "page six", "page seven", "page eight", "page nine"};
 int i;
 for (i = 0; i < 10; i++) {
 XNamed xPageName = (XNamed)UnoRuntime.queryInterface(XNamed.class, xDrawPages.getByIndex(i));
 xPageName.setName(aNameArray[i]);
 }

 /* create two custom shows, one will play slide 6 to 10 and is named "ShortVersion"
 the other one will play slide 2 til 10 and is named "LongVersion"
 */
 XCustomPresentationSupplier xCustPresSupplier = (XCustomPresentationSupplier)
 UnoRuntime.queryInterface(XCustomPresentationSupplier.class, xComponent);

 /* the following container is a container for further container
 which concludes the list of pages that are to play within a custom show
 */
 XNameContainer xNameContainer = xCustPresSupplier.getCustomPresentations();
 XSingleServiceFactory xFactory = (XSingleServiceFactory)UnoRuntime.queryInterface(
 XSingleServiceFactory.class, xNameContainer);

 Object xObj;
 XIndexContainer xContainer;

 /* instanciate an IndexContainer that will take
 a list of draw pages for the first custom show
 */
 xObj = xFactory.createInstance();
 xContainer = (XIndexContainer)
 UnoRuntime.queryInterface(XIndexContainer.class, xObj);
 for (i = 5; i < 10; i++)
 xContainer.insertByIndex(xContainer.getCount(), xDrawPages.getByIndex(i));

Chapter 9 Drawing Documents and Presentation Documents 689

 xNameContainer.insertByName("ShortVersion", xContainer);

 /* instanciate an IndexContainer that will take
 a list of draw page for a second custom show
 */
 xObj = xFactory.createInstance();
 xContainer = (XindexContainer)UnoRuntime.queryInterface(XIndexContainer.class, xObj);
 for (i = 1; i < 10; i++)
 xContainer.insertByIndex(xContainer.getCount(), xDrawPages.getByIndex(i));
 xNameContainer.insertByName("LongVersion", xContainer);

 /* which custom show is to use
 can been set in the presentation settings
 */

 XPresentationSupplier xPresSupplier = (XPresentationSupplier)UnoRuntime.queryInterface(
 XPresentationSupplier.class, xComponent);
 XPresentation xPresentation = xPresSupplier.getPresentation();
 XPropertySet xPresPropSet = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xPresentation);
 xPresPropSet.setPropertyValue("CustomShow", "ShortVersion");

Presentation Effects
There are two kinds of presentation effects, the fading of one page to another, and the animation of
objects and texts within a slideshow.

Slide Transition
In Impress, each page has its own slide transition that can be composed by the properties of the
service com.sun.star.presentation.DrawPage.

Setting the following properties enables slide transition:

Properties of com.sun.star.presentation.DrawPage

Change
long — Specifies how the page change is triggered. If this is 0, the user must click
to start each object animation and to change the page. If set to 1, the page is auto-
matically switched. If it is set to 2, all object effects run automatically, but the user
has to click on the page to change it.

Duration long — If the property Change is set to 1, this property is the time in seconds the
page is shown, before switching to the next page.

Effect com.sun.star.presentation.FadeEffect. This is the effect that is used to
fade in the page.

Speed

com.sun.star.presentation.AnimationSpeed. Defines the speed of the
fade- in effect of the page. Possible values are:

• SLOW sets the speed from the animation or fade to slow.

• MEDIUM sets the speed from the animation or fade to medium.

• FAST sets the speed from the animation or fade to fast.

Layout short — This number specifies a presentation layout for this page, if this property
is not ZERO.

The next table contains all available com.sun.star.presentation.FadeEffect enum values:

NONE RANDOM DISSOLVE

690 OpenOffice.org 1.1 Developer's Guide • June 2003

FADE_FROM_LEFT
FADE_FROM_RIGHT
FADE_FROM_TOP
FADE_FROM_BOTTOM
FADE_FROM_UPPERLEFT
FADE_FROM_UPPERRIGHT
FADE_FROM_LOWERLEFT
FADE_FROM_LOWERRIGHT

MOVE_FROM_LEFT
MOVE_FROM_RIGHT
MOVE_FROM_TOP
MOVE_FROM_BOTTOM
MOVE_FROM_UPPERLEFT
MOVE_FROM_UPPERRIGHT
MOVE_FROM_LOWERRIGHT
MOVE_FROM_LOWERLEFT

UNCOVER_TO_LEFT
UNCOVER_TO_RIGHT
UNCOVER_TO_TOP
UNCOVER_TO_BOTTOM
UNCOVER_TO_UPPERLEFT
UNCOVER_TO_UPPERRIGHT
UNCOVER_TO_LOWERRIGHT
UNCOVER_TO_LOWERLEFT

FADE_TO_CENTER
FADE_FROM_CENTER

VERTICAL_STRIPES
HORIZONTAL_STRIPES

CLOCKWISE
COUNTERCLOCKWISE

ROLL_FROM_LEFT
ROLL_FROM_RIGHT
ROLL_FROM_TOP
ROLL_FROM_BOTTOM

CLOSE_VERTICAL
CLOSE_HORIZONTAL
OPEN_VERTICAL
OPEN_HORIZONTAL

SPIRALIN_LEFT
SPIRALIN_RIGHT
SPIRALOUT_LEFT
SPIRALOUT_RIGHT

WAVYLINE_FROM_LEFT
WAVYLINE_FROM_RIGHT
WAVYLINE_FROM_TOP
WAVYLINE_FROM_BOTTOM

STRETCH_FROM_LEFT
STRETCH_FROM_RIGHT
STRETCH_FROM_TOP
STRETCH_FROM_BOTTOM

VERTICAL_LINES
HORIZONTAL_LINES

VERTICAL_CHECKERBOARD
HORIZONTAL_CHECKERBOARD

The following Java example shows how to set slide transition effects that are applied to the first
page. (Drawing /PresentationDemo.java)
 // set the slide transition effect of the first page
 XDrawPagesSupplier xDrawPagesSupplier =(XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);

 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();
 XDrawPage xDrawPage = (XDrawPage)xDrawPages.getByIndex(0);

 xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);

 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xDrawPage);

 // set the slide transition effect properties
 xPropSet.setPropertyValue("Effect", com.sun.star.presentation.FadeEffect.RANDOM);
 xPropSet.setPropertyValue("Speed", com.sun.star.presentation.AnimationSpeed.MEDIUM);

 /* Change specifies how the page change is triggered. If this
 is 0, the user must click to start each object animation
 and to change the page. If set to 1, the page is
 automatically switched. If it is set to 2, all object
 effects run automatically, but the user has to click on the
 page to change it.
 */
 xPropSet.setPropertyValue("Change", new Integer(1));

 /* If the property DrawPage::Change is set to 1, Duration specifies the
 time in seconds the page is shown before switching to the next page.
 */
 xPropSet.setPropertyValue("Duration", new Integer(5));

Animations and Interactions
In a Presentation, each shape of the draw and master page provides
thecom.sun.star.presentation.Shape service with a number of properties that describe the
manner the shape is displayed or acting in a presentation.

There are two kinds of shape effects. The first kind of effects are visual changes, such as anima-
tions and dimming effects. The second kind of effects are OnClick actions. All of these effects are
controlled by the properties of a presentation shape:

Chapter 9 Drawing Documents and Presentation Documents 691

Properties of com.sun.star.presentation.Shape
OnClick com.sun.star.presentation.ClickAction. Selects an action

performed after the user clicks on this shape. Possible values are:

• NONE - no action is performed on click

• PREVPAGE - the presentation jumps to the previous page

• NEXTPAGE - the presentation jumps to the next page

• FIRSTPAGE - the presentation continues with the first page

• LASTPAGE - the presentation continues with the last page

• BOOKMARK - the presentation jumps to the bookmark URL defined in
the shape property Bookmark

• DOCUMENT - the presentation jumps to the document given in Book-
mark. It selects the object whose name is given after a # in the Book-
mark URL.

• INVISIBLE - the object renders itself invisible after a click

• SOUND - the sound specified in Sound is played after a click

• VERB - the OLE verb specified in the shape property Verb is
performed on this object

• VANISH - the object vanishes with the effect specified in the property
Effect

• PROGRAM - the program specified in Bookmark is executed after a
click

• MACRO - the OpenOffice.org Basic macro specified in Bookmark is
executed after the click. For the syntax of Basic macro URLs, refer to
the chapter 11 Basic and Dialogs.

• STOPPRESENTATION - the presentation is stopped after the click

Bookmark string — A generic URL for the property OnClick.
Verb long — Valid only for OLE shapes. Specifies an "OLE2" verb for the

ClickAction VERB in the property OnClick. For possible verbs, select
the OLE shape, and point the cursor to Edit – Object. The order of
appearance corresponds to the value needed for Verb.

DimPrevious boolean — Only valid when Effect contains an AnimationEffect. If
true, this shape is painted using DimColor on the next click after
finishing the AnimationEffect.

DimHide boolean — Only valid when Effect contains an AnimationEffect. If
this property and the property DimPrevious are both true, the shape is
hidden on the next click after the AnimationEffect has finished.

DimColor long — Only valid when Effect contains an AnimationEffect. This
color is used to paint the shape on the next click after the animation effect
has finished. The property DimPrevious must be true and DimHide
must be false for this property to work.

Effect com.sun.star.presentation.AnimationEffect. Selects the
animation effect of this shape. For possible values see the table below.

692 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.presentation.Shape
PresentationOrder long — This is the position of this shape in the order of the shapes that

can be animated on its page. The animations are executed in the order
given in PresentationOrder, starting at the shape with the Presen-
tationOrder 1. You can change the order by changing this number.
Setting it to 1 makes this shape the first shape in the execution order for
the animation effects.

SoundOn boolean — If true, the sound file specified in Sound is played while the
animation effect is executed.

Sound string — This is the URL to a sound file that is played while the anima-
tion effect of this shape is running.

PlayFull boolean. — If true, the sound specified in the Sound property of this
shape is played completely. If false, the sound stops after completing the
AnimationEffect specified in Effect.

Speed com.sun.star.presentation.AnimationSpeed. This is the speed
of the animation effect. Possible values: SLOW, MEDIUM, and FAST.

TextEffect com.sun.star.presentation.AnimationEffect. This is the
animation effect for the text inside this shape. For possible values, see the
table below.

IsEmptyPresentationOb-
ject

[readonly] boolean — If this is a default presentation object and if it is
empty, this property is true.

IsPresentationObject [readonly] boolean — If true, a shape is part of the current AutoLayout
and is considered a presentation object. AutoLayouts are predefined page
layouts consisting of shapes, such as a title box and an outline box.

The next table contains all available com.sun.star.presentation.AnimationEffect enums.

NONE RANDOM DISSOLVE
APPEAR HIDE PATH
FADE_FROM_LEFT
FADE_FROM_RIGHT
FADE_FROM_TOP
FADE_FROM_BOTTOM
FADE_FROM_UPPERLEFT
FADE_FROM_UPPERRIGHT
FADE_FROM_LOWERLEFT
FADE_FROM_LOWERRIGHT

MOVE_FROM_LEFT
MOVE_FROM_RIGHT
MOVE_FROM_TOP
MOVE_FROM_BOTTOM
MOVE_FROM_UPPERLEFT
MOVE_FROM_UPPERRIGHT
MOVE_FROM_LOWERRIGHT
MOVE_FROM_LOWERLEFT

ZOOM_IN_FROM_LEFT
ZOOM_IN_FROM_RIGHT
ZOOM_IN_FROM_TOP
ZOOM_IN_FROM_BOTTOM
ZOOM_IN_FROM_UPPERLEFT
ZOOM_IN_FROM_UPPERRIGHT
ZOOM_IN_FROM_LOWERRIGHT
ZOOM_IN_FROM_LOWERLEFT

CLOCKWISE
COUNTERCLOCKWISE

CLOSE_VERTICAL
CLOSE_HORIZONTAL

OPEN_VERTICAL
OPEN_HORIZONTAL

LASER_FROM_LEFT
LASER_FROM_RIGHT
LASER_FROM_TOP
LASER_FROM_BOTTOM
LASER_FROM_UPPERLEFT
LASER_FROM_UPPERRIGHT
LASER_FROM_LOWERLEFT
LASER_FROM_LOWERRIGHT

MOVE_TO_LEFT
MOVE_TO_RIGHT
MOVE_TO_TOP
MOVE_TO_BOTTOM
MOVE_TO_UPPERLEFT
MOVE_TO_UPPERRIGHT
MOVE_TO_LOWERRIGHT
MOVE_TO_LOWERLEFT

MOVE_SHORT_TO_LEFT
MOVE_SHORT_TO_RIGHT
MOVE_SHORT_TO_TOP
MOVE_SHORT_TO_BOTTOM
MOVE_SHORT_TO_UPPERLEFT
MOVE_SHORT_TO_UPPERRIGHT
MOVE_SHORT_TO_LOWERRIGHT
MOVE_SHORT_TO_LOWERLEFT

Chapter 9 Drawing Documents and Presentation Documents 693

ZOOM_OUT_FROM_LEFT
ZOOM_OUT_FROM_RIGHT
ZOOM_OUT_FROM_TOP
ZOOM_OUT_FROM_BOTTOM
ZOOM_OUT_FROM_UPPERLEFT
ZOOM_OUT_FROM_UPPERRIGHT
ZOOM_OUT_FROM_LOWERRIGHT
ZOOM_OUT_FROM_LOWERLEFT

STRETCH_FROM_LEFT
STRETCH_FROM_RIGHT
STRETCH_FROM_TOP
STRETCH_FROM_BOTTOM
STRETCH_FROM_UPPERLEFT
STRETCH_FROM_UPPERRIGHT
STRETCH_FROM_LOWERRIGHT
STRETCH_FROM_LOWERLEFT

MOVE_SHORT_FROM_LEFT
MOVE_SHORT_FROM_RIGHT
MOVE_SHORT_FROM_TOP
MOVE_SHORT_FROM_BOTTOM
MOVE_SHORT_FROM_UPPERLEFT
MOVE_SHORT_FROM_UPPERRIGH
T
MOVE_SHORT_FROM_LOWERRIGH
T
MOVE_SHORT_FROM_LOWERLEFT

WAVYLINE_FROM_LEFT
WAVYLINE_FROM_RIGHT
WAVYLINE_FROM_TOP
WAVYLINE_FROM_BOTTOM

SPIRALIN_LEFT
SPIRALIN_RIGHT
SPIRALOUT_LEFT
SPIRALOUT_RIGHT

FADE_FROM_CENTER
FADE_TO_CENTER
VERTICAL_STRIPES
HORIZONTAL_STRIPES

ZOOM_IN
ZOOM_IN_SMALL
ZOOM_IN_SPIRAL

ZOOM_OUT
ZOOM_OUT_SMALL
ZOOM_OUT_SPIRAL

VERTICAL_LINES
HORIZONTAL_LINES

ZOOM_IN_FROM_CENTER
ZOOM_OUT_FROM_CENTER

VERTICAL_CHECKERBOARD
HORIZONTAL_CHECKERBOARD

VERTICAL_ROTATE
HORIZONTAL_ROTATE

HORIZONTAL_STRETCH
VERTICAL_STRETCH

The next example demonstrates how to set object effects and object interaction.

The example use a method createAndInsertShape() from the ShapeHelper class. It takes the
drawing document, the XShapes interface of the DrawPage the shape is to be inserted in, the posi-
tion and size of the new shape, and the service name of the required shape. It delegates shape
creation to the helper method createShape() and inserts the new shape into the given XShapes
container. Finally, it retrieves the XPropertySet interface of the inserted shape and returns it to
the caller. (Drawing /ShapeHelper.java)
public static XPropertySet createAndInsertShape(XComponent xDrawDoc,
 XShapes xShapes, Point aPos, Size aSize, String sShapeType) throws java.lang.Exception {
 XShape xShape = createShape(xDrawDoc, aPos, aSize, sShapeType);
 xShapes.add(xShape);
 XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);
 return xPropSet;
}

The following example shows animations and OnClick actions for four shapes. On click, the first
shape builds up in a wavy line from the bottom and is dimmed (painted) red afterwards. The
second shape is hidden on click. Clicking the third shape makes the presentation jump to the first
page, whereas clicking the fourth shape jumps to a bookmark. The bookmark contains the name of
the second slide "page – two". (Drawing /PresentationDemo.java)
 XShapes xShapes;
 XPropertySet xShapePropSet;

 XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);
 XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();

 // create pages, so that three are available
 while (xDrawPages.getCount() < 3)

xDrawPages.insertNewByIndex(0);

 // get the shape container for page one
 xShapes = (XShapes)UnoRuntime.queryInterface(
 XShapes.class, (XDrawPage)xDrawPages.getByIndex(0));

 // create a rectangle that is placed on the top left of the page
 xShapePropSet = ShapeHelper.createAndInsertShape(xComponent,
 xShapes, new Point(1000, 1000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");

 // and now set an object animation
 xShapePropSet.setPropertyValue("Effect",
 com.sun.star.presentation.AnimationEffect.WAVYLINE_FROM_BOTTOM);

 /* the following three properties provoke that the shape is dimmed to red
 after the animation has been finished

694 OpenOffice.org 1.1 Developer's Guide • June 2003

 */
 xShapePropSet.setPropertyValue("DimHide", new Boolean(false));
 xShapePropSet.setPropertyValue("DimPrevious", new Boolean(true));
 xShapePropSet.setPropertyValue("DimColor", new Integer(0xff0000));

 // get the shape container for the second page
 xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, (XDrawPage)xDrawPages.getByIndex(1));

 // create an ellipse that is placed on the bottom right of second page
 xShapePropSet = ShapeHelper.createAndInsertShape(xComponent, xShapes,
 new Point(21000, 15000), new Size(5000, 5000), "com.sun.star.drawing.EllipseShape");
 xShapePropSet.setPropertyValue("Effect", com.sun.star.presentation.AnimationEffect.HIDE);

 /* create two objects for the third page.
 clicking the first object lets the presentation jump
 to page one by using ClickAction.FIRSTPAGE,
 the second object lets the presentation jump to page two
 by using a ClickAction.BOOKMARK
 */
 xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class,
 (XDrawPage)xDrawPages.getByIndex(2));
 xShapePropSet = ShapeHelper.createAndInsertShape(xComponent, xShapes,
 new Point(1000, 8000), new Size(5000, 5000),
 "com.sun.star.drawing.EllipseShape");
 xShapePropSet.setPropertyValue("Effect",
com.sun.star.presentation.AnimationEffect.FADE_FROM_BOTTOM);
 xShapePropSet.setPropertyValue("OnClick", com.sun.star.presentation.ClickAction.FIRSTPAGE);

 xShapePropSet = ShapeHelper.createAndInsertShape(xComponent, xShapes,
 new Point(22000, 8000), new Size(5000, 5000),
 "com.sun.star.drawing.RectangleShape");
 xShapePropSet.setPropertyValue("Effect",
com.sun.star.presentation.AnimationEffect.FADE_FROM_BOTTOM);
 xShapePropSet.setPropertyValue("OnClick", com.sun.star.presentation.ClickAction.BOOKMARK);

 // set the name of page two, and use it with the bookmark action
 XNamed xPageName = (XNamed)UnoRuntime.queryInterface(XNamed.class,
 (XDrawPage)xDrawPages.getByIndex(1));
 xPageName.setName("page - two");
 xShapePropSet.setPropertyValue("Bookmark", xPageName.getName());

9.6 Overall Document Features

9.6.1 Styles

Graphics Styles
Graphics Styles are available in drawing and presentation documents, and they control the
formatting of the drawing shapes in drawing or presentation slides. In contrast to styles in text
documents, the style property of a shape is not a string, but a com.sun.star.style.XStyle. To
work with an existing graphics style, get the styles container from the
com.sun.star.style.XStyleFamiliesSupplier and use its
com.sun.star.container.XNameAccess to retrieve the style family named "graphics". The
programmatic names of the style families in graphics are:

GUI name Programmatic
name

Remark

Default standard The style Default (standard) is used for newly inserted
filled rectangles, filled ellipses, lines, connectors, text boxes,
and 3D objects.

Dimension Line measure Used for newly inserted dimension lines.

First line indent textbodyindent Apply manually.

Heading headline Apply manually.

Chapter 9 Drawing Documents and Presentation Documents 695

GUI name Programmatic
name

Remark

Heading1 headline1 Apply manually.

Heading2 headline2 Apply manually.

Object with Arrow objectwitharrow Apply manually.

Object with shadow objectwithshadow Apply manually.

Object without fill objectwithoutfill Used for newly inserted rectangles and ellipses without
filling.

Text text Newly inserted text boxes do not use this style. They use
Default and remove the fill settings for Default.

Text body textbody Apply manually.

Text body justified textbodyjustfied Apply manually.

Title title Apply manually.

Title1 title1 Apply manually.

Title2 title2 Apply manually.

There are two methods to change an applied shape style:

• Retrieve the style from the style family “graphics” by its programmatic name, change the prop-
erties, and put back into the style family using replaceByName() at the style family's
com.sun.star.container.XNameContainer interface.

• Apply an existing style object that is not applied to a shape by setting the shape's style prop -
erty.

New styles can be created, as well. For this purpose, use createInstance() at the document
factory of a drawing document and ask for a "com.sun.star.style.Style" service. Set the properties
of the new style, as required. Append the new style to the style family "graphics" using insertBy-
Name() at its XNameContainer interface. Now use the Style property of existing shapes to put the
new style to work.

You can either change a currently applied shape style by retrieving it from the style family
"graphics" by its programmatic name, changing its properties and putting it back into the style
family using replaceByName() at the style family's com.sun.star.container.XNameContainer
interface. Or you can apply an existing, but currently unapplied style object to a shape by setting
the shape's Style property accordingly.

You can create new styles as well. For this purpose, use createInstance() at the document
factory of a drawing document and ask for a "com.sun.star.style.Style" service. Set the properties
of the new style as needed. Afterwards append the new style to the style family "graphics" using
insertByName() at its XNameContainer interface. Now you can use the Style property of existing
shapes in order to put your new style to work.

Styles created by the document factory support the properties of the following services:

• com.sun.star.drawing.FillProperties
• com.sun.star.drawing.LineProperties
• com.sun.star.drawing.ShadowProperties
• com.sun.star.drawing.ConnectorProperties
• com.sun.star.drawing.MeasureProperties
• com.sun.star.style.ParagraphProperties

696 OpenOffice.org 1.1 Developer's Guide • June 2003

• com.sun.star.style.CharacterProperties
• com.sun.star.drawing.TextProperties

Presentation Styles
Presentation styles are only available in presentation documents and control the formatting of the
following parts of a presentation:

• title text

• subtitle text

• outline text

• background

• background shapes

• notes text

The corresponding style family has the programmatic name "Default" and is available at the
XStyleFamiliesSupplier of a presentation document.

GUI Name Programmatic Name Remark
Title title Style for text of new title presentation

objects.

Subtitle subtitle Style that is used for the presentation
object on pages with a “Title Slide”
layout.

Background background Style for the page background.

Background objects backgroundobjects Style for shapes on the background.

notes Notes Style for notes text.

outline1 Outline 1 Style for outline level 1.

outline2 Outline 2 Style for outline level 2.

outline3 Outline 3 Style for outline level 3.

outline4 Outline 4 Style for outline level 4.

outline5 Outline 5 Style for outline level 5.

outline6 Outline 6 Style for outline level 6.

outline7 Outline 7 Style for outline level 7.

outline8 Outline 8 Style for outline level 8.

outline9 Outline 9 Style for outline level 9.

Existing presentation styles can only be altered. New styles can not be created and a different pres-
entation style cannot be applied other than the current one. The following example works with
presentation styles: (Drawing /StyleDemo.java).

You can only alter existing presentation styles. You cannot create new styles and you cannot apply
a different presentation style other than the current one. The following example works with pres-
entation styles: (Drawing /StyleDemo.java).
// The first part of this demo will set each "CharColor" Property
// that is available within the styles of the document to red. It
// will also print each family and style name to the standard output

Chapter 9 Drawing Documents and Presentation Documents 697

XModel xModel = (XModel)UnoRuntime.queryInterface(XModel.class, xComponent);
com.sun.star.style.XStyleFamiliesSupplier xSFS = (com.sun.star.style.XStyleFamiliesSupplier)

UnoRuntime.queryInterface(com.sun.star.style.XStyleFamiliesSupplier.class, xModel);
com.sun.star.container.XNameAccess xFamilies = xSFS.getStyleFamilies();

// the element should now contain at least two Styles. The first is
// "graphics" and the other one is the name of the Master page
String[] Families = xFamilies.getElementNames();
for (int i = 0; i < Families.length; i++) {
 // this is the family
 System.out.println("\n" + Families[i]);

 // and now all available styles
 Object aFamilyObj = xFamilies.getByName(Families[i]);
 com.sun.star.container.XNameAccess xStyles = (com.sun.star.container.XNameAccess)

UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, aFamilyObj);
 String[] Styles = xStyles.getElementNames();
 for (int j = 0; j < Styles.length; j++) {
 System.out.println(" " + Styles[j]);
 Object aStyleObj = xStyles.getByName(Styles[j]);
 com.sun.star.style.XStyle xStyle = (com.sun.star.style.XStyle)
 UnoRuntime.queryInterface(com.sun.star.style.XStyle.class, aStyleObj);
 // now we have the XStyle Interface and the CharColor for all styles
 // is exemplary be set to red.
 XPropertySet xStylePropSet = (XPropertySet)
 UnoRuntime.queryInterface(XPropertySet.class, xStyle);
 XPropertySetInfo xStylePropSetInfo = xStylePropSet.getPropertySetInfo();
 if (xStylePropSetInfo.hasPropertyByName("CharColor")) {
 xStylePropSet.setPropertyValue("CharColor", new Integer(0xff0000));
 }
 }
}

/* now create a rectangle and apply the "title1" style of
 the "graphics" family
*/
Object obj = xFamilies.getByName("graphics");
com.sun.star.container.XNameAccess xStyles = (XNameAccess)
 UnoRuntime.queryInterface(com.sun.star.container.XNameAccess.class, obj);
obj = xStyles.getByName("title1");
com.sun.star.style.XStyle xTitle1Style = (com.sun.star.style.XStyle)UnoRuntime.queryInterface(
 com.sun.star.style.XStyle.class, obj);

XDrawPagesSupplier xDrawPagesSupplier = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, xComponent);
XDrawPages xDrawPages = xDrawPagesSupplier.getDrawPages();
XDrawPage xDrawPage = (XDrawPage)xDrawPages.getByIndex(0);
XShapes xShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, xDrawPage);
XShape xShape = ShapeHelper.createShape(xComponent, new Point(0, 0),
 new Size(5000, 5000), "com.sun.star.drawing.RectangleShape");
xShapes.add(xShape);
XPropertySet xPropSet = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);
xPropSet.setPropertyValue("Style", xTitle1Style);

9.6.2 Settings
To use the global document settings, the document service factory must be asked for a
com.sun.star.document.Settings service using the method createInstance() at its
com.sun.star.lang.XMultiServiceFactory interface. This service supports
com.sun.star.beans.PropertySet and acts upon the current document by setting its properties.

The services com.sun.star.drawing.DocumentSettings and
com.sun.star.presentation.DocumentSettings provide the following properties additionally
to the global document settings.

Properties of com.sun.star.drawing.DocumentSettings
MeasureUnit short — this is the default logical measure unit that is used for string formatings

inside the document.

ScaleNumerator long — is the numerator for the logical scale of the document.

ScaleDenominator long — is the denominator for the logical scale of the document.

698 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.drawing.DocumentSettings

IsPrintFitPage
boolean — this property enables or disables the fitting of the page to the printable
area during print, true enable and false disable.

IsPrintTilePage

boolean — If the property IsPrintTilePage is set to 1 and the paper size for
printing is larger than the paper size of the printer than the content is tiled over
multiple pages.

PageNumberFormat long — is the number format used for page number fields.

ParagraphSumma-
tion

boolean — If the property ParagraphSummation is set to 1, the distance
between two paragraphs is the sum of ParaTopMargin of the previous and Para-
BottomMargin of the next paragraph. If 0, only the greater of the two is choosen.

Properties of com.sun.star.presentation.DocumentSettings
IsPrintDrawing boolean — this property enables or disables the printing of the drawing pages,

true enable and false disable.

IsPrintNotes boolean — this property enables or disables the printing of the notes pages, true
enable and false disable.

IsPrintHandout boolean — this property enables or disables the printing of the handout pages,
true enable and false disable.

IsPrintOutline
boolean — this property enables or disables the printing of the outline pages,
true enable and false disable.

IsPrintHidden-
Pages

boolean — this property enables or disables the printing of draw pages that are
marked hidden , true enable and false disable.

IsPrintFitPage boolean — this property enables or disables the fitting of the page to the printable
area during print, true enable and false disable.

IsPrintTilePage

boolean — If this property IsPrintTilePage is set to 1 and the paper size for
printing is larger than the paper size of the printer than the content is tiled over
multiple pages.

PageNumberFormat long — is the number format used for page number fields.

ParagraphSumma-
tion

boolean — If the property ParagraphSummation is set to 1, the distance
between two paragraphs is the sum of ParaTopMargin of the previous and Para-
BottomMargin of the next paragraph. If 0, only the greater of the two is choosen.

9.6.3 Page Formatting
As opposed to text and spreadsheet documents, page formatting in drawings and presentations is
not done through styles. Rather, hard format the following properties:

Chapter 9 Drawing Documents and Presentation Documents 699

Properties of com.sun.star.drawing.GenericDrawPage
BookmarkURL string
BorderBottom long
BorderLeft long
BorderRight long
BorderTop long
Height long
Number short
Orientation com.sun.star.view.PaperOrientation
Width long

9.7 Drawing and Presentation Document Controller
The controller is available at the XModel interface of the document model:

com::sun::star::frame::XController getCurrentController()

9.7.1 Setting the Current Page, Using the Selection
The controller is a com.sun.star.drawing.DrawingDocumentDrawView that supports the
following interfaces:

• com.sun.star.drawing.XDrawView
• com.sun.star.beans.XPropertySet
• com.sun.star.frame.XController
• com.sun.star.view.XSelectionSupplier
The following methods of com.sun.star.view.XSelectionSupplier control the current selection
in the GUI:

boolean select([in] any anObject)
any getSelection()
void addSelectionChangeListener ([in] com::sun::star::view::XSelectionChangeListener aListen
void removeSelectionChangeListener ([in] com::sun::star::view::XSelectionChangeListener aListener)

With these methods of com.sun.star.drawing.XDrawView, the visible page is set in the GUI:
void setCurrentPage(com::sun::star::drawing::XDrawPage aPage)
com::sun::star::drawing::XDrawPage getCurrentPage()

In addition to DrawingDocumentDrawView, it supports the following interfaces. For details about
these interfaces, refer to 6 Office Development.

• com.sun.star.task.XStatusIndicatorSupplier
• com.sun.star.ui.XContextMenuInterception
• drafts.com.sun.star.frame.XDispatchInformationProvider
• com.sun.star.frame.XDispatchProvider

700 OpenOffice.org 1.1 Developer's Guide • June 2003

9.7.2 Zooming
Zooming is currently not supported through API.

9.7.3 Other Drawing-Specific View Settings
Drawings and presentations can be switched to certain view modes. This is done by the following
drawing- specific controller properties of com.sun.star.drawing.DrawingDocumentDrawView:

Properties of com.sun.star.drawing.DrawingDocumentDrawView
IsLayerMode boolean — Switch to layer mode.

IsMasterPageMode boolean — Switch to master page mode.

Furthermore, there are many properties that can be changed through the XViewDataSupplier
interface of the document:

Methods of com.sun.star.document.XViewDataSupplier:
com::sun::star::container::XIndexAccess getViewData()
void setViewData([in] com::sun::star::container::XIndexAccess aData)

To use ViewData properties, call getViewData() and receive a
com.sun.star.container.XIndexContainer:

Methods of XIndexContainer:
type getElementType()
boolean hasElements()
long getCount()
any getByIndex([in] long Index)
void replaceByIndex([in] long Index, any Element)
void insertByIndex([in] long Index, any Element)
void removeByIndex([in] long Index)

Use getByIndex() to iterate over the view data properties, find the required
com.sun.star.beans.PropertyValue by checking the property names. If found, set the Value
Member of the property value and put it back into the container using replaceByIndex().
Finally, apply the whole ViewData container to the document using setViewData().

The method setViewData() is currently not working. It can only be used with loadComponent-
FromURL().

Chapter 9 Drawing Documents and Presentation Documents 701

10 Charts

10.1 Overview
Chart documents produce graphical representations of numeric data. They are always embedded
objects inside other OpenOffice.org documents. The chart document is a document model similar
to Writer, Calc and Draw document models, and it can be edited using this document model.

10.2 Handling Chart Documents

10.2.1 Creating Charts
The com.sun.star.table.XTableChartsSupplier interface of the
com.sun.star.sheet.Spreadsheet service is used to create and insert a new chart into a Calc
document. This creates a chart that uses data from the com.sun.star.chart.XChartDataArray
interface of the underlying cell range. A generic way to create charts is to insert an OLE-Shape into
a draw page and transform it into a chart setting a class-id.

Creating and Adding a Chart to a Spreadsheet
Charts are used in spreadsheet documents to visualize the data that they contain. A spreadsheet is
one single sheet in a spreadsheet document and offers a
com.sun.star.table.XTableChartsSupplier interface, that is required by the service
com.sun.star.sheet.Spreadsheet. With this interface, a collection of table charts that are a
container for the actual charts can be accessed. To retrieve the chart document model from a table
chart object, use the method getEmbeddedObject().

The following example shows how to insert a chart into a spreadsheet document and retrieve its
chart document model. The example assumes that there is a com.sun.star.sheet.XSpreadsheet
to insert the chart and an array of cell range addresses that contain the regions in which the data
for the chart can be found. Refer to 8 Spreadsheet Documents for more information about how to get
or create these objects. The following snippet shows how to insert a chart into a Calc document.
import com.sun.star.chart.*;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.container.XNameAccess;
import com.sun.star.document.XEmbeddedObjectSupplier;

703

final String sChartName = "MyChart";

com.sun.star.table.XTableChartsSupplier aSheet;
com.sun.star.table.CellRangeAddress[] aAddresses;

// get the sheet in which you want to insert a chart
// and query it for XTableChartsSupplier and store it in aSheet
//
// also get an array of CellRangeAddresses containing
// the data you want to visualize and store them in aAddresses
//
// for details see documentation of Spreadsheets

// ...

XChartDocument aChartDocument = null;

com.sun.star.table.XTableCharts aChartCollection = aSheet.getCharts();
XNameAccess aChartCollectionNA = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class, aChartCollection);

// only insert the chart if it does not already exist
if (aChartCollectionNA != null && !aChartCollectionNA.hasByName(sChartName)) {
 // following rectangle parameters are measured in 1/100 mm
 com.sun.star.awt.Rectangle aRect = new com.sun.star.awt.Rectangle(1000, 1000, 15000, 9271);

 // first bool: ColumnHeaders
 // second bool: RowHeaders
 aChartCollection.addNewByName(sChartName, aRect, aAddresses, true, false);
 try {
 com.sun.star.table.XTableChart aTableChart = (com.sun.star.table.XTableChart)
 UnoRuntime.queryInterface(
 com.sun.star.table.XTableChart.class,
 aChartCollectionNA.getByName(sChartName));

 // the table chart is an embedded object which contains the chart document
 aChartDocument = (XChartDocument) UnoRuntime.queryInterface(
 XChartDocument.class,
 ((XEmbeddedObjectSupplier) UnoRuntime.queryInterface(
 XEmbeddedObjectSupplier.class,
 aTableChart)).getEmbeddedObject());
 } catch (com.sun.star.container.NoSuchElementException ex) {
 System.out.println("Couldn't find chart with name " + sChartName + ": " + ex);
 }
}

// now aChartDocument should contain an XChartDocument representing the newly inserted chart

Creating a Chart OLE Object in Draw and Impress
The alternative is to create an OLE shape and insert it into a draw page. Writer, Spreadsheet docu-
ments and Draw /Impress documents have access to a draw page. The shape is told to be a chart
by setting the unique class-id.

The unique Class-Id string for charts is “12dcae26-281f-416f-a234-c3086127382e”.

A draw page collection is obtained from the com.sun.star.drawing.XDrawPagesSupplier of a
draw or presentation document. To retrieve a single draw page, use
com.sun.star.container.XIndexAccess.

A spreadsheet document is also a com.sun.star.drawing.XDrawPagesSupplier that provides
draw pages for all sheets, that is, the draw page for the third sheet is obtained by calling getBy-
Index(2) on the interface com.sun.star.container.XIndexAccess of the container, returned
by com.sun.star.drawing.XDrawPagesSupplier:getDrawPages().

A spreadsheet draw page can be acquired directly at the corresponding sheet object. A single sheet
supports the service com.sun.star.sheet.Spreadsheet that supplies a single page ,
com.sun.star.drawing.XDrawPageSupplier, where the page is acquired using the method
getDrawPage().

704 OpenOffice.org 1.1 Developer's Guide • June 2003

The OpenOffice.org Writer currently does not support the creation of OLE Charts or Charts based
on a text table in a Writer document using the API.

The document model is required once a chart is inserted. In charts inserted as OLE2Shape, the
document model is available at the property Model of the OLE2Shape after setting the CLSID.

Note, that the mechanism described for OLE objects seems to work in Writer, that is, you can see the OLE-
Chart inside the Text document after executing the API calls described, but it is not treated as a real OLE
object by the Writer. Thus, you can not activate it by double-clicking, because it puts the document into an
inconsistent state.

The following example assumes a valid drawing document in the variable aDrawDoc and creates
a chart in a Draw document. See 9 Drawing for an example of how to create a drawing document.
(Charts /ChartHelper.java)
...
final String msChartClassID = "12dcae26-281f-416f-a234-c3086127382e";
com.sun.star.frame.XModel aDrawDoc;

// get a draw document into aDrawDoc
// ...

// this will become the resulting chart
XChartDocument aChartDoc;

com.sun.star.drawing.XDrawPagesSupplier aSupplier = (com.sun.star.drawing.XDrawPagesSupplier)
 UnoRuntime.queryInterface(com.sun.star.drawing.XDrawPagesSupplier.class, aDrawDoc);

com.sun.star.drawing.XShapes aPage = null;
try {
 // get first page
 aPage = (com.sun.star.drawing.XShapes) aSupplier.getDrawPages().getByIndex(0);
} catch (com.sun.star.lang.IndexOutOfBoundsException ex) {
 System.out.println("Document has no pages: " + ex);
}

if (aPage != null) {
 // the document should be a factory that can create shapes
 XMultiServiceFactory aFact = (XMultiServiceFactory) UnoRuntime.queryInterface(
 XMultiServiceFactory.class, aDrawDoc);

 if (aFact != null) {
 try {
 // create an OLE 2 shape
 com.sun.star.drawing.XShape aShape = (com.sun.star.drawing.XShape)
 UnoRuntime.queryInterface(
 com.sun.star.drawing.XShape.class,
 aFact.createInstance("com.sun.star.drawing.OLE2Shape"));

 // insert the shape into the page
 aPage.add(aShape);
 aShape.setPosition(new com.sun.star.awt.Point(1000, 1000));
 aShape.setSize(new com.sun.star.awt.Size(15000, 9271));

 // make the OLE shape a chart
 XPropertySet aShapeProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, aShape);

 // set the class id for charts
 aShapeProp.setPropertyValue("CLSID", msChartClassID);

 // retrieve the chart document as model of the OLE shape
 aChartDoc = (XChartDocument) UnoRuntime.queryInterface(
 XChartDocument.class,
 aShapeProp.getPropertyValue("Model"));
 } catch(com.sun.star.uno.Exception ex) {
 System.out.println("Couldn't change the OLE shape into a chart: " + ex);
 }
 }
}

Chapter 10 Charts 705

Setting the Chart Type
The default when creating a chart is a bar diagram with vertical bars. If a different chart type is
required, apply a different diagram type to this initial chart. For example, to create a pie chart,
insert the default bar chart and change it to a pie chart.

To change the type of a chart, create an instance of the required diagram service by its service
name using the service factory provided by the com.sun.star.chart.XChartDocument. This
interface is available at the chart document model. After this service instance is created, set it
using the setDiagram() method of the chart document.

In the following example, we change the chart type to a com.sun.star.chart.XYDiagram, also
known as a scatter chart. We have assumed that there is a chart document in the variable
aChartDoc already. The previous sections described how to create a document.
 // let aChartDoc be a valid XChartDocument

 // get the factory that can create diagrams
 XMultiServiceFactory aFact = (XMultiServiceFactory) UnoRuntime.queryInterface(
 XMultiServiceFactory.class, aChartDoc);

 XDiagram aDiagram = aFact.createInstance("com.sun.star.chart.XYDiagram");

 aChartDoc.setDiagram(aDiagram);

 // now we have an xy-chart

Diagram Service Names
com.sun.star.chart.BarDiagram
com.sun.star.chart.AreaDiagram
com.sun.star.chart.LineDiagram
com.sun.star.chart.PieDiagram
com.sun.star.chart.DonutDiagram
com.sun.star.chart.NetDiagram
com.sun.star.chart.XYDiagram
com.sun.star.chart.StockDiagram

10.2.2 Accessing Existing Chart Documents
To get a container of all charts contained in a spreadsheet document, use the
com.sun.star.table.XTableChartsSupplier of the service
com.sun.star.sheet.Spreadsheet, which is available at single spreadsheets.

To get all OLE-shapes of a draw page, use the interface com.sun.star.drawing.XDrawPage, that
is based on com.sun.star.container.XIndexAccess. You can iterate over all shapes on the draw
page and check their CLSID property to find out, whether the found object is a chart.

706 OpenOffice.org 1.1 Developer's Guide • June 2003

10.3 Working with Charts

10.3.1 Document Structure
The important service for charts is com.sun.star.chart.ChartDocument. The chart document
contains all the top- level graphic objects, such as a legend , up to two titles called Title and
Subtitle,an axis title object for each primary axis if the chart supports axis. The
com.sun.star.chart.ChartArea always exists. This is the rectangular region covering the
complete chart documents background. The important graphical object is the diagram that actu-
ally contains the visualized data.

Apart from the graphical objects, the chart document is linked to some data. The required service
for the data component is com.sun.star.chart.ChartData. It is used for attaching a data change
listener and querying general properties of the data source, such as the number to be interpreted
as NaN (“not a number”), that is, a missing value. The derived class
com.sun.star.chart.ChartDataArray allows access to the actual values. Every component
providing the ChartData service should also support ChartDataArray .

The following diagram shows the services contained in a chart and their relationships.

The name spaces in the diagram have been omitted to improve readability. The services are all in
the name space com.sun.star.chart. The interfaces in this diagram are
com.sun.star.chart.XChartDocument, com.sun.star.drawing.XShape,
com.sun.star.lang.XComponent, and com.sun.star.beans.XPropertySet.

The chart document model passes its elements through the interface
com.sun.star.chart.XChartDocument. This interface consists of the following methods:

com::sun::star::chart::XChartData getData()
void attachData([in] com::sun::star::chart::XChartData xData)
com::sun::star::drawing::XShape getTitle()

Chapter 10 Charts 707

Illustration 139: ChartDocument

com::sun::star::drawing::XShape getSubTitle()
com::sun::star::drawing::XShape getLegend()
com::sun::star::beans::XPropertySet getArea()
com::sun::star::chart::XDiagram getDiagram()
void setDiagram([in] com::sun::star::chart::XDiagram xDiagram)

void dispose()
void addEventListener([in] com::sun::star::lang::XEventListener xListener)
void removeEventListener([in] com::sun::star::lang::XEventListener aListener)
boolean attachResource([in] string aURL,
 [in] sequence <com::sun::star::beans::PropertyValue aArgs)
string getURL()
sequence <com::sun::star::beans::PropertyValue > getArgs()
void connectController([in] com::sun::star::frame::XController xController)
void disconnectController([in] com::sun::star::frame::XController xController)
void lockControllers()
void unlockControllers()
boolean hasControllersLocked()
com::sun::star::frame::XController getCurrentController()
void setCurrentController([in] com::sun::star::frame::XController xController)
com::sun::star::uno::XInterface getCurrentSelection()

10.3.2 Data Access

Data can only be accessed for reading when a chart resides inside a spreadsheet document and
was inserted as a table chart, that is, the table chart obtains its data from cell ranges of spread-
sheets. To change the underlying data, modify the content of the spreadsheet cells. For OLE charts,
that is, charts that were inserted as OLE2Shape objects, modify the data.

The data of a chart is acquired from the com.sun.star.chart.XChartDocument interface of the
chart document model using the method com.sun.star.chart.XChartDocument:getData(). The
current implementation of OpenOffice.org charts provides a
com.sun.star.chart.XChartDataArray interface, derived from
com.sun.star.chart.XChartData and supports the service
com.sun.star.chart.ChartDataArray.

Note that the interface definition of com.sun.star.chart.XChartDocument does not require
XChartDocument.getData() to return an XChartDataArray, but XChartData, so there may be imple-
mentations that do not offer access to the values.

The methods of XChartDataArray are:
sequence <sequence < double > > getData()
void setData([in] sequence <sequence < double > > aData)
sequence < string > getRowDescriptions ()
void setRowDescriptions(sequence < string aRowDescriptions >)
sequence < string > getColumnDescriptions()
void setColumnDescriptions(sequence < string aColumnDescriptions >)

Included are the following methods from XChartData:
void addChartDataChangeEventListener(
 [in] com::sun::star::chart::XChartDataChangeEventListener aListener)
void removeChartDataChangeEventListener (
 [in] com::sun::star::chart::XChartDataChangeEventListener aListener)

double getNotANumber()
boolean isNotANumber([in] double nNumber)

The com.sun.star.chart.XChartDataArray interface offers several methods to access data. A
sequence of sequences is obtained containing double values by calling getData(). With
setData(), such an array of values can be applied to the XChartDataArray.

708 OpenOffice.org 1.1 Developer's Guide • June 2003

The arrays are a nested array, not two-dimensional. Java has only nested arrays, but in Basic a
nested array must be used instead of a multidimensional array. The following example shows
how to apply values to a chart in Basic:
' create data with dimensions 2 x 3
' 2 is called outer dimension and 3 inner dimension

' assume that oChartDocument contains a valid
' com.sun.star.chart.XChartDocument

Dim oData As Object
Dim oDataArray(0 To 1) As Object
Dim oSeries1(0 To 2) As Double
Dim oSeries2(0 To 2) As Double

oSeries1(0) = 3.141
oSeries1(1) = 2.718
oSeries1(2) = 1.0

oSeries2(0) = 17.0
oSeries2(1) = 23.0
oSeries2(2) = 42.0

oDataArray(0) = oSeries1()
oDataArray(1) = oSeries2()

' call getData() method of XChartDocument to get the XChartDataArray
oData = oChartDocument.Data

' call setData() method of XChartDataArray to apply the data
oData.Data = oDataArray()

' Note: to use the series arrays here as values for the series in the chart
' you have to set the DataRowSource of the XDiagram object to
' com.sun.star.chart.ChartDataRowSource.ROWS (default is COLUMNS)

The Data obtianed is a sequence that contains one sequence for each row. If you want to interpret the inner
sequences as data for the series, set the DataRowSource of your XDiagram to
com.sun.star.chart.ChartDataRowSource.ROWS, otherwise, the data for the n th series is in the n th

element of each inner series.

With the methods of the XChartData interface, check if a number from the chart has to be inter-
preted as non-existent, that is, the number is not a number (NaN).

In the current implementation of OpenOffice.org Chart, the value of NaN is not the standard ISO value for
NaN of the C++ double type, but instead DBL_MIN which is 2.2250738585072014-308.

Additionally, the XChartData interface is used to connect a component as a listener on data
changes. For example, to use a spreadsheet as the source of the data of a chart that resides inside a
presentation. It can also be used in the opposite direction: the spreadsheet could display the data
from a chart that resides in a presentation document. To achieve this, the
com.sun.star.table.CellRange service also points to the XChartData interface, so that a
listener can be attached to update the chart OLE object.

The following class ListenAtCalcRangeInDraw demonstrates how to synchronize the data of a
spreadsheet range with a chart residing in another document. Here the chart is placed into a
drawing document.

The class ListenAtCalcRangeInDraw in the example below implements a
com.sun.star.lang.XEventListener to get notified when the spreadsheet document or
drawing document are closed.

It also implements a com.sun.star.chart.XChartDataChangeEventListener that listens for
changes in the underlying XchartData. In this case, it is the range in the spreadsheet.
import com.sun.star.uno.UnoRuntime;
import com.sun.star.lang.XEventListener;
import com.sun.star.beans.XPropertySet;
import com.sun.star.lang.XComponent;

import com.sun.star.chart.*;

Chapter 10 Charts 709

import com.sun.star.sheet.XSpreadsheetDocument;

// implement an XEventListener for listening to the disposing
// of documents. Also implement XChartDataChangeEventListener
// to get informed about changes of data in a chart

public class ListenAtCalcRangeInDraw implements XChartDataChangeEventListener {
 public ListenAtCalcRangeInDraw(String args[]) {
 // create a spreadsheet document in maSheetDoc
 // create a drawing document in maDrawDoc
 // put a chart into the drawing document
 // and store it in maChartDocument
 // ...

 com.sun.star.table.XCellRange aRange;
 // assign a range from the spreadsheet to aRange
 // ...

 // attach the data coming from the cell range to the chart
 maChartData = (XChartData) UnoRuntime.queryInterface(XChartData.class, aRange);
 maChartDocument.attachData(maChartData);
 }

 public void run() {
 try {
 // show a sub title to inform about last update
 ((XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maChartDocument)).setPropertyValue(
 "HasSubTitle", new Boolean(true));

 // start listening for death of spreadsheet
 ((XComponent) UnoRuntime.queryInterface(XComponent.class,
 maSheetDoc)).addEventListener(this);

 // start listening for death of chart
 ((XComponent) UnoRuntime.queryInterface(XComponent.class,
 maChartDocument)).addEventListener(this);

 //start listening for change of data
 maChartData.addChartDataChangeEventListener(this);
 } catch (com.sun.star.uno.Exception ex) {
 System.out.println("Oops: " + ex);
 }

 // call listener once for initialization
 ChartDataChangeEvent aEvent = new ChartDataChangeEvent();
 aEvent.Type = ChartDataChangeType.ALL;
 chartDataChanged(aEvent);
 }

 // XEventListener (base interface of XChartDataChangeEventListener)
 public void disposing(com.sun.star.lang.EventObject aSourceObj)
 {
 // test if the Source object is a chart document
 if(UnoRuntime.queryInterface(XChartDocument.class, aSourceObj.Source) != null)
 System.out.println("Disconnecting Listener because Chart was shut down");

 // test if the Source object is a spreadsheet document
 if (UnoRuntime.queryInterface(XSpreadsheetDocument.class, aSourceObj.Source) != null)
 System.out.println("Disconnecting Listener because Spreadsheet was shut down");

 // remove data change listener
 maChartData.removeChartDataChangeEventListener(this);

 // remove dispose listeners
 ((XComponent) UnoRuntime.queryInterface(XComponent.class,
 maSheetDoc)).removeEventListener(this);
 ((XComponent) UnoRuntime.queryInterface(XComponent.class,
 maChartDocument)).removeEventListener(this);
 // this program cannot do anything any more
 System.exit(0);
 }

 // XChartDataChangeEventListener
 public void chartDataChanged(ChartDataChangeEvent aEvent)
 {
 // update subtitle with current date
 String aTitle = new String("Last Update: " + new java.util.Date(System.currentTimeMillis()));

 try {
 ((XPropertySet) UnoRuntime.queryInterface(XPropertySet.class,
 maChartDocument.getSubTitle())).setPropertyValue(
 "String", aTitle);

 maChartDocument.attachData(maChartData);

710 OpenOffice.org 1.1 Developer's Guide • June 2003

 } catch(Exception ex) {
 System.out.println("Oops: " + ex);
 }

 System.out.println("Data has changed");
 }

 // private
 private com.sun.star.sheet.XSpreadsheetDocument maSheetDoc;
 private com.sun.star.frame.XModel maDrawDoc;
 private com.sun.star.chart.XChartDocument maChartDocument;
 private com.sun.star.chart.XChartData maChartData;
}

10.3.3 Chart Document Parts
In this section, the parts that most diagram types have in common are discussed. Specific chart
types are discussed later.

Common Parts of all Chart Types

Diagram
The diagram object is an important object of a chart document. The diagram represents the visuali-
zation of the underlying data. The diagram object is a graphic object group that lies on the same
level as the titles and the legend. From the diagram, data rows and data points are obtain that are
also graphic objects that represent the respective data. Several properties can be set at a diagram to
influence its appearance. Note that the term data series is used instead of data rows.

Some diagrams support the service com.sun.star.chart.Dim3DDiagram that contains the prop -
erty Dim3D. If this is set to true, you get a three-dimensional view of the chart, which in
OpenOffice.org is usually rendered in OpenGL. In 3-D charts, you can access the z-axis, which is
not available in 2-D.

The service com.sun.star.chart.StackableDiagram offers the properties Percent and Stacked.
With these properties, accumulated values can be stacked for viewing. When setting Percent to
true, all slices through the series are summed up to 100 percent, so that for an AreaDiagram the
whole diagram space would be filled with the series. Note that setting the Percent property also
sets the Stacked property, because Percent is an addition to Stacked.

There is a third service that extends a base diagram type for displaying statistical elements called
com.sun.star.chart.ChartStatistics. With this service, error indicators or a mean value line
are added. The mean value line represents the mean of all values of a series. The regression curve
is only available for the XYDiagram, because a numeric x-axis, is required.

Chapter 10 Charts 711

The illustration above shows that there are eight base types of diagrams. The three services,
StackableDiagram, Dim3DDiagram and ChartStatistics are also supported for several
diagram types and allows extensions of the base types as discussed. For instance, a three-dimen-
sional pie chart can be created, because the com.sun.star.chart.PieDiagram service points to
the com.sun.star.chart.Dim3DDiagram service.

The services com.sun.star.chart.AreaDiagram, com.sun.star.chart.LineDiagram, and
com.sun.star.chart.BarDiagram support all three feature services.

Axis
All charts can have one or more axis, except for pie charts. A typical two-dimensional chart has
two axis, an x- and y-axis. Secondary x- or y-axis can be added to have up to four axis. In a three-
dimensional chart, there are typically three axis, x-, y- and z-axis. There are no secondary axis in 3-
dimensional charts.

An axis combines two types of properties:

712 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 140: Diagram

• Scaling properties that affect other objects in the chart. A minimum and maximum values are
set that spans the visible area for the displayed data. A step value can also be set that deter-
mines the distance between two tick-marks, and the distance between two grid- lines if grids
are switched on for the corresponding axis.

• Graphical properties that influence the visual impression. These are character properties (see
com.sun.star.style.CharacterProperties) affecting the labels and line properties (see
com.sun.star.drawing.LineProperties) that are applied to the axis line and the tick-marks.

Different diagram types support a different number of axis. In the above illustration, a
com.sun.star.chart.XYDiagram, also known as a scatter diagram, is shown. The scatter diagram
supports x- and y-axis, but not a z-axis as there is no 3-dimensional mode. The
com.sun.star.chart.PieDiagram supports no axis at all. The com.sun.star.chart.BarDiagram
supports all kinds of axis. Note that the z-Axis is only supported in a three-dimensional chart.
Note that there is a com.sun.star.chart.ChartTwoAxisXSupplier that includes the
com.sun.star.chart.ChartAxisXSupplier and is supported by all diagrams in OpenOffice.org
required to support the service ChartAxisXSupplier.

The following example shows how to obtain an axis and how to change the number format.

Chapter 10 Charts 713

Illustration 141: Axis

import com.sun.star.chart.*;
import com.sun.star.beans.XPropertySet;
import com.sun.star.util.XNumberFormatsSupplier;

...

// class members
XChartDocument aChartDocument;
XDiagram aDiagram;

...

// get an XChartDocument and assign it to aChartDocument
// get the diagram from the document and assign it to aDiagram
// ...

// check whether the current chart supports a y-axis
XAxisYSupplier aYAxisSupplier = (XAxisYSupplier) UnoRuntime.queryInterface(
 XAxisYSupplier.class, aDiagram);

if (aYAxisSupplier != null) {
 XPropertySet aAxisProp = aYAxisSupplier.getYAxis();

 // initialize new format with value for standard
 int nNewNumberFormat = 0;

 XNumberFormatsSupplier aNumFmtSupp = (XNumberFormatsSupplier)
 UnoRuntime.queryInterface(XNumberFormatsSupplier.class,
 aChartDocument);

 if (aNumFmtSupp != null) {
 com.sun.star.util.XNumberFormats aFormats = aNumFmtSupp.getNumberFormats();

 Locale aLocale = new Locale("de", "DE", "de");

 String aFormatStr = aFormats.generateFormat(
 0, // base key
 aLocale, // locale
 true, // thousands separator on
 true, // negative values in red
 (short)3, // number of decimal places
 (short)1 // number of leading ciphers
);

 nNewNumberFormat = aFormats.addNew(aFormatStr, aLocale);
 }

 aAxisProp.setPropertyValue("NumberFormat", new Integer(nNewNumberFormat));
}

Data Series and Data Points
The objects that visualize the actual data are data series. The API calls them data rows that are not
rows in a two-dimensional spreadsheet table, but as sets of data, because the data for a data row
can reside in a column of a spreadsheet table.

The data rows contain data points. The following two methods at the
com.sun.star.chart.XDiagram interface allow changes to the properties of a whole series or
single data point:

com::sun::star::beans::XPropertySet getDataRowProperties([in] long nRow)
com::sun::star::beans::XPropertySet getDataPointProperties([in] long nCol,
 [in] long nRow)

The index provided in these methods is 0-based, that is, 0 is the first series. In XYDiagrams, the
first series has an index 1, because the first array of values contains the x-values of the diagram
that is not visualized. This behavior exists for historical reasons.

In a spreadsheet context, the indexes for getDataPointProperties() are called nCol and nRow
and are misleading. The nRow parameter gives the data row, that is, the series index. The nCol
gives the index of the data point inside the series, regardless if the series is taken from rows or
columns in the underlying table. To get the sixth point of the third series, write getDataPoint-
Properties(5, 2).

Data rows and data points have com.sun.star.drawing.LineProperties and
com.sun.star.drawing.FillProperties. They also support

714 OpenOffice.org 1.1 Developer's Guide • June 2003

com.sun.star.style.CharacterProperties for text descriptions that can be displayed next to
data points.

Properties can be set for symbols and the type of descriptive text desired. With the SymbolType
property, one of several predefined symbols can be set. With SymbolBitmapURL, a URL that points
to a graphic in a format known by OpenOffice.org can be set that is then used as a symbol in a
com.sun.star.chart.LineDiagram or com.sun.star.chart.XYDiagram.

The following example demonstrates how to set properties of a data point. Before implementing
this example, create a chart document and diagram of the type XYDiagram.
com.sun.star.chart.XChartDocument aChartDocument;
com.sun.star.chart.XDiagram aXYDiagram;

// get a chart document and assign it to aChartDocument
// set an "XYDiagram" and remember the diagram in aXYDiagram
// ...

// get the properties of the fifth data point of the first series
// note that index 1 is the first series only in XYDiagrams
try {
 com.sun.star.beans.XPropertySet aPointProp = maDiagram.getDataPointProperties(4, 1);
} catch (com.sun.star.lang.IndexOutOfBoundsException ex) {
 System.out.println("Index is out of bounds: " + ex);
 System.exit(0);
}

try {
 // set a bitmap via URL as symbol for the first series
 aPointProp.setPropertyValue("SymbolType", new Integer(ChartSymbolType.BITMAPURL));
 aPointProp.setPropertyValue("SymbolBitmapURL",
 "http://graphics.openoffice.org/chart/bullet1.gif");

 // add a label text with bold font, bordeaux red 14pt
 aPointProp.setPropertyValue("DataCaption", new Integer(ChartDataCaption.VALUE));
 aPointProp.setPropertyValue("CharHeight", new Float(14.0));
 aPointProp.setPropertyValue("CharColor", new Integer(0x993366));
 aPointProp.setPropertyValue("CharWeight", new Float(FontWeight.BOLD));
} catch (com.sun.star.uno.Exception ex) {
 System.out.println("Exception caught: " + ex);
}

Features of Special Chart Types
Examples of some of the services that are not available for all chart types are discussed in this
section. Only examples that can be changed in specific chart types only are discussed.

Statistics
Statistical properties like error indicators or regression curves can be applied. The regression
curves can only be used for xy-diagrams that have tuples of values for each data point. The
following example shows how to add a linear regression curve to an xy-diagram.

Additionally, the mean value line is displayed and error indicators for the standard deviation are
applied.
 // get the diagram
 // ...

 // get the properties of a single series
 XPropertySet aProp = maDiagram.getDataRowProperties(1)

 // set a linear regression
 aProp.setPropertyValue("RegressionCurves", ChartRegressionCurveType.LINEAR);

 // show a line at y = mean of the series' values
 aProp.setPropertyValue("MeanValue", new Boolean(true));

 // add error indicators in both directions
 // with the length of the standard deviation
 aProp.setPropertyValue("ErrorCategory", ChartErrorCategory.STANDARD_DEVIATION);
 aProp.setPropertyValue("ErrorIndicator", ChartErrorIndicatorType.TOP_AND_BOTTOM);

Chapter 10 Charts 715

3-D Charts
Some chart types can display a 3-dimensional representation. To switch a chart to 3-dimensional,
set the boolean property Dim3D of the service com.sun.star.chart.Dim3DDiagram.

In addition to this property, bar charts support a property called Deep (see service
com.sun.star.chart.BarDiagram) that arranges the series of a bar chart along the z-axis, which
in a chart, points away from the spectator. The service
com.sun.star.chart.Chart3DBarProperties offers a property SolidType to set the style of the
data point solids. The solid styles can be selected from cuboids, cylinders, cones, and pyramids
with a square base (see constants in com.sun.star.chart.ChartSolidType).

The XDiagram of a 3-dimensional chart is also a scene object that supports modification of the rota-
tion and light sources. The example below shows how to rotate the scene object and add another
light source.
// prerequisite: maDiagram contains a valid bar diagram
// ...

import com.sun.star.drawing.HomogenMatrix;
import com.sun.star.drawing.HomogenMatrixLine;
import com.sun.star.chart.X3DDisplay;
import com.sun.star.beans.XPropertySet;

XPropertySet aDiaProp = (XPropertySet) UnoRuntime.queryInterface(XPropertySet.class, maDiagram);
Boolean aTrue = new Boolean(true);

aDiaProp.setPropertyValue("Dim3D", aTrue);
aDiaProp.setPropertyValue("Deep", aTrue);

// from service Chart3DBarProperties:
aDiaProp.setPropertyValue("SolidType", new Integer(
 com.sun.star.chart.ChartSolidType.CYLINDER));

// change floor color to Magenta6
XPropertySet aFloor = ((X3DDisplay) UnoRuntime.queryInterface(
 X3DDisplay.class, maDiagram)).getFloor();
aFloor.setPropertyValue("FillColor", new Integer(0x6b2394));

// rotate the scene using a homogen 4x4 matrix
// ---
HomogenMatrix aMatrix = new HomogenMatrix();
// initialize matrix with identity
HomogenMatrixLine aLines[] = new HomogenMatrixLine[] {
 new HomogenMatrixLine(1.0, 0.0, 0.0, 0.0),
 new HomogenMatrixLine(0.0, 1.0, 0.0, 0.0),
 new HomogenMatrixLine(0.0, 0.0, 1.0, 0.0),
 new HomogenMatrixLine(0.0, 0.0, 0.0, 1.0)
 };

aMatrix.Line1 = aLines[0];
aMatrix.Line2 = aLines[1];
aMatrix.Line3 = aLines[2];
aMatrix.Line4 = aLines[3];

// rotate 10 degrees along the x axis
double fAngle = 10.0;
double fCosX = java.lang.Math.cos(java.lang.Math.PI / 180.0 * fAngle);
double fSinX = java.lang.Math.sin(java.lang.Math.PI / 180.0 * fAngle);

// rotate -20 degrees along the y axis
fAngle = -20.0;
double fCosY = java.lang.Math.cos(java.lang.Math.PI / 180.0 * fAngle);
double fSinY = java.lang.Math.sin(java.lang.Math.PI / 180.0 * fAngle);

// rotate -5 degrees along the z axis
fAngle = -5.0;
double fCosZ = java.lang.Math.cos(java.lang.Math.PI / 180.0 * fAngle);
double fSinZ = java.lang.Math.sin(java.lang.Math.PI / 180.0 * fAngle);

// set the matrix such that it represents all three rotations in the order
// rotate around x axis then around y axis and finally around the z axis
aMatrix.Line1.Column1 = fCosY * fCosZ;
aMatrix.Line1.Column2 = fCosY * -fSinZ;
aMatrix.Line1.Column3 = fSinY;

aMatrix.Line2.Column1 = fSinX * fSinY * fCosZ + fCosX * fSinZ;
aMatrix.Line2.Column2 = -fSinX * fSinY * fSinZ + fCosX * fCosZ;
aMatrix.Line2.Column3 = -fSinX * fCosY;

716 OpenOffice.org 1.1 Developer's Guide • June 2003

aMatrix.Line3.Column1 = -fCosX * fSinY * fCosZ + fSinX * fSinZ;
aMatrix.Line3.Column2 = fCosX * fSinY * fSinZ + fSinX * fCosZ;
aMatrix.Line3.Column3 = fCosX * fCosY;

aDiaProp.setPropertyValue("D3DTransformMatrix", aMatrix);

// add a red light source
// ----------------------

// in a chart by default only the second (non-specular) light source is switched on
// light source 1 is the only specular light source that is used here

// set direction
com.sun.star.drawing.Direction3D aDirection = new com.sun.star.drawing.Direction3D();

aDirection.DirectionX = -0.75;
aDirection.DirectionY = 0.5;
aDirection.DirectionZ = 0.5;

aDiaProp.setPropertyValue("D3DSceneLightDirection1", aDirection);
aDiaProp.setPropertyValue("D3DSceneLightColor1", new Integer(0xff3333));
aDiaProp.setPropertyValue("D3DSceneLightOn1", new Boolean(true));

Refer to 9 Drawing for additional details about three-dimensional properties.

Pie Charts
Pie charts support the offset of pie segments with the service
com.sun.star.chart.ChartPieSegmentProperties that has a property SegmentOffset to drag
pie slices radially from the center up to an amount equal to the radius of the pie. This property
reflects a percentage, that is, values can go from 0 to 100.
 // ...

 // drag the fourth segment 50% out
 aPointProp = maDiagram.getDataPointProperties(3, 0)
 aPointProp.setPropertyValue("SegmentOffset", 50)

Note that the SegmentOffset property is not available for donut charts and three-dimensional pie
charts.

Stock Charts
A special data structure must be provided when creating stock charts. When
acom.sun.star.chart.StockDiagram is set as the current chart type, the data is interpreted in a
specific manner depending on the properties Volume and UpDown. The following table shows
what semantics are used for the data series.

Volume UpDown Series 1 Series 2 Series 3 Series 4 Series 5
false false Low High Close - -
true false Volume Low High Close -
false true Open Low High Close -
true true Volume Open Low High Close

For example, if the property Volume is set to false and UpDown to true, the first series is inter-
preted as the value of the stock when the stock exchange opened, and the fourth series represents
the value when the stock exchange closed. The lowest and highest value during the day is repre-
sented in series two and three, respectively.

Chapter 10 Charts 717

10.4 Chart Document Controller
Although chart document models have a method getCurrentController(), this method
currently returns null, therefore the chart controller can not be used.

10.5 Chart Add-Ins
Chart types can also be created by developing components that serve as chart types. Existing chart
types can be extended by adding additional shapes or modifying the existing shapes. Alterna-
tively, a chart can be created from scratch. If drawing from scratch, it is an empty canvas and all
shapes would have to be drawn from scratch.

Chart Add- Ins are actually UNO components, thus, you should be familiar with the chapter 4
Writing UNO Components.

10.5.1 Prerequisites
The following interfaces must be supported for a component to serve as a chart add- in:

• com.sun.star.lang.XInitialization
• com.sun.star.util.XRefreshable
• com.sun.star.lang.XServiceName
• com.sun.star.lang.XServiceInfo
• com.sun.star.lang.XTypeProvider to access the add- in interfaces from OpenOffice.org Basic

and other interpreted programming languages (optional).

In addition to these interfaces, the following services must be supported and returned in the
getSupportedServiceNames() method of com.sun.star.lang.XServiceInfo):

• com.sun.star.chart.Diagram
• A unique service name that identifies the component. This service name has to be returned in

the getServiceName() method of com.sun.star.lang.XServiceName.

10.5.2 How Add- Ins work
The method initialize() from the com.sun.star.lang.XInitialization interface is the first
method that is called for an add- in. It is called directly after it is created by the
com.sun.star.lang.XMultiServiceFactory provided by the chart document. This method gets
the XChartDocument object.

When initialize() is called, the argument returned is the chart document. Store this as a
member to that it can be called later in the refresh() call to access all elements of the chart. The
following is an example for the initialize() method of an add- in written in Java:
// XInitialization
public void initialize(Object[] aArguments) throws Exception, RuntimeException {
 if (aArguments.length > 0) {
 // maChartDocument is a member
 // which is set to the parent chart document
 // that is given as first argument
 maChartDocument = (XChartDocument) UnoRuntime.queryInterface(
 XChartDocument.class, aArguments[0]);

718 OpenOffice.org 1.1 Developer's Guide • June 2003

 XPropertySet aDocProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maChartDocument);
 if (aDocProp != null) {
 // set base diagram which will be extended in refresh()
 aDocProp.setPropertyValue("BaseDiagram", "com.sun.star.chart.XYDiagram");
 }

 // remember the draw page, as it is frequently used by refresh()
 // (this is not necessary but convenient)
 XDrawPageSupplier aPageSupp = (XDrawPageSupplier) UnoRuntime.queryInterface(
 XDrawPageSupplier.class, maChartDocument);
 if(aPageSupp != null)
 maDrawPage = (XDrawPage) UnoRuntime.queryInterface(
 XDrawPage.class, aPageSupp.getDrawPage());
 }
}

An important method of an add- in component is refresh() from the
com.sun.star.util.XRefreshable. This method is called every time the chart is rebuilt. A
change of data results in a refresh, but also a resizing or changing of a property that affects the
layout calls the refresh() method. For example, the property HasLegend that switches the
legend on and off.

To add shapes to the chart, create them once and modify them later during the refresh calls. In the
following example, a line is created in initialize() and modified during refresh():
// XInitialization
public void initialize(Object[] aArguments) throws Exception, RuntimeException {
 // get document and page -- see above
 // ...

// get a shape factory
maShapeFactory = ...;

 // create top line
 maTopLine = (XShape) UnoRuntime.queryInterface(
 XShape.class, maShapeFactory.createInstance("com.sun.star.drawing.LineShape"));
 maDrawPage.add(maTopLine);

 // make line red and thicker
 XPropertySet aShapeProp = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, maTopLine);
 aShapeProp.setPropertyValue("LineColor", new Integer(0xe01010));
 aShapeProp.setPropertyValue("LineWidth", new Integer(50));

 // create bottom line
 maBottomLine = (XShape) UnoRuntime.queryInterface(
 XShape.class, maShapeFactory.createInstance("com.sun.star.drawing.LineShape"));
 maDrawPage.add(maBottomLine);

 // make line green and thicker
 aShapeProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maBottomLine);
 aShapeProp.setPropertyValue("LineColor", new Integer(0x10e010));
 aShapeProp.setPropertyValue("LineWidth", new Integer(50));
 }

}

// XRefreshable
public void refresh() throws RuntimeException {
 // position lines
 // --------------

 // get data
 XChartDataArray aDataArray = (XChartDataArray) UnoRuntime.queryInterface(
 XChartDataArray.class, maChartDocument.getData());
 double aData[][] = aDataArray.getData();

 // get axes
 XDiagram aDiagram = maChartDocument.getDiagram();
 XShape aXAxis = (XShape) UnoRuntime.queryInterface(
 XShape.class, ((XAxisXSupplier) UnoRuntime.queryInterface(
 XAxisXSupplier.class, aDiagram)).getXAxis());
 XShape aYAxis = (XShape) UnoRuntime.queryInterface(
 XShape.class, ((XAxisYSupplier) UnoRuntime.queryInterface(
 XAxisYSupplier.class, aDiagram)).getYAxis());

 // calculate points for hull
 final int nLength = aData.length;

Chapter 10 Charts 719

 int i, j;
 double fMax, fMin;

 Point aMaxPtSeq[][] = new Point[1][];
 aMaxPtSeq[0] = new Point[nLength];
 Point aMinPtSeq[][] = new Point[1][];
 aMinPtSeq[0] = new Point[nLength];

 for (i = 0; i < nLength; i++) {
 fMin = fMax = aData[i][1];
 for (j = 1; j < aData[i].length; j++) {
 if (aData[i][j] > fMax)
 fMax = aData[i][j];
 else if (aData[i][j] < fMin)
 fMin = aData[i][j];
 }
 aMaxPtSeq[0][i] = new Point(getAxisPosition(aXAxis, aData[i][0], false),
 getAxisPosition(aYAxis, fMax, true));
 aMinPtSeq[0][i] = new Point(getAxisPosition(aXAxis, aData[i][0], false),
 getAxisPosition(aYAxis, fMin, true));
 }

 // apply point sequences to lines
 try {
 XPropertySet aShapeProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maTopLine);
 aShapeProp.setPropertyValue("PolyPolygon", aMaxPtSeq);

 aShapeProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, maBottomLine);
 aShapeProp.setPropertyValue("PolyPolygon", aMinPtSeq);
 } catch (Exception ex) {
 }
}

// determine the position of a value along an axis
// bVertical is true for the y-axis and false for the x-axis
private int getAxisPosition(XShape aAxis, double fValue, boolean bVertical) {
 int nResult = 0;

 if (aAxis != null) {
 XPropertySet aAxisProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, aAxis);

 try {
 double fMin, fMax;
 fMin = ((Double) aAxisProp.getPropertyValue("Min")).doubleValue();
 fMax = ((Double) aAxisProp.getPropertyValue("Max")).doubleValue();
 double fRange = fMax - fMin;

 if (fMin <= fValue && fValue <= fMax && fRange != 0) {
 if (bVertical) {
 // y==0 is at the top, thus take 1.0 - ...
 nResult = aAxis.getPosition().Y +
 (int)((double)(aAxis.getSize().Height) * (1.0 - ((fValue - fMin) / fRange)));
 } else {
 nResult = aAxis.getPosition().X +
 (int)((double)(aAxis.getSize().Width) * ((fValue - fMin) / fRange));
 }
 }
 } catch (Exception ex) {
 }
 }
 return nResult;
}

The subroutine getAxisPosition() is a helper to determine the position of a point inside the
diagram coordinates. This add- in calculates the maximum and minimum values for each slice of
data points, and creates two polygons based on these points.

For an add- in example written in C++, look at the sample addin of the graphics /sch project on
www.openoffice.org.

10.5.3 How to Apply an Add- In to a Chart Document
There is no method to set an add- in as a chart type for an existing chart in the graphical user inter-
face. To set the chart type, use an API script, for instance, in OpenOffice.org Basic. The following
example sets the add- in with service name “com.sun.star.comp.Chart.JavaSampleChartAddIn” at

720 OpenOffice.org 1.1 Developer's Guide • June 2003

the current document. To avoid problems, it is advisable to create a chart that has the same type as
the one that the add- in sets as BaseDiagram type.
Sub SetAddIn
Dim oDoc As Object
Dim oSheet As Object
Dim oTableChart As Object
Dim oChart As Object
Dim oAddIn As Object

 ' assume that the current document is a spreadsheet
 oDoc = ThisComponent
 oSheet = oDoc.Sheets(0)

 ' assume also that you already added a chart
 ' named "MyChart" on the first sheet
 oTableChart = oSheet.Charts.getByName("MyChart")

 If Not IsNull(oTableChart) Then
 oChart = oTableChart.EmbeddedObject
 If Not IsNull(oChart) Then
 oAddIn = oChart.createInstance("com.sun.star.comp.Chart.JavaSampleChartAddIn")
 If Not IsNull(oAddIn) Then
 oChart.setDiagram(oAddIn)
 End If
 End If
 End If
End Sub

If you want to create an XML-File on your own and want to activate your add- in for a chart; set the attribute
chart:class of the chart:chart element to “add- in” and the attribute chart:add-in-name to the
service name that uniquely identifies your component.

Chapter 10 Charts 721

11 OpenOffice.org Basic and Dialogs
OpenOffice.org provides functionality to create and manage Basic macros and dialogs. The
following sections examine the usage of the OpenOffice.org Basic programming environment.

• Section 11.1 Basic and Dialogs - First Steps with OpenOffice.org Basic guides you through the
necessary steps to write OpenOffice.org Basic UNO Programs.

• Section 11.2 Basic and Dialogs - OpenOffice.org Basic IDE provides a reference to the functionality
of the OpenOffice.org Integrated Development Environment (IDE). It describes:

– The dialogs to manage Basic and dialog libraries.

– The functionality of the Basic IDE window: the Basic macro editor and debugger, and the
Dialog editor.

– The assignment of macros to events

• Section 11.3 Basic and Dialogs - Features of OpenOffice.org Basic describes the Basic programming
language integrated in OpenOffice.org, including

– Provides an overview about the general language features built into OpenOffice.org Basic.

– Extends the UNO language binding chapter 3.4.3 Professional UNO - UNO Language Bindings
- OpenOffice.org Basic by information on how to access the application specific UNO API.

– Points out threading and rescheduling characteristics of OpenOffice.org Basic that differ
from other languages, such as, from Java, which can be important under certain circum-
stances.

• Section 11.4 Basic and Dialogs - Advanced Library Organization describes how the Basic library
system stores and manages Basic macros and dialogs in OpenOffice.org, and how the user can
access libraries and library elements using the appropriate interfaces.

• Section 11.5 Basic and Dialogs - Programming Dialogs and Dialog Controls describes the toolkit
controls used to create dialogs in the dialog editor. In this section the different types of controls
and their specific properties are explained in detail.

• Section 11.6 Basic and Dialogs - Creating Dialogs at Runtime describes how UNO dialogs can be
created at runtime without using the dialog editor. This is useful to show dialogs from UNO
components. As this is an advanced way to create dialogs, this section goes deeply into the
Toolkit interfaces and extends the section 11.5 Basic and Dialogs - Programming Dialogs and
Dialog Controls.

• Section 11.7 Basic and Dialogs - Library File Structure discusses the various files used by the Basic
IDE.

• Section 11.8 Basic and Dialogs - Library Deployment discusses the automatic deployment of Basic
libraries into a local or a shared OpenOffice.org installation.

723

11.1 First Steps with OpenOffice.org Basic

Step By Step Tutorial
This section provides a tutorial to enable developers to use the Basic IDE. It describes the neces-
sary steps to write and debug a program in the Basic IDE, and to design a Basic dialog. A compre-
hensive reference of all tools and options can be found at 11.2 Basic and Dialogs - OpenOffice.org
Basic IDE.

Creating a Module in a Standard Library
1. Create a new Writer document and save the document, for example, FirstStepsBasic.sxw.

2. Click Tools – Macro.

The Macro dialog appears. The Macro from list shows macro containers where Basic source code
(macros) can come from. There is always an soffice container for Basic libraries. Additionally each
loaded document can contain Basic libraries.

The illustration above shows that the document FirstStepsBasic.sxw is the only document loaded.
Therefore, the soffice and FirstStepsBasic.sxw containers are displayed in the illustration above.
Both containers, soffice and FirstStepsBasic.sxw, contain a library named Standard. There are a
number of other libraries in the soffice container that come with a default OpenOffice.org installa-
tion – most of them are AutoPilots. The Standard libraries of the application and for all open
documents are always loaded. They appear enabled in the dialog. Other libraries have to be
loaded before they can be used.

The libraries contain modules with the actual Basic source code. Our next step will create a new
module for source code in the Standard library of our FirstStepsBasic.sxw document.

1. Scroll to the document node FirstStepsBasic.sxw in the Macro from list.

2. Select the Standard entry below the document node and click New .

OpenOffice.org shows a small dialog that suggests to create a new module named Module1.

1. Click OK to confirm.

724 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 142: Macro dialog

The Basic source editor window (Illustration 142) appears containing a Sub (subroutine) Main.

The status bar of the Basic editor window shows that the Sub Main is part of
FirstStepsBasic.Standard.Module1. If you click Tools – Macro in the Basic editor, you will see that
OpenOffice.org created a module Module1 below the Standard library in FirstStepsBasic.sxw.

When a module is selected, the Macro name list box on the left shows the Subs and Functions in
that module. In this case, Sub Main. If you click Edit while a Sub or Function is selected, the Basic
editor opens and scrolls to the selected Sub or Function.

Chapter 11 OpenOffice.org Basic and Dialogs 725

Illustration 143: Basic source editor window

Illustration 144

Writing and Debugging a Basic UNO program
Enter the following source code in the Basic editor window. The example asks the user for the
location of a graphics file and inserts it at the current cursor position of our document. Later, the
example will be extended by a small insert graphics autopilot.
(BasicAndDialogs /FirstStepsBasic.sxw)
Sub Main
 ' ask the user for a graphics file
 sGraphicUrl = InputBox("Please enter the URL of a graphic file", _
 "Import Graphics", _
 "file:///"
 if sGraphicURL = "" then ' User clicked Cancel
 exit sub
 endif

 ' access the document model
 oDoc = ThisComponent
 ' get the Text service of the document
 oText = oDoc.getText()
 ' create an instance of a graphic object using the document service factory
 oGraphicObject = oDoc.createInstance("com.sun.star.text.GraphicObject")
 ' set the URL of the graphic
 oGraphicObject.GraphicURL = sGraphicURL
 ' get the current cursor position in the GUI and create a text cursor from it
 oViewCursor = oDoc.getCurrentController().getViewCursor()
 oCursor = oText.createTextCursorByRange(oViewCursor.getStart())
 ' insert the graphical object at the cursor position
 oText.insertTextContent(oCursor.getStart(), oGraphicObject, false)
End Sub

If help is required on Basic keywords, press F1 while the text cursor is on a keyword. The
OpenOffice.org online help contains descriptions of the Basic language as supported by
OpenOffice.org.

Starting with the line oDoc = ThisComponent, where the document model is accessed, we use the
UNO integration of OpenOffice.org Basic. ThisComponent is a shortcut to access a document
model from the Basic code contained in it. Earlier, you created Module1 in FirstStepsBasic.sxw, that
is, your Basic code is embedded in the document FirstStepsBasic.sxw, not in a global library below
the soffice container. The property ThisComponent therefore contains the document model of
FirstStepsBasic.sxw.

Outside document libraries use ThisComponent or StarDesktop.CurrentComponent to retrieve the
current document. If access to an open document is required, even if it is not the current document, you have
to iterate over the components in StarDesktop.Components, checking their URL property with code
similar to the following:

oComps = StarDesktop.Components
oCompsEnum = oComps.createEnumeration()

while oCompsEnum.hasMoreElements()
 oComp = oCompsEnum.nextElement()
 ' not all desktop components are necessarily models with a URL
 if HasUnoInterfaces(oComp, "com.sun.star.frame.XModel") then
 print oComp.getURL()
 endif
wend

To debug the program, put the cursor into the line oDoc = ThisComponent and click the
Breakpoint icon in the macro bar.

The Run icon launches the first Sub in the current module. Execution stops with the first
breakpoint.

Now step through the program by clicking the Single Step icon.

726 OpenOffice.org 1.1 Developer's Guide • June 2003

Click the Macros icon if you need to run a Sub other than the first Sub in the module.. In the
Macros dialog, navigate to the appropriate module, select the Sub to run and press the Run
button.

To observe the values of simple type Basic variables during debugging, enter a variable name in
the Watch field of the Basic editor and press the Enter key to add the watch, or point at a variable
name with the mouse cursor without clicking it. In the example below, we can observe the vari-
able sGraphicUrl:

Currently you can not inspect the values of UNO objects in the Basic debugger during runtime.

Calling a Sub from the User Interface
A Sub can be called from customized icons, menu entries, upon keyboard shortcuts and on certain
application or document events. The entry point for all these settings is the Configuration dialog
accessible through the Assign button in the Macro dialog or the Tools – Configure command.

To assign the Sub Main to a toolbar icon, select Tools – Configure, click the Toolbars tab and click
the Customize button . The Customize Toolbars dialog is displayed.

Chapter 11 OpenOffice.org Basic and Dialogs 727

Illustration 145

Scroll down the Category list in the Customize Toolbars Dialog until you see the Basic libraries.
Expand the FirstStepsBasic.sxw node. Navigate to the Module FirstStepsBasic.Standard.Module1
and select it. When Module1 is selected, the Icons section shows a button with the caption "Main"
for the Sub Main in Module1. The "Main" button can be dragged to a toolbar of your choice. If you
want, assign an icon before by clicking Buttons Finally hit Close to finish the dialog.

You can now click the new toolbar item to launch the example macros.

The section 11.2.3 Basic and Dialogs - OpenOffice.org Basic IDE - Assigning Macros To GUI Events
describes other options to make your Sub accessible from the user interface.

A Simple Dialog

Creating Dialogs
To create a dialog in the Basic IDE, right-click the Module1 tab at the bottom of the Basic source
editor and select Insert – Basic Dialog . The IDE creates a new page named Dialog1:

728 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 146

To add controls to the dialog, we require the dialog design tools. Click the Controls icon to
pop up the design tools window . The title bar of the tools window can be used to drag the
window away from the toolbar to keep it open permanently.

Our dialog shall offer a more convenient way to select a file than the simple input box of our first
example. Furthermore, the user shall be able to control how the picture is anchored in the text after
inserting it. For this, we will create a wizard dialog with two steps.

In the design tools window, select File Selection and define the size of the Browse control
by dragging a rectangle in the dialog using the left-mouse button.

The Properties icon displays the Properties Dialog that is used to edit controls and hook up
event handling code to events occurring at dialog controls.

Next, add << Back and Next >> Buttons to move between the dialog steps, and a Finish
and Cancel button. Select the Button icon and define the button size using the left-mouse
button. Buttons are labeled with a default text, such as CommandButton1. If the Properties
Dialog is not open, double click the newly inserted button controls to display it. Enter new
labels in the Label field as suggested, and name the dialog step buttons Back and Next. Set
the property Enabled for the << Back button to false.

Use the Label tool to create a label "Select Graphics File:" in the same manner.

Now the dialog looks similar to the illustration below:

Chapter 11 OpenOffice.org Basic and Dialogs 729

Illustration 147

Test the dialog using the Activate Test Mode icon from the design tool window. After you
have finished the test, click the Close button of the test dialog window.

To edit the dialog, such as setting the title and changing the size, select it by clicking the outer
border of the dialog. Green handles appear around the dialog. The green handles can be used to
alter the dialog size.The Properties Dialog is used to define a dialog title and other dialog proper-
ties.

Adding Event Handlers
Now we will write code to open the dialog and add functionality to the buttons. To show a dialog,
create a dialog object using createUnoDialog() and call its execute() method. A dialog can be
closed while it is shown by calling endExecute().

It is possible to configure the Finish button and the Cancel button to close the dialog by setting the button
property PushButtonType to OK and Cancel respectively. The method execute() returns 0 for Cancel
and 1 for OK.

To add functionality to GUI elements, develop Subs to handle GUI events, then hook them to the
GUI elements. To add functionality to the buttons of our dialog, click the Module1 tab in the
lower part of the Basic IDE and enter the following Subs above the previous Sub Main to open,
close and process the dialog. Note that a Private variable oDialog is defined outside of the Subs.
After loading the dialog, this variable is visible from all Subs and Functions of Module1. (Basi-
cAndDialogs /FirstStepsBasic.sxw)
Private oDialog as Variant ' private, module-wide variable

730 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 148

Sub RunGraphicsWizard
 oDialog = createUnoDialog(DialogLibraries.Standard.Dialog1)
 oDialog.execute
End Sub

Sub CancelGraphicsDialog
 oDialog.endExecute()
End Sub

Sub FinishGraphicsDialog
 Dim sFile as String, sGraphicURL as String

 oDialog.endExecute()
 sFile = oDialog.Model.FileControl1.Text
 ' the FileControl contains a system path, we have to transform it to a file URL
 ' We use the built-in Basic runtime function ConvertToURL for this purpose
 sGraphicURL = ConvertToURL(sFile)
 ' insert the graphics
 ' access the document model
 oDoc = ThisComponent
 ' get the Text service of the document
 oText = oDoc.getText()
 ' create an instance of a graphic object using the document service factory
 oGraphicObject = oDoc.createInstance("com.sun.star.text.GraphicObject")
 ' set the URL of the graphic
 oGraphicObject.GraphicURL = sGraphicURL
 ' get the current cursor position in the GUI and create a text cursor from it
 oViewCursor = oDoc.getCurrentController().getViewCursor()
 oCursor = oText.createTextCursorByRange(oViewCursor.getStart())
 ' insert the graphical object at the cursor position
 oText.insertTextContent(oCursor.getStart(), oGraphicObject, false)
End Sub

Sub Main
...

End Sub

Select the Cancel button in our dialog in the dialog editor, and click the Events tab of the Proper-
ties Dialog, then click the ellipsis button on the right-hand side of the Event When Initiating . In
the Assign Macro dialog, navigate to FirstStepsBasic.sxw.Standard.Module1, select the Sub
CancelGraphicsDialog and click the Assign button to link this Sub to the Cancel button.

Chapter 11 OpenOffice.org Basic and Dialogs 731

Using the same method, hook the Finish button to FinishGraphicsDialog.

If the Run icon is selected now, the dialog is displayed, and the Finish and Cancel buttons
are functional.

AutoPilot Dialogs
The final step is to create a small AutoPilot with two pages. The OpenOffice.org Dialogs have a
simple concept for AutoPilot pages. Each dialog and each control in a dialog has a property Page
(Step) to control the pages of a dialog. Normally, dialogs are on page 0, but they can be set to a
different page, for example, to page 1. All controls having 1 in their Page property are visible as
long as the dialog is on page 1. All controls having 2 in their page property are only displayed on
page 2 and so forth. If the dialog is on Page 0, all controls are visible at once. If a control has its
Page property set to 0, it is visible on all dialog pages.

This feature is used to create a second page in our dialog. Hold down the Control key, and click
the label and file control in the dialog to select them. In the Properties Dialog , fill in 1 for the Page
property and press Enter to apply the change. Next, select the dialog by clicking the outer rim of
the dialog in the dialog editor, enter 2 for the Page property and press the Enter key. The label and
file control disappear, because we are on page 2 now. Only the buttons are visible since they are
on page 0.

On page 2, add a label "Anchor" and two option buttons "at Paragraph" and "as Character". Name
the option buttons AtParagraph and AsCharacter, and toggle the State property of the AtPara-

732 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 149

graph button, so that it is selected by default. The new controls automatically receive 2 in their
Page property. When page 2 is finished, set the dialog to page 1 again, because we want it to be on
page 1 on startup.

The Subs below handle the << Back and Next >> buttons, and the Sub FinishGraphicsDialog
has been extended to anchor the new graphics selected by the user. Note that the property that is
called Page (Step) in the GUI, is called Step in the API. (BasicAndDialogs /FirstStepsBasic.sxw)
Sub BackGraphicsDialog
 oDialog.Model.Step = 1
 oDialog.Model.Back.Enabled = false
 oDialog.Model.Next.Enabled = true
End Sub

Sub NextGraphicsDialog
 oDialog.Model.Step = 2
 oDialog.Model.Back.Enabled = true
 oDialog.Model.Next.Enabled = false
End Sub

Sub FinishGraphicsDialog
 Dim sGraphicURL as String, iAnchor as Long
 oDialog.endExecute()
 sFile = oDialog.Model.FileControl1.Text

 ' State = Selected corresponds to 1 in the API
 if oDialog.Model.AsCharacter.State = 1 then
 iAnchor = com.sun.star.text.TextContentAnchorType.AS_CHARACTER
 elseif oDialog.Model.AtParagraph.State = 1 then
 iAnchor = com.sun.star.text.TextContentAnchorType.AT_PARAGRAPH
 endif
 ' the File Selection control returns a system path, we have to transform it to a File URL
 ' We use a small helper function MakeFileURL for this purpose (see below)
 sGraphicURL = MakeFileURL(sFile)
 ' access the document model
 oDoc = ThisComponent
 ' get the Text service of the document
 oText = oDoc.getText()
 ' create an instance of a graphic object using the document service factory
 oGraphicObject = oDoc.createInstance("com.sun.star.text.GraphicObject")
 ' set the URL of the graphic
 oGraphicObject.GraphicURL = sGraphicURL
 oGraphicObject.AnchorType = iAnchor
 ' get the current cursor position in the GUI and create a text cursor from it
 oViewCursor = oDoc.getCurrentController().getViewCursor()
 oCursor = oText.createTextCursorByRange(oViewCursor.getStart())
 ' insert the graphical object at the beginning of the text
 oText.insertTextContent(oCursor.getStart(), oGraphicObject, false)
End Sub

11.2 OpenOffice.org Basic IDE
This section discusses all features of the Integrated Development Environment (IDE) for
OpenOffice.org Basic. It shows how to manage Basic and dialog libraries, discusses the tools of the
Basic IDE used to create Basic macros and dialogs, and it treats the various possibilities to assign
Basic macros to events.

Chapter 11 OpenOffice.org Basic and Dialogs 733

Illustration 150

11.2.1 Managing Basic and Dialog Libraries
The main entry point to the library management UI is the Tools - Macro menu item. This item
activates the Macro dialog where the user can manage all operations related to Basic and dialog
libraries.

Macro Dialog
The following picture shows an example macro dialog. From here you can run, create, edit and
delete macros, assign macros to UI events, and administer Basic libraries and modules.

Displayed Information
The tree titled with Macro from shows the complete library hierarchy that is available the moment
the dialog is opened. See 11.4 Basic and Dialogs - Advanced Library Organization for details about the
library organization in OpenOffice.org..

Unlike the library organization API, this dialog does not distinguish between Basic and dialog
libraries. Usually the libraries displayed in the tree are both Basic and dialog libraries.

Although it is possible to create Basic-only or dialog-only libraries using the APIthis is not the normal case,
because the graphical user interface (see 11.2.1 Basic and Dialogs - OpenOffice.org Basic IDE - Managing Basic
and Dialog Libraries - Macro Organizer Dialog below) only allows the creation of Basic and dialog libraries
simultaneously. Nevertheless, the dialog can also deal with Basic-only or dialog-only libraries, but they are
not marked in any way.

The tree titled Macro from represents a structure consisting of three levels:

Library container -> library -> library element

• The top- level nodes represent the application Basic and dialog library container (node
soffice). Foreach opened document, the document's Basic and dialog library container (see

734 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 151

11.4 Basic and Dialogs - Advanced Library Organization). In the example two documents are open,
a text document called Description.sxw and a spreadsheet document named Calculation.sxc.

• In the second level, each node represents a library. Initially all libraries, except the default
libraries named Standard, are not loaded and grayed out. To load a library, the user double-
clicks the library. In the example above, the soffice root element contains the Standard
library, already loaded by default, and the libraries Euro, Form-Wizard, Gimmicks,
ImportWizard, Schedule, Template, Tools, and WebWizard. These libraries represent or belong
to the wizards available in the File - Autopilot menu.

• The third level in the tree is visible in loaded libraries. Each node represents a library element
that can be modules or dialogs. In the macro dialog, only Basic modules are displayed as
library elements, whereas dialogs are not shown. By double-clicking a library the user can
expand and condense a library to show or hide its modules. In the example, the
soffice/Standard library is displayed expanded. It contains two modules, Module1 and
Module2. The document Description.sxw contains a Standard library with one Basic module
Module1. Calculation.sxc contains a Standard library without Basic modules. All libraries,
respectively their dialog library part, may also contain dialogs that cannot be seen in this view.

If a library is password- protected and a user double-clicks it to load it, a dialog is displayed
requesting a password. The library is only loaded and expanded if the user enters the correct pass-
word. If a password- protected library is loaded using the API, for example, through a call to
BasicLibraries.loadLibrary("Library1"), it is displayed as loaded, not grayed out, but it
remains condensed until the correct password is entered (see 11.4 Basic and Dialogs - Advanced
Library Organization).

Initially all root nodes, the soffice and document nodes, are condensed and the contained
libraries are displayed. Similar to expanding and condensing libraries, a complete root node can
be expanded and condensed as well.

The left column contains information about the macros, that is, the Subs and Functions, in the
libraries. In the list box at the bottom, all Subs and Functions belonging to the module selected in
the tree are listed. In the edit field titled Macro name, the Sub or Function currently selected in the
list box is displayed. If there is no module selected in the tree, the edit field and list are empty. You
can type in a desired name in the edit field.

Buttons
On the right-hand side of the Macro dialog, there are several buttons. The following list describes
the buttons:

• Run
Executes the Sub or Function currently displayed in the Macro name edit field. The macro
dialog is closed, before the macro is executed.

• Close
Closes the Macro dialog without any further action.

• Assign
Opens the Configuration dialog that can also be opened using Tools - Configure. This dialog
can be used to assign Basic macros to events. For details see 11.2.3 Basic and Dialogs -
OpenOffice.org Basic IDE - Assigning Macros To GUI Events below.

• Edit
Loads the module selected in the tree into the Basic macro editor. The cursor is placed on the
first line of the Sub or Function displayed in the Macro name edit field. See chapter 11.2.2 Basic
and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window below ror details about the Basic

Chapter 11 OpenOffice.org Basic and Dialogs 735

macro editor. This button is disabled if there is no module selected in the tree or no existing
Sub or Function displayed in the Macro name edit field.

• Delete
This button is only available if an existing Sub or Function is displayed in the Macro name edit
field. The Delete button removes the Sub or Function displayed in the Macro name edit field
from the module selected in the module selected in the tree.

• New
This button is only available if no existing Sub or Function is displayed in the Macro name edit
field. The New button inserts a new Sub into the module selected in the tree. The new Sub is
named according to the text in the Macro name edit field. If Macro name is empty, the Sub is
automatically named Macro1, Macro2, and so forth.

• Organizer
This button opens the Macro Organizer dialog box that is explained in the next section.

• Help
Starts the OpenOffice.org help system with the Macros topic.

Macro Organizer Dialog
This dialog is opened by clicking the Button Organizer in the Macro dialog. The dialog contains
the two tab pages Modules and Libraries. While the Macro dialog refers to Subs and Functions
inside Basic modules, such as run Subs, delete Subs, and insert new Subs, this dialog accesses the
library system on module /dialog (tab page Modules) and library (tab page Libraries) level.

Modules
Illustration 148 shows the Macro Organizer dialog with the Modules tab page activated. The list
titled Module/Dialog is similar to the Macro from list in the Macro dialog, but it contains the
complete library hierarchy for the OpenOffice.org application libraries and the document libraries.
The libraries are loaded, and condensed or expaned by double-clicking the library. The only
difference is that the dialogs are listed together with the Basic modules in the Macro Organizer.
The illustration shows the application library Standard containing two modules, Module1 and
Module2, and three dialogs, Dialog1, Dialog2 and Dialog3.

736 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 147 presents the same dialog with the Module/Dialog listbox that has been scrolled
down to show the documents and their libraries.

The illustration above shows that two documents are loaded. The illustration shows a library
Standard in document Calculation.sxc containing a dialog named Dialog1, and another library
Standard in document Description.sxw containing a Basic module.

The following list describes the buttons on the right side of the dialog:

• Edit
Loads the module selected in the tree into the Basic macro editor. Also, if a dialog is selected,
the Edit button loads the module into the Dialog editor. The section 11.2.2 Basic and Dialogs -

Chapter 11 OpenOffice.org Basic and Dialogs 737

Illustration 152

Illustration 153

OpenOffice.org Basic IDE - Basic IDE Window - Dialog Editor belowdescribes the Dialog Editor in
more detail. If a module or dialog is not selected, this button is disabled.

• Close
Closes the Macro organizer dialog without any further action.

• New Module
Opens a dialog that allows the user to type in the desired name for a new module. The name
edit field initially contains a name like Module<Number>, Such as Module1 and Module2.
depending on the modules already existing. Clicking the OK button add the new module as a
new item in the Module/Dialog list. The New Module button is disabled if the selected library
has read- only status.

• New Dialog
Opens a dialog that allows the user to enter the desired name for a new dialog. The name edit
field initially contains the name Dialog<Number>, such as Dialog1 and Dialog2, depending on
the dialogs already existing. Clicking the OK button creates the dialog in the Module/Dialog
list. This button is disabled if the selection contains a library with read- only status.

• Delete
Deletes the selected module or dialog. This button is disabled if no module or dialog is
selected, or if the selected module or dialog belongs to a library with read- only status.

Libraries
The following illustrations show the Macro Organizer dialog with the Libraries tab page acti-
vated. In this dialog, the application and document libraries are listed separately. The Library list
only contains the libraries of the library container currently selected in the Application/Document
listbox. The second illustration is dropped down showing the soffice entry and the two open docu-
ments.

738 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 154

The libraries are displayed in the following manner:

• Regular libraries are displayed in black.

• Libraries with read- only status are grayed out.

• Library links are followed by an URL indicating the location where the library is stored. In the
example above, all libraries except for Standard and Library1 are library links and all library
links have read- only status.

• Password protected libraries are indicated with a key symbol before the name. In the example,
only Library1 is password protected.

Clicking a library twice (notdouble-click) allows the user to rename it.

The following list describes the buttons on the right side of the dialog:

• Edit
Loads the first module of the library selected in the Library listbox into the Basic macro editor
(see 11.2.2 Basic and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window - Basic Source Editor
and Debugger below). If the library only contains dialogs, the first dialog of the corresponding
dialog library is displayed in the Dialog editor (see 11.2.2 Basic and Dialogs - OpenOffice.org Basic
IDE - Basic IDE Window - Dialog Editor below). If the Basic/Dialog editor window does not
exist, it is opened.

• Close
Closes the Macro Organizer dialog without any further action.

• Password
Opens the Change Password dialog displayed in the next illustration for the library currently
selected in the Library listbox.

This dialog is used to change the password if the library is already password protected. Enter
the old password first, then the new password twice.

If the library is not password protected, the Old password edit field is disabled. The new pass-
word is entered twice in the New password section. Clicking OK activates the password
protection if both passwords match.

Chapter 11 OpenOffice.org Basic and Dialogs 739

Illustration 155

• New
Opens a dialog allowing the user to enter the name for a new library. The name edit field
initially contains the name Library<Number>, such as Library1 and Library2, depending on
the libraries already existing. Clicking the OK button creates the library and adds it to the
Library list. A new library is always created as a Basic and dialog library.

• Append
This button is used to import additional libraries into the library container that is selected in
the Application/Document listbox. The button opens a file dialog where the user selects the
location where the libraryis imported from. The following types of files can be selected:

– Library container index files (script.xlc or dialog.xlc)

– Library index files (script.xlb or dialog.xlb)

– OpenOffice.org documents (*.sxw, *.sxc)

– Star Office 5.x and previous documents (*.sdw, *.sdc)

– Star Office 5.x and previous Basic library files (*.sbl)

After selecting a file, an Append library dialog is displayed. The next illustration shows the
dialog after selecting a library index file script.xlb. The dialog displays all libraries that are
found in the chosen file. In this example, only the library Euro appears, because the file
script.xlb only represented this library.

740 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 156

Illustration 157

The checkboxes in the Options section, when selected, indicatesif a library is inserted as a read-
only link and if existing libraries with the same name are replaced by the new library.

The next illustration shows the dialog after selecting the writer document
LibraryImportExample.sxw. This document contains the four libraries Standard, Library1,
Library2 and Library3. The illustration shows that the libraries Library1 and Library2 are
selected for import. The Insert as reference (read-only) option is disabled, because the libraries
inside documents cannot be referenced as a link. As well, StarOffice 5.x Basic libaray files can
not be linked.

Clicking the OK button imports the selected libraries into the library container that was previ-
ously selected in the Application/Document listbox, including the Basic and dialog libraries.

• Delete
Deletes the item selected in the Library listbox. If the item represents a library link, only the
link is removed, not the library itself. The Delete button appears disabled whenever a Standard
library is selected, because Standard libraries cannot be deleted.

11.2.2 Basic IDE Window
The OpenOffice.org IDE is mainly represented by the Basic IDE window. The IDE window has
two different modes:

• The Basic editor mode displays and modifies Basic source code modules to control the debug-
ging process and display the debugger output

• The dialog editor mode displays and modifies dialogs.

Basic source code and dialogs are never displayed at the same time. The IDE window is in Basic
editor or debugger, or in dialog editor mode. The following illustration shows the Basic IDE
window in the Basic editor mode displaying Module2 of the application Standard library.

Chapter 11 OpenOffice.org Basic and Dialogs 741

Illustration 158

The IDE window control elements common to the Basic editor and dialog editor mode are
described below. The mode specific control elements are described in the corresponding
subchapters 11.2.2 Basic and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window - Basic Source
Editor and Debugger and 11.2.2 Basic and Dialogs - OpenOffice.org Basic IDE - Basic IDE Window -
Dialog Editor:

• Clicking the Printer button in the main toolbar prints the displayed Basic module or dialog
directly without displaying a printer dialog.

• The Save button in the main toolbar behaves in two different ways depending on the library
currently displayed in the IDE window.

• If the library belongs to the application library container, the Save button saves all
modified application libraries.

• If the library belongs to a document, the Save button saves the document.

• On the left-hand side of the toolbar, a Library listbox shows the currently displayed library.
The user can also modify the displayed library. In the example above, the Standard library of the
application Basic ([soffice].Standard) is displayed. The listbox contains all the application and
document libraries that are currently accessible. The user can select one to display it in the IDE
window.

742 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 159

• The tabs at the bottom of the IDE window indicate all the modules and dialogs of the active
library. Clicking one of these tabs activates the corresponding module or dialog. If necessary,
the IDE window switches from Basic editor to dialog editor mode or conversely. Right-clicking
a tab opens a context menu:

– Insert opens a sub menu to insert a new module or dialog.

– Delete deletes the active module or dialog after confirmation by the user.

– Rename changes the name of the active module or dialog.

– Hide makes the active module or dialog invisible. It no longer appears as a tab flag, thus it
cannot be activated. To activate, access it directly using the Macro or Macro Organizer
dialog and clicking the Edit button.

– Modules opens the Macro Organizer dialog.

• The status bar displays the following information:

– The first cell on the left displays the fully qualified name of the active module or dialog in
the notation LibraryContainer.LibraryName.<ModuleName | DialogName>.

– The second cell displays an asterisk "*" indicating that at least one of the libraries of the
active library container has been modified and requires saving.

– The third cell displays the current position of the cursor in the Basic editor window.

– The fourth cell displays "INSRT" if the Basic editor is in insertion mode and "OVER" if the
Basic editor is in overwrite mode. The modes are toggled with the Insert key.

Basic Source Editor and Debugger
The Basic editor and debugger of the IDE window is shown when the user edits a Sub or Function
from the Tools-Macro dialog (see Illustration 146). In this mode, the window contains the actual
editor main window, debugger Watch window to display variable values and the debugger Calls
window to display the Basic call stack. The Watch and Calls windows are only used when a Basic
program is running and halted by the debugger.

The editor supports common editor features. Since the editor is only used for the OpenOffice.org
Basic programming language, it supports a Basic syntax specific highlighting and F1 help for Basic
keywords.

Chapter 11 OpenOffice.org Basic and Dialogs 743

The following list explains the functionality of the macro toolbar buttons.

Compile : Compiles the active module and displays an error message, if necessary. This
button is disabled if a Basic program is running. Always compile libraries before distrib-
uting them.

Run: Executes the active module, starting with the first Sub in the module, before all modi-
fied modules of the active library are compiled. Clicking this button can also result in
compiler errors before the program is started. This button resumes the execution if the
program is halted by the debugger.

Stop : Stops the Basic program execution. This button is disabled if a program is not running.

Procedure Step: Executes one Basic statement without stepping into Subs or Functions
called in the statement. The execution is halted after the statement has been executed. If the
Basic program not is running the execution is started and halted at the first statement of the
first Sub in the current module.

Single Step: Executes one Basic statement. If the statement contains another Sub, execution
is halted at the first statement of the called Sub. If no Subs or Functions are called in the
statement, this button has the same functionality as the Step over button (key command F8).

744 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 160: Basic Editor and Debugger

Step back: Steps out of the current executed Sub or Function and halts at the next statement
of the caller Sub or Function. If the currently executed Sub or Function was not called by
another Sub or Function or if the Basic program is not running, this button has the same
effect as the Run button.

Breakpoint : Toggles a breakpoint at the current cursor line in the Basic editor. If a break-
point can not be set at this line a beep warns the user and the action is ignored (key
command F9). A breakpoint is displayed as a red dot in the left column of the editor
window.

Add watch: Adds the identifier currently touched by the cursor in the Basic editor to the
watch window (key command F7).

Object Catalog: Opens the Objects dialog. This dialog displays the complete library hier-
archy including dialogs, modules and the Subs inside the modules.

Macros: Opens the Macro Dialog .

Modules : Opens the Macro Organizer dialog

Find Parentheses : If the cursor in the Basic editor is placed before a parenthesis, the
matching parenthesis is searched. If a matching parenthesis is found, the code between the
two parentheses is selected, otherwise the user is warned by a beep.

Controls : Opens the dialog editing tools in the dialog editor. In Basic editor mode this
button is disabled.

Insert Source File: Displays a file open dialog and inserts the selected text file (*.bas is the
standard extension) at the current cursor position into the active module.

Chapter 11 OpenOffice.org Basic and Dialogs 745

Save Source As: Displays a file Save As dialog to save the active module as a text file (*.bas
is the standard extension).

Illustration 146 shows how the IDE window looks while a Basic program is executed in debugging
mode.

• The Stop button is enabled.

• A breakpoint is set in line 11.

• The execution is halted in line 12. The current position is marked by a yellow arrow.

• The Watch window contains the entries Value and Hello, and displays the current values of
these variables. Values of variables can also be evaluated by touching a corresponding identi-
fier in the source code with the cursor.

• The Calls window shows the stack. The currently executed Sub doIt is displayed at the top
and the Sub Main at the second position.

Dialog Editor
This section provides an overview of the Dialog editor functionality. The controls that are used to
design a dialog are not explained. See 11.5 Basic and Dialogs - Programming Dialogs and Dialog
Controls for details on programming these controls. The dialog editor is activated by creating a
new dialog, clicking a dialog tab at the bottom of the IDE window, or selecting a dialog in the
Macro Organizer dialog and clicking the Edit button.

746 OpenOffice.org 1.1 Developer's Guide • June 2003

Initially, a new dialog consists of an empty dialog frame. The next illustration shows Dialog2 of
the application Standard library in this state.

In the dialog editor mode, the Controls button is enabled and the illustration shows the result by
clicking this button. A small toolbar with dialog specific tools is displayed. The buttons in this
toolbar represent the types of controls that can be inserted into the dialog. The user clicks the
desired button, then draws a frame with the mouse at the position to insert the corresponding
control type.

The following three buttons in the dialog tools window do not represent controls:

Chapter 11 OpenOffice.org Basic and Dialogs 747

Illustration 161

The Select button at the lower right of the dialog tools window switches the mouse cursor
to selection mode. In this mode, controls are selected by clicking the control with the cursor.
If the Shift key is held down simultaneously, the selection is extended by each control the
user clicks. Controls can also be selected by drawing a rubberband frame with the mouse.
All controls that are completely inside the frame will be selected. To select the dialog frame
the user clicks its border or includes it in a selection frame completely.

The Activate Test Mode button switches on the test mode for dialogs. In this mode, the
dialog is displayed as if it was a Basic script (see 11.5 Basic and Dialogs - Programming
Dialogs and Dialog Controls). However, the macros assigned to the controls do not work in
this mode. They are thereto help the user design the look and feel of the dialog.

The Properties button at the lower left of the dialog tools window opens and closes the
Properties dialog. This dialog is used to edit all properties of the selected control(s). The
next illustration shows the Properties dialog for a selected button control.

748 OpenOffice.org 1.1 Developer's Guide • June 2003

The illustration above shows that the dialog tool window can be pulled from the main toolbar by
dragging the window at its caption bar after opening it.

The Properties dialog has two tabs. The General tab, visible in Illustration 145, contains a list of
properties. Their values are represented by a control. For most properties this is a listbox, such as
color and enum types, or an edit field, such as numeric or text properties. For more complex prop-
erties, such as fonts or colors, an additional ellipsis button opens another type of dialog, for
example, to select a font. When the user changes a property value in an edit field this value is not
applied to the control until the edit field has lost the focus. This is forced with the tab key. Alterna-
tively, the user can commit a change by pressing the Enter key.

The Events tab page displays the macros assigned to the events supported by the selected control:

Chapter 11 OpenOffice.org Basic and Dialogs 749

Illustration 162

In the example above, a macro is assigned to the Key pressed event: When this event occurs, the
displayed Sub doNothing in Module2 of the application Basic library Standard is called. The
events that are available depend on the type of control selected.

To change the event assignment the user has to click one of the ellipsis buttons to open the Assign
Macro dialog displayed in Illustration 144.

750 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 164: Assign Macro Dialog

Illustration 163

The listbox in the upper left of the dialog titled Event displays the same information as the Events
tab of the Properties dialog. The Assign Macro dialog is always the same, that is only the selected
event in its Event list changes according to the ellipsis button the user selected on the Events tab
of the Properties dialog.

To assign a macro to an event, the user selects the event in the Event listbox. In the Macro section
at the bottom of the dialog, the user navigates through the library hierarchy. If a module is
selected in the left listbox, the contained Subs are displayed in the listbox on the right side. The
Assign button hooks the Sub or Function selected in this listbox to the selected event. If another
macro is already assigned to an event, this macro is replaced. If no Sub is selected, the Assign
button is disabled.

The library hierarchy displayed in the Macros listbox contains the application library container
and the library container of the document that the edited dialog belongs. If the dialog belongs to
an application dialog library, documents are not displayed. Document macros can not be assigned
to the controls of application dialogs. Event definition can not depend on a document that is not
necessarily loaded when the event occurs.

The Remove button is enabled if an event with an assigned macro is selected. Clicking this button
removes the macro from the event, therefore the event will have no macro binding.

The listbox below the Remove button is used to select different macro languages. Currently, only
OpenOffice.org Basic is available.

The OK button closes the Assign Macro dialog, and applies all event assignments and removals to
the control. The changes are reflected on the Events tab of the Properties dialog.

The Cancel button also closes the Assign Macro, but all assignment and removal operations are
discarded.

As previously explained, it is also possible to select several controls simultaneously. The next
picture shows the situation if the user selects both CommandButton1 and CheckBox1.For the
Properties dialog such a multi selection has some important effects.

Chapter 11 OpenOffice.org Basic and Dialogs 751

Here the caption of the Properties contains the string Multiselection to point out the special situa-
tion. The two important differences compared to the single selection situation are:

• The displayed properties are an intersection of the properties of all the selected controls, that is,
the property is only displayed if all the selected controls support that property. A property
value is only displayed if the value is the same for all selected controls. All selected controls are
effected when a value is changed by the user. Values that are not the same for all controls can
be set with the effect that the specified value applies to all controls in the selection.

• A multi-selection Properties dialog does not have an Events tab. Events can only be specified
for single controls.

11.2.3 Assigning Macros to GUI Events
The functionality to assign macros to control events in the dialog editor was discussed earlier.
There is also a general functionality to assign macros or other actions to events. This functionality
can be accessed through the Configuration dialog that is opened using Tools – Configure or by
clicking the Assign button in the Macro dialog. In this section, only the assignment of macros is
discussed. For more information about this dialog, refer to the OpenOffice.org documentation.

The next illustration shows the Menu tab of the Configuration dialog:

752 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 165

The illustration above shows how a macro is assigned to a new menu item. The listbox at the top
titled Menu entries represents the OpenOffice.org menu hierarchy. The Category listbox in the
lower left corner contains an entry OpenOffice.org BASIC Macros that represents the root of the
OpenOffice.org application Basic. Other categories not related to macros are also displayed.–. The
user navigates through the Basic libraries. When a module is selected, its Subs and Functions are
displayed in the Function listbox at the lower right.

The Modify button assigns the Sub or Function selected in the Function listbox to the menu item
selected in the Menu entries listbox. This button is disabled if a Sub or Function is not selected..

The New button creates a new menu item that is connected to the Sub or Function. The other
buttons are used for menu design:

• The Delete button removes a menu item.

• The arrow buttons change the position of a menu item.

• The Load and Save buttons load and save a menu configuration.

• The Reset button restores the default menu configuration.

The next illustration shows the Events tab of the Configuration dialog:

Chapter 11 OpenOffice.org Basic and Dialogs 753

Illustration 166

On this tab, macros can be assigned to general events in OpenOffice.org. The events are listed in
the listbox titled Event. At the bottom of the dialog the macros can be selected, then be assigned to
the selected event with the Assign button. This button is disabled if a Sub or Function is not
selected. The Remove button removes the assigned macro from the selected event. It is disabled if
a macro is not assigned to the selected event.

The OpenOffice.org radio button is active when the event assignment for the OpenOffice.org
application is displayed. This assignment is stored in the OpenOffice.org configuration. The Docu-
ment radio button is active when the event assignment for the current document is displayed. This
assignment is made persistent in the document file. If the Configuration was not opened from a
document, for example, from the Basic IDE, the Document radio button is not displayed.

The Keyboard tab is similar to the Menu and Events tabs. Macros are accessed in Category and
Function listboxes, then assigned to a shortcut key that can be specified in the Shortcut keys
listbox. There are also Load, Save and Reset buttons with the same function as the corresponding
buttons on the Menu tab.

The Keyboard tab contains a OpenOffice.org and a Document radio button with the same func-
tionality as the corresponding radio buttons on the Events tab.

754 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 167

11.3 Features of OpenOffice.org Basic
This section provides a general description of the Basic programming language integrated in
OpenOffice.org.

11.3.1 Functional Range Overview
This section outlines the functionality provided by OpenOffice.org Basic. The available runtime
library functions are also described. The functionality is based upon the Basic online help inte-
grated in OpenOffice.org, but limited to particular functions. Use the Basic online help to obtain
further information about the complete Basic functionality.

Apart from the OpenOffice.org API, OpenOffice.org Basic is compatible to Visual Basic.

Screen I/O Functions
Basic provides statements and functions to display information on the screen or to get information
from the user:

• The Print statement displays strings or numeric expressions in a dialog. Multiple expressions
are separated by commas that result in a tab distance between the expressions, or semicolons
that result in a space between the expressions. For example:

e = 2.718
Print e ' displays "2.718"
Print "e =" ; e ' displays "e = 2.718"
Print "e =" , e ' displays "e = 2.718"

• The MsgBox function displays a dialog box containing a message. Additionally, the caption of
the dialog, buttons, such as Ok , Cancel , Yes and No , and icons, such as question mark and
exclamation mark, that are to be displayed are specified. The result then can be evaluated. For
example:

' display a message box with an exclamation mark and OK and Cancel buttons
ret& = Msgbox ("Changes will be lost. Proceed?", 48 + 1, "Warning")

' show user's selection. 1 = OK, 2 = Cancel
Print ret&

• The InputBox function displays a prompt in a dialog where the user can input text. The input
is assigned to a variable. For example:

' display a dialog with "Please enter a phrase:" and "Dear User" as caption
' the dialog contains an edit control and the text entered by the user
' is stored in UserText$ when the dialog is closed with OK. Cancel returns ""
UserText$ = InputBox("Please enter a phrase:", "Dear User")

File I/O
OpenOffice.org Basic has a complete set of statements and runtime functions to access the oper-
ating system's file system that are compatible to Visual Basic. For platform independence, the ability
to handle file names in file:/ / URL notation has been added.

It is not recommended to use this classic Basic file interface in the UNO context, because many
interfaces in the OpenOffice.org API expect file I/O specific parameters whose types, for example,
com.sun.star.io.XInputStream are not compatible to the classic Basic file API.

Chapter 11 OpenOffice.org Basic and Dialogs 755

For programming, the file I/O in OpenOffice.org API context with the service
com.sun.star.ucb.SimpleFileAccess should be used. This service supports the interface
com.sun.star.ucb.XSimpleFileAccess2, including the main interface
com.sun.star.ucb.XSimpleFileAccess that provides fundamental methods to access the file
system. The methods are explained in detail in the corresponding interface documentation. The
following list provides an overview about the operations supported by this service:

• copy, move and remove files and folders (methods copy(), move(), kill())

• prompt for information about files and folders (methods isFolder(), isReadOnly(), getSize
(), getContentType(), getDateTimeModified(), exists())

• open or create files (openFileRead(), openFileWrite(), openFileReadWrite()). These func-
tions return objects that support the corresponding stream interfaces
com.sun.star.io.XInputStream, com.sun.star.io.XOutputStream and
com.sun.star.io.XStream. These interfaces are used to read and write files. The XSimple-
FileAccess2 does not have methods of its own for these operations. Additionally, these inter-
faces are often necessary as parameters to access methods of several other interfaces. The
opened files have to be closed by calling the appropriate methods
com.sun.star.io.XInputStream:closeInput() or
com.sun.star.io.XOutputStream:closeOutput().

The XSimpleFileAccess2 also does not have methods to ask for or set the position within a file
stream. This is done by calling methods of the com.sun.star.io.XSeekable interface that is
supported by the objects returned by the openXXX() methods.

Two more services are instantiated at the global service manager that extends the service
com.sun.star.ucb.SimpleFileAccess by functionality specific to text files:

• The service com.sun.star.io.TextInputStream supporting
com.sun.star.io.XTextInputStream and com.sun.star.io.XActiveDataSink:

The service is initialized by passing an object supporting XInputStream to the
com.sun.star.io.XActiveDataSink:setInputStream() method, for example, an object
returned by com.sun.star.ucb.XSimpleFileAccess:openFileRead().

Then the method com.sun.star.io.TextInputStream:readLine() and
com.sun.star.io.TextInputStream:readString() are used to read text from the input
stream/file. The method com.sun.star.io.TextInputStream:isEOF() is used to check for if
the end of the file is reached. The com.sun.star.io.TextInputStream:setEncoding() sets a
text encoding where UTF-8 is the default.

• The service com.sun.star.io.TextOutputStream supporting
com.sun.star.io.XTextOutputStream and com.sun.star.io.XActiveDataSource:

The service is initialized by passing an object supporting XOutputStream to the
com.sun.star.io.XActiveDataSource:setOutputStream() method, for example, an object
returned by com.sun.star.ucb.XSimpleFileAccess:openFileWrite().

Then the method com.sun.star.io.XTextOutputStream:writeString() is used to write text
to the output stream.

Date and Time Functions
OpenOffice.org Basic supports several Visual Basic compatible statements and functions to
perform date and time calculations. The functions are DateSerial, DateValue, Day, Month,
WeekDay, Year, Hour, Now, Second, TimeSerial, TimeValue, Date, Time, and Timer.

756 OpenOffice.org 1.1 Developer's Guide • June 2003

The function Date returns the current system date as a string and the function Time returns the
current system time as a string. The other functions are not explained.

In the UNO/toolkit controls context there are two other functions. The date field control method
com.sun.star.awt.XDateField:setDate() expects the date to be passed as a long value in a
special ISO format and the com.sun.star.awt.XDateField:getDate() returns the date in this
format.

The Basic runtime function CDateToIso converts a date from the internal Basic date format to the
required ISO date format. Since the string date format returned by the Date function is converted
to the internal Basic date format automatically, Date can be used directly as an input parameter
for CDateToIso:
 IsoDate = CDateToIso(Date)
 oTextField.setDate(IsoDate)

The runtime function CDateToIso represents the reverse operation and converts a date from the
ISO date format to the internal Basic date format.

Dim aDate as date
aDate = CDateFromIso(IsoDate)

Please see also 11.5 Basic and Dialogs - Programming Dialogs and Dialog Controls in this context.

Numeric Functions
OpenOffice.org Basic supports standard numeric functions, such as:

• Cos calculating the cosine of an angle

• Sin calculating the sine of an angle

• Tan calculating the tangent of an angle

• Atn calculating the arctangent of a numeric value

• Exp calculating the base of the natural logarithm (e = 2.718282) raised to a power

• Log calculating the natural logarithm of a number

• Sqr calculating the square root of a numeric value

• Abs calculating the absolute value of a numeric value

• Sgn returning -1 if the passed numeric value is negative, 1 if it is positive, 0 if it is zero.

String Functions
OpenOffice.org Basic supports several runtime functions for string manipulation. Some of the
functions are explained briefly in the following:

• Asc returns the the Unicode value.

• Chr returns a string containing the character that is specified by the ASCII or Unicode value
passed to the function. This function is used to represent characters, such as '"' or the carriage
return code (chr(13)) that can not be written in the "" notation.

• Str converts a numeric expression to a string.

• Val converts a string to a numeric value.

Chapter 11 OpenOffice.org Basic and Dialogs 757

• LCase converts all letters in a string to lowercase. Only uppercase letters within the string are
converted. All lowercase letters and nonletter characters remain unchanged.

• UCase converts characters in a string to uppercase. Only lowercase letters in a string are
affected. Uppercase letters and all other characters remain unchanged.

• Left returns the leftmost “n” characters of a string expression.

• Mid returns the specified portion of a string expression.

• Right returns the rightmost "n" characters of a string expression.

• Trim removes all leading and trailing spaces of a string expression.

Specific UNO Functions
The UNO specific runtime functions CreateUnoListener, CreateUnoService, GetProcessServ-
iceManager, HasUnoInterfaces, IsUnoStruct, EqualUnoObjects are described in 3.4.3 Profes-
sional UNO - UNO Language Bindings - OpenOffice.org Basic.

11.3.2 Accessing the UNO API
In 3.4.3 Professional UNO - UNO Language Bindings - OpenOffice.org Basic, the interaction between
Basic and UNO is described on an elementary level. This section describes the interface between
Basic and the UNO API at the level of the OpenOffice.org application.

This is realized by two predefined Basic properties:

• StarDesktop
• ThisComponent
The property StarDesktop gives access to the global OpenOffice.org application API while the
property ThisComponent accesses the document related API.

StarDesktop
The property StarDesktop is a shortcut for the service com.sun.star.frame.Desktop.

Example:
MsgBox StarDesktop.Dbg_SupportedInterfaces

' is the same as

Dim oDesktop
oDesktop = CreateUnoService("com.sun.star.frame.Desktop")
MsgBox oDesktop.Dbg_SupportedInterfaces

The displayed message box differs slightly because Dbg_SupportedInterfaces displays
"StarDesktop" as an object type of the desktop object in the first case and
"com.sun.star.frame.Desktop" in the second. But the two objects are the same.

ThisComponent
The property ThisComponent is used from document Basic, where it represents the document the
Basic belongs to. The type of object accessed by ThisComponent depends on the document type.
The following example shows the differences.

758 OpenOffice.org 1.1 Developer's Guide • June 2003

Basic module in a OpenOffice.org document:
 Sub Main
 MsgBox ThisComponent.Dbg_SupportedInterfaces
 End Sub

The execution of this Basic routine shows different results for a Text, Spreadsheet and Presentation
document. Depending on the document type, a different set of interfaces are supported by the
object. A portion of the interfaces are common to all these document types representing the
general functionality that documents of any type offer. In particular, all OpenOffice.org docu-
ments support the com.sun.star.document.OfficeDocument service, including the interfaces
com.sun.star.frame.XStorable and com.sun.star.view.XPrintable. Another interface is
com.sun.star.frame.XModel.

The following list shows the interfaces supported by all document types:

com.sun.star.beans.XPropertySet
com.sun.star.container.XChild
com.sun.star.document.XDocumentInfoSupplier
com.sun.star.document.XEventBroadcaster
com.sun.star.document.XViewDataSupplier
com.sun.star.document.XEventsSupplier
com.sun.star.document.XLinkTargetSupplier
com.sun.star.frame.XModel
com.sun.star.frame.XStorable
com.sun.star.lang.XServiceInfo
com.sun.star.lang.XMultiServiceFactory
com.sun.star.lang.XEventListener
com.sun.star.style.XStyleFamiliesSupplier
com.sun.star.util.XModifiable
com.sun.star.view.XPrintable

For more information about the functionality of these interfaces, see 6.1.1 Office Development -
OpenOffice.org Application Environment - Overview - Framework API - Frame-Controller-Model Para-
digm. This section alsogoes into detail about the general document API.

In addition to the common services or interfaces, each document type supports specific services or
interfaces. The following list outlines the supported services and important interfaces:

A Text document supports:

• The service com.sun.star.text.TextDocument supports the interface
com.sun.star.text.XTextDocument.

• Several interfaces, especially from the com.sun.star.text package.

A Spreadsheet document supports:

• The service com.sun.star.sheet.SpreadsheetDocument,

• The service com.sun.star.sheet.SpreadsheetDocumentSettings.

• Several other interfaces, especially from the com.sun.star.sheet package.

Presentation and Drawing documents support:

• The service com.sun.star.drawing.DrawingDocument.

• Several other interfaces, especially from the com.sun.star.drawing package.

The usage of these services and interfaces is explained in the document type specific chapters 7
Text Documents, 8 Spreadsheet Documents and 9 Drawing.

As previously mentioned, ThisComponent is used from document Basic, but it is also possible to
use it from application Basic. In an application wide Bais module, ThisComponent is identical to
the current component that can also be accessed through StarDesktop.CurrentComponent. The

Chapter 11 OpenOffice.org Basic and Dialogs 759

only difference between the two is that if the BasicIDE is active, StarDesktop.CurrentComponent
refers to the BasicIDE itself while ThisComponent always refers to the component that was active
before the BasicIDE became the top window.

11.3.3 Special Behavior of OpenOffice.org Basic
Threading and rescheduling of OpenOffice.org Basic differs from other languages which must be
taken into consideration.

Threads
OpenOffice.org Basic does not support threads:

• In situations it may be necessary to create new threads to access UNO components in a
special way. This is not possible in OpenOffice.org Basic.

• OpenOffice.org Basic is unable to control threads. If two threads use the Basic runtime
system simultaneously, the result will be undefined results or even a crash. Please take
precautions.

Rescheduling
The OpenOffice.org Basic runtime system reschedules regularly. It allows system messages to be
dispatched continuously that have been sent to the OpenOffice.org process during the runtime of
a Basic module. This is necessary to allow repainting operations, and access to controls and menus
during the runtime of a Basic script as Basic runs in the OpenOffice.org main thread. Otherwise, it
would not be possible to stop a running Basic script by clicking the corresponding button on the
toolbar.

This behavior has an important consequence. Any system message, for example, clicking a push
button control, can result in a callback into Basic if an corresponding event is specified. The Basic
programmer must be aware of the fact that this can take place at any point of time when a script is
running.

The following example shows how this effects the state of the Basic runtime system:
 Dim EndLoop As Boolean
 Dim AllowBreak As Boolean

 ' Main sub, the execution starts here
 Sub Main
 ' Initialize flags
 EndLoop = FALSE
 AllowBreak = FALSE

 Macro1 ' calls sub Macro1
 End Sub

 ' Sub called by main
 Sub Macro1
 Dim a
 While Not EndLoop
 ' Toggle flags permanently
 AllowBreak = TRUE
 AllowBreak = FALSE
 Wend
 Print "Ready!"
 End Sub

 ' Sub assigned to a bush button in a writer document
 Sub Break
 If AllowBreak = TRUE Then

760 OpenOffice.org 1.1 Developer's Guide • June 2003

 EndLoop = TRUE
 EndIf
 End Sub

When Sub Main in this Basic module is executed, the two Boolean variables EndLoop and Allow-
Break are initialized. Then Sub Macro1 is called where the execution runs into a loop. The loop is
executed until the EndLoop flag is set to TRUE. This is done in Sub Break that is assigned to a push
button in a writer document, but the EndLoop flag can only be set to TRUE if the AllowBreak flag is
also TRUE. This flag is permanently toggled in the loop in Sub Macro1.

The program execution may or may not be stopped if the push button is clicked. It depends on the
point of time the push button is clicked. If the Basic runtime system has just executed the Allow-
Break = TRUE statement, the execution is stopped because the If condition in Sub Break is TRUE
and the EndLoop flag can be set to TRUE. If the push button is clicked when the AllowBreak vari-
able is FALSE, the execution is not stopped. The Basic runtime system reschedules permanently,
therefore it is unpredictable. This is an example to show what problems may result from the Basic
rescheduling mechanism.

Callbacks to Basic that result from rescheduling have the same effect as if the Sub specified in the
event had been called directly from the position in the Basic code that is executed in the moment
the rescheduling action leading to the callback takes place. In this example, the Basic call stack
looks like this if a breakpoint is placed in the Sub Break:
 Basic Native code

 0: Break <--- Callback due to push button event
 1: Macro1 ---> Reschedule()
 2: Main

With the call to the native Reschedule method, the Basic runtime system is left and reentered
when the push button events in a Callback to Basic. On the Basic stack this looks like a direct call
from Sub Macro1 to Sub Break.

A similar situation occurs when a program raises a dialog using the execute method of the dialog
object returned by CreateUnoDialog(). See 11.5 Basic and Dialogs - Programming Dialogs and
Dialog Controls. In this case, the Basic runtime system does not reschedule, but messages are proc-
essed by the dialog's message loop that also result in callbacks to Basic. When the Basic runtime
system is called back due to an event at a dialog control, the resulting Basic stack looks analogous.
For example:
 Sub Main
 Dim oDialog
 oDialog = CreateUnoDialog(...)
 oDialog.execute()
 End Sub

 Sub DoIt
 ...

 End Sub

If Sub Doit is specified to be executed if an event occurs for one of the dialog controls, the Basic
call stack looks like this if a breakpoint is placed in Sub DoIt:
 Basic Native code

 0: DoIt <--- Callback due to control event
 1: Main ---> execute() ---> Reschedule()

There is also a difference to the rescheduling done directly by the Basic runtime system. The
rescheduling done by the dialog's message loop can not result in unpredictable behavior, because
the Basic runtime system has called the dialog's execute method and waits for its return. It is in a
well-defined state.

Chapter 11 OpenOffice.org Basic and Dialogs 761

11.4 Advanced Library Organization
Basic source code and Dialogs are organized in libraries. This section describes the structure and
usage of the library system.

11.4.1 General Structure
The library system that is used to store Basic source code modules and Dialogs has three levels:

Library container
The library container represents the top level of the library hierarchy containing libraries.
The libraries inside a library container are accessed by name.

Library
A library contains elements that logically belong together, for example, several Basic
modules that form a program or a set of related dialogs together.

Library elements
Library elements are Basic source code modules or dialogs. The elements represent the
lowest level in the library hierarchy. For Basic source code modules, the element type is
string. Dialogs are represented by the interface com.sun.star.io.XInputStreamProvider
that provides access to the XML data describing the dialog.

The hierarchy is separated for Basic source code and dialogs, that is, a Basic library container only
contains Basic libraries containing Basic source code modules and a dialog library container only
contains dialog libraries containing dialogs.

Basic source code and dialogs are stored globally for the whole office application and locally in
documents. For the application, there is one Basic library container and one dialog library
container. Every document has one Basic library container and one dialog library container as
well. By including the application or document level, the library system actually has four levels.
Illustration 143: Basic source editor window depicts this structure.

As shown in the library hierarchy for Document 1, the Basic and dialog library containers do not
have the same structure. The Basic library container has a library named Library1 and the dialog
library container has a library named Library2. The library containers are separated for Basic and
dialogs in the API.

It is not recommended to create a structure as described above because the library and dialog
containers are not separated in the GUI, for example, in the Tools - Macro dialog. When a user
creates or deletes a new library through Tools - Macro – Organizer, the library is created or
deleted in the Basic and the dialog library containers.

762 OpenOffice.org 1.1 Developer's Guide • June 2003

11.4.2 Accessing Libraries from Basic

Library Container Properties in Basic
Currently, the library system is implemented using UNO interfaces, not as a UNO service. There-
fore, the library system cannot be accessed by instantiating an UNO service. The library system
has to be accessed directly from Basic using the built-in properties BasicLibraries and Dialo-
gLibraries.

Chapter 11 OpenOffice.org Basic and Dialogs 763

Illustration 168: Sample module structure

The BasicLibraries property refers to the Basic library container that belongs to the library
container that the BasicLibraries property is accessed. In an application-wide Basic module, the
property BasicLibraries accesses the application Basic library containerand in a document Basic
module, the property BasicLibraries contains the document Basic library container. The same
applies to the DialogLibraries property.

Loading Libraries
Initially, most Basic libraries are not loaded. All the libraries in the application library container
are known after starting OpenOffice.org, and all the library elements in a document are known
when it is loaded, most of them are disabled until they are loaded explicitly. This mechanism saves
time during the Basic initialization. When a Basic library is initialized, the source code modules
are inserted into the Basic engine and compiled. If there are many libraries with big modules, it is
tim consuming, especially if the libraries are not required.

The exception to this is that every library container contains a library named "Standard" that is
always loaded. This library is used as a standard location for Basic programs and dialogs that do
not need a complex structure. All other libraries have to be loaded explicitly. For example:

When Library1, Module1 looks like
 Sub doSomething
 MsgBox "doSomething"
 End Sub

the following code in library Standard, Module1
 Sub Main
 doSomething()
 End Sub

fails, unless the user loaded Library1 before using the Tools - Macro dialog. A runtime error
"Property or method not found" occurs. To avoid this, load library Library1 before calling doSo-
mething():
 Sub Main
 BasicLibraries.loadLibrary("Library1")
 doSomething()
 End Sub

Accordingly in the dialog container, all the libraries besides the Standard library have to be loaded
before the dialogs inside the library can be accessed. For example:
 Sub Main
 ' If this line was missing the following code would fail
 DialogLibraries.loadLibrary("Library1")
 ' Code to instantiate and display a dialog
 ' Details will be explained in a later chapter
 oDlg = createUnoDialog(DialogLibraries.Library1.Dialog1)
 oDlg.execute()
 End Sub

The code to instantiate and display the dialog is described in 11.5 Basic and Dialogs - Programming
Dialogs and Dialog Controls. The library representing DialogLibraries.Library1.Dialog1 is only
valid once Library1 has been loaded.

The properties BasicLibraries and DialogLibraries refer to the container that includes the
Basic source accessing these properties. Therefore in a document module Basic the properties
BasicLibraries and DialogLibraries refer to the Basic and Dialog library container of the
document. In most cases, libraries in the document have to be loaded. In other cases it might be
necessary to access application-wide libraries from document Basic. This can be done using the
GlobalScope property. The GlobalScope property represents the root scope of the application
Basic, therefore the application library containers can be accessed as properties of GlobalScope.

764 OpenOffice.org 1.1 Developer's Guide • June 2003

Example module in a Document Basic in library Standard:
 Sub Main
 ' This code loads Library1 of the
 ...' Document Basic library container
 BasicLibraries.loadLibrary("Library1")

 ' This code loads Library1 of the
 ...' Document dialog library container
 DialogLibraries.loadLibrary("Library1")

 ' This code loads Library1 of the
 ...' Application Basic library container
 GlobalScope.BasicLibraries.loadLibrary("Library1")
 ' This code loads Library1 of the
 ...' Application dialog library container
 GlobalScope.DialogLibraries.loadLibrary("Library1")
 ' This code displays the source code of the
 ...' Application Basic module Library1/Module1
 MsgBox GlobalScope.BasicLibraries.Library1.Module1
 End Sub

Application library containers can be accessed from document- embedded Basic libraries using the
GlobalScope property, for example, GlobalScope.BasicLibraries.Library1.

Library Container API
The BasicLibraries and DialogLibraries support
com.sun.star.script.XLibraryContainer2 that inherits from
com.sun.star.script.XLibraryContainer, which is a
com.sun.star.container.XNameContainer. Basic developers do not require the location of the
interface to use a method, but a basic understanding is helpful when looking up the methods in
the API reference.

The XLibraryContainer2 handles existing library links and the write protection for libraries. It is
also used to rename libraries:

boolean isLibraryLink([in] string Name)
string getLibraryLinkURL([in] string Name)
boolean isLibraryReadOnly([in] string Name)
void setLibraryReadOnly([in] string Name,
 [in] boolean bReadOnly)
void renameLibrary([in] string Name, [in] string NewName)

The XLibraryContainer creates and removes libraries and library links. Furthermore, it can test if
a library has been loaded or, if necessary, load it.

com::sun::star::script::XNameContainer createLibrary([in] string Name)
com::sun::star::script::XNameAccess createLibraryLink([in] string Name,
 [in] string StorageURL, [in] boolean ReadOnly)
void removeLibrary([in] string Name)
boolean isLibraryLoaded([in] string Name)
void loadLibrary([in] string Name)

The methods of XNameContainer access and manage the libraries in the container:
void insertByName([in] string name, [in] any element)
void removeByName([in] string name)
any getByName([in] string name)
void replaceByName([in] string name, [in] any element)
sequence < string > getElementNames()
boolean hasByName([in] string name)
type getElementType()
boolean hasElements()

These methods are accessed using the UNO API as described in 3.4.3 Professional UNO - UNO
Language Bindings - OpenOffice.org Basic. Note however, these interfaces can only be used from
OpenOffice.org Basic, not from other environments.

Chapter 11 OpenOffice.org Basic and Dialogs 765

Libraries can be added to library containers in two different ways:

Creating a New Library
Creating a new library is done using the createLibrary() method. A library created with this
method belongs to the library container where createLibrary() has been called. The imple-
mentation of the library container is responsible for saving and loading this library. This func-
tionality is not currently covered by the interfaces, therefore the implementation determines
how and where this is done. The method createLibrary() returns a standard
com.sun.star.container.XNameContainer interface to access the library elements and
modify the library.

Initially, such a library is empty and new library elements are inserted. It is also possible to
protect a library from changes using the setLibraryReadOnly() method. In a read- only
library, no elements can be inserted or removed, and the modules or dialogs inside cannot be
modified in the BasicIDE. For additional information, see 11.2 Basic and Dialogs - OpenOffice.org
Basic IDE. Currently, the read- only status can only be changed through API.

Creating a Link to an Existing Library
Creating a link to an existing library is accomplished using the method createLibraryLink().
Its StorageURL parameter describes the location where the library .xlb file is stored. For addi-
tional information about this topic, see the section on 11.7 Basic and Dialogs - Library File Struc-
ture). A library link is only referenced by the library container and is not owned, therefore the
library container is not responsible for the location to store the library. This is only described by
the StorageURL parameter.

The ReadOnly parameter sets the read- only status of the library link. This status is independent
of the read- only status of the linked library. A linked library is only modified when the library
and link to the library are not read only. For example, this mechanism provides read- only
access to a library located on a network drive without forcing the library to be read- only, thus
the library can be modified easily by an authorized person without changing its read- only
status.

The following tables provides a brief overview about other methods supported by the library
containers:

 Selected Methods of com.sun.star.script.XLibraryContainer2
isLibraryLink() boolean. Can be used to ask if a library was added to the library container as

a link.

getLibraryLinkURL() string. Returns the StorageURL for a linked library. This corresponds to the
StorageURL parameter of the createLibraryLink(...) method and is
primarily meant to be displayed to the users through the graphical user inter-
face.

isLibraryReadOnly() boolean. Retrieves the read-only status of a library. In case of a library link,
the method returns only false, that is, the library can be modified,
when the link or the linked library are not read only.

renameLibrary() Assigns a new name to a library. If the library was added to the library
container as a link, only the link is renamed.

 Selected Methods of com.sun.star.script.XLibraryContainer
loadLibrary() void. Loads a library. This is explained in detail in section 11.4 Basic and

Dialogs - Advanced Library Organization

isLibraryLoaded() boolean. Allows the user to find out if a library has already been loaded.

766 OpenOffice.org 1.1 Developer's Guide • June 2003

 Selected Methods of com.sun.star.script.XLibraryContainer
removeLibrary() void. Removes the library from the library container. If the library was added

to the library container as a link, only the link is removed, because the library
addressed by the link is not considered to be owned by the library container.

11.4.3 Variable Scopes
Some aspects of scoping in Basic depend on the library structure. This section describes which
variables declared in a Basic source code module are seen from what libraries or modules. Gener-
ally, only variables declared outside Subs are affected by this issue. Variables declared inside Subs
are local to the Sub and not accessible from outside of the Sub. For example:
 Option Explicit ' Forces declaration of variables

 Sub Main
 Dim a%
 a% = 42 ' Ok
 NotMain()
 End Sub

 Sub NotMain
 a% = 42 ' Runtime Error "Variable not defined"

 End Sub

Variables can also be declared outside of Subs. Then their scope includes at least the module they
are declared in. To declare variables outside of the Subs, the commands Private, Public/Dim and
Global are used.

The Private command is used to declare variables that can only be used locally in a module. If
the same variable is declared as Private in two different modules, they are used independently in
each module. For example:

Library Standard, Module1:
 Private x As Double

 Sub Main
 x = 47.11 ' Initialize x of Module1
 Module2_InitX ' Initialize x of Module2

 MsgBox x ' Displays the x of Module1
 Module2_ShowX ' Displays the x of Module2
 End Sub

Library Standard, Module2:
 Private x As Double

 Sub Module2_InitX
 x = 47.12 ' Initialize x of Module2
 End Sub

 Sub Module2_ShowX
 MsgBox x ' Displays the x of Module2
 End Sub

When Main in Module1 is executed, 47.11 is displayed (x of Module1) and then 47.12 (x of
Module2).

The Public and Dim commands declare variables that can also be accessed from outside the
module. They are identical in this context. Variables declared with Public and Dim can be
accessed from all modules that belong to the same library container. For example, based on the
library structure shown in Illustration 143: Basic source editor window , any variable declared with
Public and Dim in the Application Basic Modules Standard /Module1, Standard /Module2,
Library1 /Module1, Library1 /Module2 can also be accessed from all of these modules, therefore
the library container represents the logical root scope.

Chapter 11 OpenOffice.org Basic and Dialogs 767

11.5 Programming Dialogs and Dialog Controls
The dialogs and dialog controls are UNO components that provide a graphical user interface
belonging to the module [MOUDLE:com.sun.star.awt]. The Toolkit controls follow the Model-
View-Controller (MVC) paradigm, which separates the component into three logical units, the
model, view, and controller. The model represents the data and the low-level behavior of the compo-
nent. It has no specific knowledge of its controllers or its views. The view manages the visual
display of the state represented by the model. The controller manages the user interaction with the
model.

Note, that the Toolkit controls combine the view and the controller into one logical unit, which forms the
user interface for the component.

The following example of a text field illustrates the separation into model, view and controller.
The model contains the data which describes the text field, for example, the text to be displayed,
text color and maximum text length. The text field model is implemented by the
com.sun.star.awt.UnoControlEditModel service that extends the
com.sun.star.awt.UnoControlModel service. All aspects of the model are described as a set of
properties which are accessible through the com.sun.star.beans.XPropertySet interface. The
view is responsible for the display of the text field and its content. It is possible to have multiple
views for the same model, but not for Toolkit dialogs. The view is notified about model changes,
for example, changes to the text color property causes the text field to be repainted. The controller
handles the user input provided through thekeyboard and mouse. If the user changes the text in
the text field, the controller updates the corresponding model property. In addition, the controller
updates the view, for example, if the user presses the delete button on the keyboard, the marked
text in the text field is deleted. A more detailed description of the MVC paradigm can be found in
the chapter about forms 13 Forms.

The base for all the Toolkit controls is the com.sun.star.awt.UnoControl service that exports the
following interfaces:

• The com.sun.star.awt.XControl interface specifies control basics.For example, it gives access
to the model, view and context of a control.

• The com.sun.star.awt.XWindow interface specifies operations for a window component.

• The com.sun.star.awt.XView interface provides methods for attaching an output device and
drawing an object.

11.5.1 Dialog Handling

Showing a Dialog
After a dialog has been designed using the dialog editor, a developer wants to show the dialog
from within the program code. The necessary steps are shown in the following example: (Basi-
cAndDialogs /ToolkitControls)
Sub ShowDialog()

 Dim oLibContainer As Object, oLib As Object
 Dim oInputStreamProvider As Object
 Dim oDialog As Object

 Const sLibName = "Library1"
 Const sDialogName = "Dialog1"

 REM library container

768 OpenOffice.org 1.1 Developer's Guide • June 2003

 oLibContainer = DialogLibraries

 REM load the library
 oLibContainer.loadLibrary(sLibName)

 REM get library
 oLib = oLibContainer.getByName(sLibName)

 REM get input stream provider
 oInputStreamProvider = oLib.getByName(sDialogName)

 REM create dialog control
 oDialog = CreateUnoDialog(oInputStreamProvider)

 REM show the dialog
 oDialog.execute()

End Sub

The dialog control is created by calling the runtime function CreateUnoDialog() which takes an
object as parameter that supports the com.sun.star.io.XInputStreamProvider interface. This
object provides an input stream that represents an XML description of the dialog. The section 11.4
Basic and Dialogs - Advanced Library Organization explains the accessing to the object inside the
library hierarchy. The dialog control is shown by calling the execute() method of the
com.sun.star.awt.XDialog interface. It can be closed by calling endExecute(), or by offering a
Cancel or OK Button on the dialog. For additional information, see 11.5 Basic and Dialogs -
Programming Dialogs and Dialog Controls.

Getting the Dialog Model
If a developer wants to modify any properties of a dialog or a control, it is necessary to have access
to the dialog model. From a dialog, the model can be obtained by the getModel method of the
com.sun.star.awt.XControl interface
oDialogModel = oDialog.getModel()

or shorter
oDialogModel = oDialog.Model

Dialog as Control Container
All controls belonging to a dialog are grouped together logically. This hierarchy concept is
reflected by the fact that a dialog control is a container for other controls. The corresponding
service com.sun.star.awt.UnoControlDialog therefore supports the
com.sun.star.awt.XControlContainer interface thatoffers container functionality, namely
access to its elements by name. Since in OpenOffice.org Basic, every method of every supported
interface is called directly at the object without querying for the appropriate interface, a control
with the name TextField1 can be obtained from a dialog object oDialog simply by:
oControl = oDialog.getControl("TextField1")

See 3.4.3 Professional UNO - UNO Language Bindings - OpenOffice.org Basic for additional informa-
tion. The hierarchy between a dialog and its controls can be seen in the dialog model
com.sun.star.awt.UnoControlDialogModel, which is a container for control models and there-
fore supports the com.sun.star.container.XNameContainer interface. A control model is
obtained from a dialog model by:
oDialogModel = oDialog.getModel()
oControlModel = oDialogModel.getByName("TextField1")

or shorter
oControlModel = oDialog.Model.TextField1

Chapter 11 OpenOffice.org Basic and Dialogs 769

Dialog Properties
It is possible to make some modifications before a dialog is shown. An example is to set the dialog
title that is shown in the title bar of a dialog window. This can be achieved by setting the Title
property at the dialog model vthrough the com.sun.star.beans.XPropertySet interface:
oDialogModel = oDialog.getModel()
oDialogModel.setPropertyValue("Title", "My Title")

or shorter
oDialog.Model.Title = "My Title"

Another approach is to use the setTitle method of the com.sun.star.awt.XDialog interface:
oDialog.setTitle("My Title")

or
oDialog.Title = "My Title"

Another property is the BackgroundColor property that sets a different background color for the
dialog.

Common Properties
All Toolkit control models have a set of identical properties referred as the common properties.
These are the properties PositionX, PositionY, Width, Height, Name, TabIndex, Step and Tag.

Note that a Toolkit control model has those common properties only if it belongs to a dialog model. This has
also some consequences for the creation of dialogs and controls at runtime. See 11.6 Basic and Dialogs -
Creating Dialogs at Runtime.

The PositionX, PositionY, Width and Height properties change the position and size of a dialog,
and control at runtime. When designing a dialog in the dialog editor, these properties are set auto-
matically.

The Name property is required, because all dialogs and controls are referenced by their name. In
the dialog editor this name is created from the object name and a number, for example, TextField1.

The TabIndex property defines the order of focussing a control in a dialog when pressing the tabu-
lator key. The index of the first element has the value 0. In the dialog editor the TabIndex property
is set automatically when inserting a control. The order can also be changed through the property
browser. Take care when setting this property at runtime.

The Tag property adds additional information to a control, such as a remark or number.

The Step property is described in detail in the next section.

Multi-Page Dialogs
A dialog may have several pages that can be traversed by the user step by step. This feature is
used in the OpenOffice.org autopilots. The dialog property Step defines which page of the dialog
is active. At runtime the next page of a dialog is displayed by increasing the step value by 1.

The Step property of a control defines the page of the dialog the control is visible. For example, if a
control has a step value of 1, it is only visible on page 1 of the dialog. If the step value of the dialog
is increased from 1 to 2, then all controls with a step value of 1 are faded out and all controls with
a step value of 2 are visible.

770 OpenOffice.org 1.1 Developer's Guide • June 2003

A special role has the step value 0. For a control a step value of 0, the control is displayed on all
dialog pages. If a dialog has a step value of 0, all controls of the dialog are displayed, independent
of the step value of the single controls.

11.5.2 Dialog Controls

Command Button
The command button com.sun.star.awt.UnoControlButton allows the user to perform an
action by clicking the button. Usually a button carries a label that is set through the Label property
of the control model:
oDialogModel = oDialog.getModel()
oButtonModel = oDialogModel.getByName("CommandButton1")
oButtonModel.setPropertyValue("Label", "My Label")

or in short:
oDialog.Model.CommandButton1.Label = "My Label"

The label can also be set using the setLabel method of the com.sun.star.awt.XButton inter -
face:
oButton = oDialog.getControl("CommandButton1")
oButton.setLabel("My Label")

During runtime, you may want to enable or disable a button. This is achieved by setting the
Enabled property to True or False. The PushButtonType property defines the default action of a
button where 0 is the Default, 1 is OK, 2 is Cancel, and 3 is Help. If a button has a PushButtonType
value of 2, it behaves like a cancel button, that is, pressing the button closes the dialog. In this case,
the method execute() of the dialog returns with a value of 0. An OK button of PushButtonType
1 returns 1 on execute(). The property DefaultButton specifies that the command button is the
default button on the dialog, that is, pressing the ENTER key chooses the button even if another
control has the focus. The Tabstop property defines if a control can be reached with the TAB key.

The command button has the feature, to display an image by setting the ImageURL property,
which contains the path to the graphics file.
oButtonModel = oDialog.Model.CommandButton1
oButtonModel.ImageURL = "file:///D:/Office60/share/gallery/bullets/bluball.gif"
oButtonModel.ImageAlign = 2

All standard graphics formats are supported, such as .gif, .jpg, .tif, .wmf and .bmp. The property
ImageAlign defines the alignment of the image inside the button where 0 is Left, 1 is Top, 2 is
Right, and 3 is the Bottom. If the size of the image exceeds the size of the button, the image is not
scaled automatically, but cut off. In this respect, the image control offers more functionality.

Image Control
If the user wants to display an image without the button functionality, the image control
com.sun.star.awt.UnoControlImageControl is selected. The location of the graphic for the
command button is set by the ImageURL property. Usually, the size of the image does not match
the size of the control, therefore the image control automatically scales the image to the size of the
control by setting the ScaleImage property to True.
oImageControlModel = oDialog.Model.ImageControl1
oImageControlModel.ImageURL = "file:///D:/Office60/share/gallery/photos/beach.jpg"

Chapter 11 OpenOffice.org Basic and Dialogs 771

oImageControlModel.ScaleImage = True

Check Box
The check box control com.sun.star.awt.UnoControlCheckBox is used in groups to display
multiple choices so that the user can select one or more choices. When a check box is selected it
displays a check mark. Check boxes work independently of each other, thus different from option
buttons. A user can select any number of check boxes at the same time.

The property State, where 0 is not checked, 1 is checked, 2 is don't know, accessesand changes the
state of a checkbox. The tri-state mode of a check box is enabled by setting the TriState property to
True. A tri-state check box provides the additional state "don't know", that is used to give the user
the option of setting or unsetting an option.
oCheckBoxModel = oDialog.Model.CheckBox3
oCheckBoxModel.TriState = True
oCheckBoxModel.State = 2

The same result is achieved by using the com.sun.star.awt.XCheckBox interface:
oCheckBox = oDialog.getControl("CheckBox3")
oCheckBox.enableTriState(True)
oCheckBox.setState(2)

Option Button
An option button control com.sun.star.awt.UnoControlRadioButton is a simple switch with
two states, that is selected by the user. Usually option buttons are used in groups to display
several options, that the user may select. While option buttons and check boxes seem to be similar,
selecting one option button deselects all the other option buttons in the same group.

Note, that option buttons thatbelong to the same group must have consecutive tab indices. Two groups of
option buttons can be separated by any control with a tab index that is between the tab indices of the two
groups.

Usually a group box, or horizontal and vertical lines are used, because those controls visually
group the option buttons together, but in principal this can be any control. There is no functional
relationship between an option button and a group box. Option buttons are grouped through
consecutive tab indices only.

The state of an option button is accessed by the State property, where 0 is not checked and 1 is
checked.
Function IsChecked(oOptionButtonModel As Object) As Boolean

 Dim bChecked As Boolean

 If oOptionButtonModel.State = 1 Then
 bChecked = True
 Else
 bChecked = False
 End If

 IsChecked = bChecked

End Function

Label Field
A label field control com.sun.star.awt.UnoControlFixedText displays text that the user can no
edit on the screen. For example, the label field is used to add descriptive labels to text fields, list
boxes, and combo boxes. The actual text displayed in the label field is controlled by the Label

772 OpenOffice.org 1.1 Developer's Guide • June 2003

property. The Align property allows the user to set the alignment of the text in the control to the
left (0), center (1) or right (2). By default, the label field displays the text from the Label property
in a single line. If the text exceeds the width of the control, the text is truncated. This behavior is
changed by setting the MultiLine property to True, so that the text is displayed on more than one
line, if necessary. By default, the label field control is drawn without any border. However, the
label field appears with a border if the Border property is set, where 0 is no border, 1 is a 3D
border, and 2 is a simple border. The font attributes of the text in the label field are specified by the
FontDescriptor property. It is recommended to set this property with the property browser in
the dialog editor.

Label fields are used to define shortcut keys for controls without labels. A shortcut key can be
defined for any control with a label by adding a tilde (~) before the character that will be used as a
shortcut. When the user presses the character key simultaneously with the ALT key, the control
automatically gets the focus. To assign a shortcut key to a control without a label, for example, a
text field, the label field is used. The tilde prefixes the corresponding character in the Label prop -
erty of the label field. As the label field cannot receive focus, the focus automatically moves to the
next control in the tab order. Therefore, it is important that the label field and the text field have
consecutive tab indices.
oLabelModel = oDialog.Model.Label1
oLabelModel.Label = "Enter ~Text"

Text Field
The text field control com.sun.star.awt.UnoControlEdit is used to get input from the user at
runtime. In general, the text field is used for editable text, but it can also be made read- only by
setting the ReadOnly property to True. The actual text displayed in a text field is controlled by the
Text property. The maximum number of characters that can be entered by the user is specified
with the MaxTextLen property. A value of 0 means that there is no limitation. By default, a text
field displays a single line of text. This behavior is changed by setting the property MultiLine to
True. The properties HScroll and VScroll displays a horizontal and vertical scroll bar.

When a text field receives the focus by pressing the TAB key the displayed text is selected and
highlighted by default. The default cursor position within the text field is to the right of the
existing text. If the user starts typing while a block of text is selected, the selected text is replaced.
In some cases, the user may change the default selection behavior and set the selection manually.
This is done using the com.sun.star.awt.XTextComponent interface:
Dim sText As String
Dim oSelection As New com.sun.star.awt.Selection

REM get control
oTextField = oDialog.getControl("TextField1")

REM set displayed text
sText = "Displayed Text"
oTextField.setText(sText)

REM set selection
oSelection.Min = 0
oSelection.Max = Len(sText)
oTextField.setSelection(oSelection)

The text field control is also used for entering passwords. The property EchoChar specifies the
character that is displayed in the text field while the user enters the password. In this context, the
MaxTextLen property is used to limit the number of characters that are typed in:
oTextFieldModel = oDialog.Model.TextField1
oTextFieldModel.EchoChar = Asc("*")
oTextFieldModel.MaxTextLen = 8

A user can enter any kind of data into a text field, such as numerical values and dates. These
values are always stored as a string in the Text property, thus leadingto problems when evalu-

Chapter 11 OpenOffice.org Basic and Dialogs 773

ating the user input. Therefore, consider using a date field, time field, numeric field, currency field
or formatted field instead.

List Box
The list box control com.sun.star.awt.UnoControlListBox displays a list of items that the user
can select one or more of. If the number of items exceeds what can be displayed in the list box,
scroll bars automatically appear on the control. If the Dropdown property is set to True, the list of
items is displayed in a drop- down box. In this case, the maximum number of line counts in the
drop- down box are specified with the LineCount property. The actual list of items is controlled by
the StringItemList property. All selected items are controlled by the SelectedItems property. If
the MultiSelection property is set to True, more than one entry can be selected.

It may be easier to use the com.sun.star.awt.XListBox interface when working with list boxes,
because an item can be added to a list at a specific position with the addItem method. For
example, an item is added at the end of the list by:
Dim nCount As Integer

oListBox = oDialog.getControl("ListBox1")
nCount = oListBox.getItemCount()
oListBox.addItem("New Item", nCount)

Multiple items are added with the help of the addItems method. The removeItems method is used
to remove items from a list. For example, the first entry in a list is removed by:
Dim nPos As Integer, nCount As Integer

nPos = 0
nCount = 1
oListBox.removeItems(nPos, nCount)

A list box item can be preselected with the selectItemPos, selectItemsPos and selectItem
methods. For example, the first entry in a list box can be selected by:
oListBox.selectItemPos(0, True)

The currently selected item is obtained with the getSelectedItem method:
Dim sSelectedItem As String
sSelectedItem = oListBox.getSelectedItem()

Combo Box
The combo box control com.sun.star.awt.UnoControlComboBox presents a list of choices to the
user. Additionally, it contains a text field allowing the user to input a selection that is not on the
list. A combo box is used when there is only a list of suggested choices, whereas a list box is used
when the user input is limited only to the list.

The features and properties of a combo box and a list box are similar. Also in a combo box the list
of items can be displayed in a drop- down box by setting the Dropdown property to True. The
actual list of items is accessible through the StringItemList property. The text displayed in the
text field of the combo box is controlled by the Text property. For example, if a user selects an
item from the list, the selected item is displayed in the text field and is obtained from the Text
property:
Function GetSelectedItem(oComboBoxModel As Object) As String
 GetSelectedItem = oComboBoxModel.Text
End Function

When a user types text into the text field of the combo box, the automatic word completion is a
useful feature and is enabled by setting the Autocomplete property to True. It is recommended to
use the com.sun.star.awt.XComboBox interface when accessing the items of a combo box:

774 OpenOffice.org 1.1 Developer's Guide • June 2003

Dim nCount As Integer
Dim sItems As Variant

REM get control
oComboBox = oDialog.getControl("ComboBox1")

REM first remove all old items from the list
nCount = oComboBox.getItemCount()
oComboBox.removeItems(0, nCount)

REM add new items to the list
sItems = Array("Item1", "Item2", "Item3", "Item4", "Item5")
oComboBox.addItems(sItems, 0)

Horizontal /Vertical Scroll Bar
If the visible area in a dialog is smaller than the displayable content, the scroll bar control
com.sun.star.awt.UnoControlScrollBar provides navigation through the content by scrolling
horizontally or vertically. In addition, the scroll bar control is used to provide scrolling to controls
that do not have a built-in scroll bar.

The orientation of a scroll bar is specified by the Orientation property and can be horizontal or
vertical. A scroll bar has a thumb (scroll box) that the user can drag with the mouse to any position
along the scroll bar. The position of the thumb is controlled by the ScrollValue property. For a
horizontal scroll bar, the left-most position corresponds to the minimum scroll value of 0 and the
right-most position to the maximum scroll value defined by the ScrollValueMax property. A
scroll bar also has arrows at its end that when clicked or held, incrementally moves the thumb
along the scroll bar to increase or decrease the scroll value. The change of the scroll value per
mouse click on an arrow is specified by the LineIncrement property. When clicking in a scroll bar
in the region between the thumb and the arrows, the scroll value increases or decreases by the
value set for the BlockIncrement property. The thumb position represents the portion of the
displayable content that is currently visible in a dialog. The visible size of the thumb is set by the
VisibleSize property and represents the percentage of the currently visible content and the total
displayable content.
oScrollBarModel = oDialog.Model.ScrollBar1
oScrollBarModel.ScrollValueMax = 100
oScrollBarModel.BlockIncrement = 20
oScrollBarModel.LineIncrement = 5
oScrollBarModel.VisibleSize = 20

The scroll bar control uses the adjustment event com.sun.star.awt.AdjustmentEvent to monitor
the movement of the thumb along the scroll bar. In an event handler for adjustment events the
developer may change the position of the visible content on the dialog as a function of the
ScrollValue property. In the following example, the size of a label field exceeds the size of the
dialog. Each time the user clicks on the scrollbar, the macro AdjustmentHandler() is called and
the position of the label field in the dialog is changed according to the scroll value. (BasicAndDia -
logs /ToolkitControls /ScrollBar.xba)
Sub AdjustmentHandler()

 Dim oLabelModel As Object
 Dim oScrollBarModel As Object
 Dim ScrollValue As Long, ScrollValueMax As Long
 Dim VisibleSize As Long
 Dim Factor As Double

 Static bInit As Boolean
 Static PositionX0 As Long
 Static Offset As Long

 REM get the model of the label control
 oLabelModel = oDialog.Model.Label1

 REM on initialization remember the position of the label control and calculate offset
 If bInit = False Then
 bInit = True
 PositionX0 = oLabelModel.PositionX
 OffSet = PositionX0 + oLabelModel.Width - (oDialog.Model.Width - Border)

Chapter 11 OpenOffice.org Basic and Dialogs 775

 End If

 REM get the model of the scroll bar control
 oScrollBarModel = oDialog.Model.ScrollBar1

 REM get the actual scroll value
 ScrollValue = oScrollBarModel.ScrollValue

 REM calculate and set new position of the label control
 ScrollValueMax = oScrollBarModel.ScrollValueMax
 VisibleSize = oScrollBarModel.VisibleSize
 Factor = Offset / (ScrollValueMax - VisibleSize)
 oLabelModel.PositionX = PositionX0 - Factor * ScrollValue

End Sub

Group Box
The group box control com.sun.star.awt.UnoControlGroupBox creates a frame to visually
group other controls together, such as option buttons and check boxes. Note that the group box
control does not provide any container functionality for other controls, it only has visual function-
ality. For more details, see 11.5.2 Basic and Dialogs - Programming Dialogs and Dialog Controls -
Dialog Controls - Option Button.

The group box contains a label embedded within the border and is set by the Label property. In
most cases, the group box control is only used passively.

Progress Bar
The progress bar control com.sun.star.awt.UnoControlProgressBar displays a growing or
shrinking bar to give the user feedback during an operation, for example, the completion of a
lengthy task. The minimum and the maximum progress value of the control is set by the
ProgressValueMin and the ProgressValueMax properties. The progress value is controlled by the
ProgressValue property. By default, the progress bar is blue, but the fill color can be changed by
setting the FillColor property. The functionality of a progress bar is demonstrated in the
following example: (BasicAndDialogs /ToolkitControls /ProgressBar.xba)
Sub ProgressBarDemo()

 Dim oProgressBar As Object, oProgressBarModel As Object
 Dim oCancelButtonModel As Object
 Dim oStartButtonModel As Object
 Dim ProgressValue As Long

 REM progress bar settings
 Const ProgressValueMin = 0
 Const ProgressValueMax = 40
 Const ProgressStep = 4

 REM set minimum and maximum progress value
 oProgressBarModel = oDialog.Model.ProgressBar1
 oProgressBarModel.ProgressValueMin = ProgressValueMin
 oProgressBarModel.ProgressValueMax = ProgressValueMax

 REM disable cancel and start button
 oCancelButtonModel = oDialog.Model.CommandButton1
 oCancelButtonModel.Enabled = False
 oStartButtonModel = oDialog.Model.CommandButton2
 oStartButtonModel.Enabled = False

 REM show progress bar
 oProgressBar = oDialog.getControl("ProgressBar1")
 oProgressBar.setVisible(True)

 REM increase progress value every second
 For ProgressValue = ProgressValueMin To ProgressValueMax Step ProgressStep
 oProgressBarModel.ProgressValue = ProgressValue
 Wait 1000
 Next ProgressValue

 REM hide progress bar
 oProgressBar.setVisible(False)

776 OpenOffice.org 1.1 Developer's Guide • June 2003

 REM enable cancel and start button
 oCancelButtonModel.Enabled = True
 oStartButtonModel.Enabled = True

End Sub

Horizontal /Vertical Line
The line control com.sun.star.awt.UnoControlFixedLine creates simple lines in a dialog. In
most cases, the line control is used to visually subdivide a dialog. The line control can have hori-
zontal or vertical orientation that is specified by the Orientation property. The label of a line
control is set by the Label property. Note that the label is only displayed if the control has a hori-
zontal orientation.

Date Field
The date field control com.sun.star.awt.UnoControlDateField extends the text field control
and is used for displaying and entering dates. The date displayed in the date field is controlled by
the Date property. The date value is of type Long and must be specified in the format
YYYYMMDD, for example, the date September 30th, 2002 is set in the following format:
oDateFieldModel = oDialog.Model.DateField1
oDateFieldModel.Date = 20020930

The current date is set by using the Date and CDateToIso runtime functions:
oDateFieldModel.Date = CDateToIso(Date())

The minimum and the maximum date that the user can enter is defined by the DateMin and the
DateMax property. The format of the displayed date is specified by the DateFormat and the
DateShowCentury property, but the usage of DateShowCentury is deprecated. Some formats are
dependent on the system settings. If the StrictFormat property is set to True, the date entered by
the user is checked during input. The Dropdown property enables a calendar that the user can drop
down to select a date.

Dropdown is currently not working.

Time Field
The time field control com.sun.star.awt.UnoControlDateField displays and enters time values.
The time value are set and retrieved by the Time property. The time value is of type Long and is
specified in the format HHMMSShh, where HH are hours, MM are minutes, SS are seconds and
hh are hundredth seconds. For example, the time 15:18:23 is set by:
oTimeFieldModel = oDialog.Model.TimeField1
oTimeFieldModel.Time = 15182300

The minimum and maximum time value that can be entered is given by the TimeMin and TimeMax
property. The format of the displayed time is specified by the TimeFormat property.

The time value is checked during input by setting the StrictFormat property to True.

Short time format is currently not working.

Chapter 11 OpenOffice.org Basic and Dialogs 777

Numeric Field
It is recommended to use the numeric field control com.sun.star.awt.UnoControlNumericField
if the user input is limited to numeric values. The numeric value is controlled by the Value prop-
erty, which is of type Double. A minimum and maximum value for user input is defined by the
ValueMin and the ValueMax property. The decimal accuracy of the numeric value is specified by
the DecimalAccuracy property, for example, a value of 6 corresponds to 6 decimal places. If the
ShowThousandsSeparator property is set to True, a thousands separator is displayed. The
numeric field also has a built-in spin button, enabled by the Spin property. The spin button is
used to increment and decrement the displayed numeric value by clicking with the mouse,
whereas the step is set by the ValueStep property.
oNumericFieldModel = oDialog.Model.NumericField1
oNumericFieldModel.Value = 25.40
oNumericFieldModel.DecimalAccuracy = 2

Currency Field
The currency field control com.sun.star.awt.UnoControlCurrencyField is used for entering
and displaying currency values. In addition to the currency value, a currency symbol is displayed,
that is set by the CurrencySymbol property. If the PrependCurrencySymbol property is set to
True, the currency symbol is displayed in front of the currency value.
oCurrencyFieldModel = oDialog.Model.CurrencyField1
oCurrencyFieldModel.Value = 500.00
oCurrencyFieldModel.CurrencySymbol = "€"
oCurrencyFieldModel.PrependCurrencySymbol = True

Formatted Field
The formatted field control com.sun.star.awt.UnoControlFormattedField specifies a format
that is used for formatting the entered and displayed data. A number formats supplier must be set
in the FormatsSupplier property and a format key for the used format must be specified in the
FormatKey property. It is recommended to use the property browser in the dialog editor for
setting these properties. Supported number formats are number, percent, currency, date, time,
scientific, fraction and boolean values. Therefore, the formatted field can be used instead of a date
field, time field, numeric field or currency field. The NumberFormatsSupplier is described in 6
Office Development.

Pattern Field
The pattern field control com.sun.star.awt.UnoControlPatternField displays and enters a
string according to a specified pattern. The entries that the user enters in the pattern field are
defined in the EditMask property as a special character code. The length of the edit mask deter-
mines the number of the possible input positions. If a character is entered that does not correspond
to the edit mask, the input is rejected. For example, in the edit mask "NNLNNLLLLL" the char-
acter L has the meaning of a text constant and the character N means that only the digits 0 to 9 can
be entered. A complete list of valid characters can be found in the OpenOffice.org online help. The
LiteralMask property contains the initial values that are displayed in the pattern field. The length
of the literal mask should always correspond to the length of the edit mask. An example of a literal
mask which fits to the above mentioned edit mask would be "__.__.2002". In this case, the user
enters only 4 digits when entering a date.
oPatternFieldModel = oDialog.Model.PatternField1
oPatternFieldModel.EditMask = "NNLNNLLLLL"
oPatternFieldModel.LiteralMask = "__.__.2002"

778 OpenOffice.org 1.1 Developer's Guide • June 2003

File Control
The file control com.sun.star.awt.UnoControlFileControl has all the properties of a text field
control, with the additional feature of a built-in command button. When the button is clicked, the
file dialog shows up. The directory that the file dialog initially displays is set by the Text property.

The directory must be given as a system path, file URLs do not work at the moment. In Basic you
can use the runtime function ConvertToURL() to convert system paths to URLs.
oFileControl = oDialog.Model.FileControl1
oFileControl.Text = "D:\Programme\Office60"

Filters for the file dialog can not be set or appended for the file control. An alternative way is to
use a text field and a command button instead of a file control and assign a macro to the button
which instantiates the file dialog com.sun.star.ui.dialogs.FilePicker at runtime. An
example is provided below. (BasicAndDialogs /ToolkitControls /FileDialog.xba)
Sub OpenFileDialog()

 Dim oFilePicker As Object, oSimpleFileAccess As Object
 Dim oSettings As Object, oPathSettings As Object
 Dim oTextField As Object, oTextFieldModel As Object
 Dim sFileURL As String
 Dim sFiles As Variant

 REM file dialog
 oFilePicker = CreateUnoService("com.sun.star.ui.dialogs.FilePicker")

 REM set filter
 oFilePicker.AppendFilter("All files (*.*)", "*.*")
 oFilePicker.AppendFilter("StarOffice 6.0 Text Text Document", "*.sxw")
 oFilePicker.AppendFilter("StarOffice 6.0 Spreadsheet", "*.sxc")
 oFilePicker.SetCurrentFilter("All files (*.*)")

 REM if no file URL is set, get path settings from configuration
 oTextFieldModel = oDialog.Model.TextField1
 sFileURL = ConvertToURL(oTextFieldModel.Text)
 If sFileURL = "" Then
 oSettings = CreateUnoService("com.sun.star.frame.Settings")
 oPathSettings = oSettings.getByName("PathSettings")
 sFileURL = oPathSettings.getPropertyValue("Work")
 End If

 REM set display directory
 oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
 If oSimpleFileAccess.exists(sFileURL) And oSimpleFileAccess.isFolder(sFileURL) Then
 oFilePicker.setDisplayDirectory(sFileURL)
 End If

 REM execute file dialog
 If oFilePicker.execute() Then
 sFiles = oFilePicker.getFiles()
 sFileURL = sFiles(0)
 If oSimpleFileAccess.exists(sFileURL) Then
 REM set file path in text field
 oTextField = oDialog.GetControl("TextField1")
 oTextField.SetText(ConvertFromURL(sFileURL))
 End If
 End If

End Sub

11.6 Creating Dialogs at Runtime
When using OpenOffice.org Basic, the dialog editor is a tool for designing dialogs. Refer to 11.2
Basic and Dialogs - OpenOffice.org Basic IDE for additional information. When using Java, a different
approach is used, because Java is not supported as scripting language. Dialogs are created at
runtime in a similar method as Java Swing components are created. Also, the event listeners are
registered at runtime at the appropriate controls.

Chapter 11 OpenOffice.org Basic and Dialogs 779

In the example described in this section, a simple modal dialog is created at runtime containing a
command button and label field. Each time the user clicks on the button, the label field is updated
and the total number of button clicks is displayed.

The dialog is implemented as a UNO component in Java that is instantiated with the service name
com.sun.star.examples.SampleDialog. For details about writing a Java component and the
implementation of the UNO core interfaces, refer to 4.5.6 Writing UNO Components - Simple Compo-
nent in Java - Storing the Service Manager for Further Use. The method that creates and executes the
dialog is shown below.
/** method for creating a dialog at runtime
 */
private void createDialog() throws com.sun.star.uno.Exception {

 // get the service manager from the component context
 XMultiComponentFactory xMultiComponentFactory = _xComponentContext.getServiceManager();

 // create the dialog model and set the properties
 Object dialogModel = xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.awt.UnoControlDialogModel", _xComponentContext);
 XPropertySet xPSetDialog = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, dialogModel);
 xPSetDialog.setPropertyValue("PositionX", new Integer(100));
 xPSetDialog.setPropertyValue("PositionY", new Integer(100));
 xPSetDialog.setPropertyValue("Width", new Integer(150));
 xPSetDialog.setPropertyValue("Height", new Integer(100));
 xPSetDialog.setPropertyValue("Title", new String("Runtime Dialog Demo"));
 // get the service manager from the dialog model
 XMultiServiceFactory xMultiServiceFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, dialogModel);
 // create the button model and set the properties
 Object buttonModel = xMultiServiceFactory.createInstance(
 "com.sun.star.awt.UnoControlButtonModel");
 XPropertySet xPSetButton = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, buttonModel);
 xPSetButton.setPropertyValue("PositionX", new Integer(50));
 xPSetButton.setPropertyValue("PositionY", new Integer(30));
 xPSetButton.setPropertyValue("Width", new Integer(50));
 xPSetButton.setPropertyValue("Height", new Integer(14));
 xPSetButton.setPropertyValue("Name", _buttonName);
 xPSetButton.setPropertyValue("TabIndex", new Short((short)0));
 xPSetButton.setPropertyValue("Label", new String("Click Me"));
 // create the label model and set the properties
 Object labelModel = xMultiServiceFactory.createInstance(
 "com.sun.star.awt.UnoControlFixedTextModel");
 XPropertySet xPSetLabel = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, labelModel);
 xPSetLabel.setPropertyValue("PositionX", new Integer(40));
 xPSetLabel.setPropertyValue("PositionY", new Integer(60));
 xPSetLabel.setPropertyValue("Width", new Integer(100));
 xPSetLabel.setPropertyValue("Height", new Integer(14));
 xPSetLabel.setPropertyValue("Name", _labelName);
 xPSetLabel.setPropertyValue("TabIndex", new Short((short)1));
 xPSetLabel.setPropertyValue("Label", _labelPrefix);

780 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 169

 // insert the control models into the dialog model
 XNameContainer xNameCont = (XNameContainer)UnoRuntime.queryInterface(
 XNameContainer.class, dialogModel);
 xNameCont.insertByName(_buttonName, buttonModel);
 xNameCont.insertByName(_labelName, labelModel);
 // create the dialog control and set the model
 Object dialog = xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.awt.UnoControlDialog", _xComponentContext);
 XControl xControl = (XControl)UnoRuntime.queryInterface(
 XControl.class, dialog);
 XControlModel xControlModel = (XControlModel)UnoRuntime.queryInterface(
 XControlModel.class, dialogModel);
 xControl.setModel(xControlModel);
 // add an action listener to the button control
 XControlContainer xControlCont = (XControlContainer)UnoRuntime.queryInterface(
 XControlContainer.class, dialog);
 Object objectButton = xControlCont.getControl("Button1");
 XButton xButton = (XButton)UnoRuntime.queryInterface(XButton.class, objectButton);
 xButton.addActionListener(new ActionListenerImpl(xControlCont));
 // create a peer
 Object toolkit = xMultiComponentFactory.createInstanceWithContext(
 "com.sun.star.awt.ExtToolkit", _xComponentContext);
 XToolkit xToolkit = (XToolkit)UnoRuntime.queryInterface(XToolkit.class, toolkit);
 XWindow xWindow = (XWindow)UnoRuntime.queryInterface(XWindow.class, xControl);
 xWindow.setVisible(false);
 xControl.createPeer(xToolkit, null);
 // execute the dialog
 XDialog xDialog = (XDialog)UnoRuntime.queryInterface(XDialog.class, dialog);
 xDialog.execute();
 // dispose the dialog
 XComponent xComponent = (XComponent)UnoRuntime.queryInterface(XComponent.class, dialog);
 xComponent.dispose();
}

First, a dialog model is created by prompting the ServiceManager for the
com.sun.star.awt.UnoControlDialogModel service. Then, the position, size and title of the
dialog are set using the com.sun.star.beans.XPropertySet interface. In performance critical
applications, the use of the com.sun.star.beans.XMultiPropertySet interface is recommended.
At this point, the dialog model describes an empty dialog, which does not contain any control
models.

All control models in a dialog container have the common properties “PositionX”, “PositionY”,
“Width”, “Height”, “Name”, “TabIndex”, “Step” and “Tag”. These properties are optional and
only added if the control model is created by a special object factory, namely the dialog model.
Therefore, a dialog model also supports the com.sun.star.lang.XMultiServiceFactory inter -
face. If the control model is created by the ServiceManager, these common properties are missing.

Note that control models have the common properties “PositionX”, “PositionY”, “Width”, “Height”,
“Name”, “TabIndex”, “Step” and “Tag” only if they were created by the dialog model that they belong to.

After the control models for the command button and label field are created, their position, size,
name, tab index and label are set. Then, the control models are inserted into the dialog model
using the com.sun.star.container.XNameContainer interface. The model of the dialog has been
fully described.

To display the dialog on the screen, a dialog control com.sun.star.awt.UnoControlDialog is
created and the corresponding model is set. An action listener is added to the button control,
because the label field is updated whenever the user clicks on the command button. The listener is
explained below. Before the dialog is shown, a window or a peer is created on the screen. Finally,
the dialog is displayed on the screen using the execute method of the
com.sun.star.awt.XDialog interface.

The implementation of the action listener is shown in the following example.
/** action listener

Chapter 11 OpenOffice.org Basic and Dialogs 781

 */
public class ActionListenerImpl implements com.sun.star.awt.XActionListener {
 private int _nCounts = 0;
 private XControlContainer _xControlCont;

 public ActionListenerImpl(XControlContainer xControlCont) {
 _xControlCont = xControlCont;
 }

 // XEventListener
 public void disposing(EventObject eventObject) {
 _xControlCont = null;
 }

 // XActionListener
 public void actionPerformed(ActionEvent actionEvent) {
 // increase click counter
 _nCounts++;

 // set label text
 Object label = _xControlCont.getControl("Label1");
 XFixedText xLabel = (XFixedText)UnoRuntime.queryInterface(XFixedText.class, label);
 xLabel.setText(_labelPrefix + _nCounts);
 }
}

The action listener is fired each time the user clicks on the command button. In the actionPer-
formed method of the com.sun.star.awt.XActionListener interface, an internal counter for the
number of button clicks is increased. Then, this number is updated in the label field. In addition,
the disposing method of the parent interface com.sun.star.lang.XEventListener is imple-
mented.

Our sample component executes the dialog from within the office by implementing the trigger
method of the com.sun.star.task.XJobExecutor interface:
public void trigger(String sEvent) {
 if (sEvent.compareTo("execute") == 0) {
 try {
 createDialog();
 }
 catch (Exception e) {
 throw new com.sun.star.lang.WrappedTargetRuntimeException(e.getMessage(), this, e);
 }
 }
}

A simple OpenOffice.org Basic macro that instantiates the service of our sample component and
executes the dialog is shown below.
Sub Main
 Dim oJobExecutor
 oJobExecutor = CreateUnoService("com.sun.star.examples.SampleDialog")
 oJobExecutor.trigger("execute")
End Sub

In future versions of OpenOffice.org, a method for executing dialogs created at runtime will be
provided.

11.7 Library File Structure
This section describes how libraries are stored. Generally all data is stored in XML format. Four
different XML document types that arespecified in the DTD files installed in
<OfficePath>/share/dtd/officedocument are used:

• A library container is described by a library container index file following the specification
given in libraries.dtd. In this file, each library in the library container is described by its name, a
flag if the library is a link, the StorageURL (describing where the library is stored) and, only in
case of a link, the link read- only status.

782 OpenOffice.org 1.1 Developer's Guide • June 2003

• A library is described by a library index file following the specification given in library.dtd. This
file contains the library name, a flag for the read- only status, a flag if the library is password
protected (see below) and the name of each library element.

• A Basic source code module is described in a file following the specification given in
module.dtd. This file contains the module name, the language (at the moment only
OpenOffice.org Basic is supported) and the source code.

• A dialog is described in a file following the specification given in dialog.dtd. The file contains all
data to describe a dialog. As this format is extensive, it is not possible to describe it in this
document.

Additionally, a binary format is used to store compiled Basic code for password protected Basic
libraries. This is described in more detail in 11.7 Basic and Dialogs - Library File Structure.

In a password protected Basic library, the password is used to scramble the source code using the Blowfish
algorithm. The password itself is not stored, so when the password for a Basic library is lost, the corre-
sponding Basic source code is lost also. There is no retrieval method if this happens.

Besides the XML format of the library description files, it is necessary to understand the structure
in which these files are stored. This is different for application and document libraries. Application
libraries are stored directly in the system file system and document libraries are stored inside the
document's package file. For information abuot package files, see 6.2.10 Office Development -
Common Application Features - Package File Formats. The following sections describe the structure
and combination of library container and library structures.

11.7.1 Application Library Container
In an OpenOffice.org installation the application library containers for Basic and dialogs are
located in the directory <OfficePath>/user/basic. The library container index files are named
script.xlc for the Basic and dialog.xlc for the Dialog library container. The "lc" in .xlc stands for
library container.

The same directory contains the libraries created by the user. Initially only the library Standard
exists for Basic and dialogs using the same directory. The structure of the library inside the direc-
tory is explained in the next section.

The user/basic directory is not the only place in the OpenOffice.org installation where libraries are
stored. Most of the autopilots integrated in OpenOffice.org are realized in Basic, and the corre-
sponding Basic and dialog libraries are installed in the directory <OfficePath>/share/basic. These
libraries are listed in the library container index file as read- only links.

It is necessary to distinguish between libraries created by the user and the autopilot libraries. The
autopilot libraries are installed in a directory that is shared between different users. In a network
installation, the share directory is located somewhere on a server, so that the autopilot libraries
cannot be owned directly by the user-specific library containers.

In the file system, a library is represented by a directory. The directory's name is the same as the
library name. The directory contains all files that are necessary for the library.

Basic libraries can be protected with a password, so that the source code cannot be read by unau-
thorized persons. Dialog libraries cannot be protected with a password. This can be handled using
the Tools - Macro - Organizer dialog that is explained in 11.2.1 Basic and Dialogs - OpenOffice.org
Basic IDE - Managing Basic and Dialog Libraries. The password protection of a Basic library also
affects the file format.

Chapter 11 OpenOffice.org Basic and Dialogs 783

Libraries without Password Protection
Every library element is represented by an XML file named like the element in the directory repre-
senting the library. For Basic modules these files, following the specification in module.dtd, have
the extension .xba. For dialogs these files, following the specification in dialog.dtd, have the exten -
sion .xdl. Additionally, the directory contains a library index file (library.dtd). These index files are
named script.xlb for Basic and dialog.xlb for dialog libraries.

In the following example, an Application Basic library Standard containing two modules Module1
and Module2 is represented by the following directory:

<DIR> Standard
|
|--script.xlb
|--Module1.xba
|--Module2.xba

An application dialog library Standard containing two dialogs SmallDialog and BigDialog is
represented by the following directory:
 <DIR> Standard
 |
 |--dialog.xlb
 |--SmallDialog.xba
 |--BigDialog.xba

It is also possible that the same directory represents a Basic and a Dialog library. This is the stan-
dard case in the OpenOffice.org, See the chapter Library organization in OpenOffice.org. When
the two example libraries above are stored in the same directory, the files from both libraries are
together in the same directory:
 <DIR> Standard
 |
 |--dialog.xlb
 |--script.xlb
 |--Module1.xba
 |--Module2.xba
 |--SmallDialog.xba
 |--BigDialog.xba

The two libraries do not affect each other, because all file names are different. This is also the case
if a Basic module and a dialog are named equally, due the different file extensions..

Libraries with Password Protection
Only Basic libraries can be password protected. The password protection of a Basic library affects
the file format, because binary data has to be stored. In plain XML format, the source code would
be readable in the file even if it was not displayed in the Basic IDE. Also, the compiled Basic code
has to be stored for each module together with the encrypted sources. This is necessary because,
Basic could not access the source code and compile it as long as the password is unknown in
contrast to libraries without password protection. Without storing the compiled code, Basic could
only execute password- protected libraries once the user supplied the correct password. The whole
purpose of the password feature is to distribute programs without giving away the password and
source code, therefore this would not be feasible.

The followig example shows a password- protected application Basic library Library1, containing
three modules Module1, Module1 and Module3, is represented by the following directory:
 <DIR> Library1
 |
 |--script.xlb
 |--Module1.pba
 |--Module2.pba
 |--Module3.pba

The file script.xlb does not differ from the case without a password, except for the fact that the
password protected status of the library is reflected by the corresponding flag.

784 OpenOffice.org 1.1 Developer's Guide • June 2003

Each module is represented by a .pba file. Like OpenOffice.org documents, these files are package
files ("pba" stands for package basic) and contain a sub structure that can be viewed with any zip
tool. For detailed information about package files, see 6.2.10 Office Development - Common Applica-
tion Features - Package File Formats).

A module package file has the following content:
 <PACKAGE> Module1.pba
 |
 |--<DIR> Meta-Inf ' Content is not displayed here
 |--code.bin
 |--source.xml

The Meta-Inf directory is part of every package file and will not be explained in this document. The
file code.bin contains the compiled Basic code and the file source.xml contains the Basic source code
encrypted with the password.

11.7.2 Document Library Container
While application libraries are stored directly in the file system, document libraries are stored
inside the document's package file. For more informatin about package files, see 6.2.10 Office
Development - Common Application Features - Package File Formats. In documents, the Basic library
container and dialog library container are stored separately:

• The root of the Basic library container hierarchy is a folder inside the package file named Basic.
This folder is not created when the Basic library container contains an empty Standard library
in the case of a new document.

• The root of the dialog library container hierarchy is a folder inside the package file named
Dialogs. This folder is not created when the dialog library container contains an empty Stan-
dard library in the case of a new document.

The libraries are stored as sub folders in these library container folders. The structure inside the
libraries is basically the same as in an application. One difference relates to the stream - "files"
inside the package or package folders – names. In documents, all XML stream or file names have
the extension .xml. Special extensions like .xba, .xdl are not used. Instead of different extensions,
the names are extended for the library and library container index files. In documents they are
named script-lc.xml (Basic library container index file), script-lb.xml (Basic library index file), dialog-
lc.xml (dialog library container index file) and dialog-lb.xml (dialog library index file).

In example 1, the package structure for a document with one Basic Standard library containing
three modules:
 <Package> ExampleDocument1
 |
 |--<DIR> Basic
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--Module1.xml ' Stream: Basic module file
 | | |--Module2.xml ' Stream: Basic module file
 | | |--Module3.xml ' Stream: Basic module file
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--script-lc.xml ' Stream: Basic library container index file
 |
 | ' From here the folders and streams have nothing to do with libraries
 |--<DIR> Meta-Inf
 |--content.xml
 |--settings.xml
 |--styles.xml

In example 2, package structure for a document with two Basic and one dialog libraries:
 <Package> ExampleDocument2
 |

Chapter 11 OpenOffice.org Basic and Dialogs 785

 |--<DIR> Basic
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--Module1.xml ' Stream: Basic module file
 | | |--Module2.xml ' Stream: Basic module file
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--<DIR> Library1 ' Folder: Contains library "Library1"
 | | |
 | | |--Module1.xml ' Stream: Basic module file
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--script-lc.xml ' Stream: Basic library container index file
 |
 |--<DIR> Dialogs
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--Dialog1.xml ' Stream: Dialog file
 | | |--dialog-lb.xml ' Stream: Dialog library index file
 | |
 | |--<DIR> Library1 ' Folder: Contains library "Library1"
 | | |
 | | |--Dialog1.xml ' Stream: Dialog file
 | | |--Dialog2.xml ' Stream: Dialog file
 | | |--dialog-lb.xml ' Stream: Dialog library index file
 | |
 | |--dialog-lc.xml ' Stream: Dialog library container index file
 |
 | ' From here the folders and streams have nothing to do with libraries
 |--<DIR> Meta-Inf
 |--content.xml
 |--settings.xml
 |--styles.xml

If a document Basic library is password protected, the file structure does not differ as much from
an unprotected library as in the Application Basic case. The differences are:

• The module files of a password- protected Basic library have the same name as without the
password protection, but they are scrambled with the password.

• There is an additional binary file named like the library with the extension .bin for each
module. Similar to the file code.bin in the Application Basic .pba files, this file contains the
compiled Basic code that executes the module without access to the source code.

The following example shows the package structure for a document with two Basic and one dialog
libraries where only the Basic library Library1 contains any of the modules:
 <Package> ExampleDocument3
 |
 |--<DIR> Basic
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--<DIR> Library1 ' Folder: Contains library "Library1"
 | | |
 | | |--Module1.xml ' Stream: Scrambled Basic module source file
 | | |--Module1.bin ' Stream: Basic module compiled code file
 | | |--Module2.xml ' Stream: Scrambled Basic module source file
 | | |--Module2.bin ' Stream: Basic module compiled code file
 | | |--Module3.xml ' Stream: Scrambled Basic module source file
 | | |--Module3.bin ' Stream: Basic module compiled code file
 | | |--script-lb.xml ' Stream: Basic library index file
 | |
 | |--script-lc.xml ' Stream: Basic library container index file
 |
 |--<DIR> Dialogs
 | |
 | |--<DIR> Standard ' Folder: Contains library "Standard"
 | | |
 | | |--dialog-lb.xml ' Stream: Dialog library index file
 | |
 | |--<DIR> Library1 ' Folder: Contains library "Library1"
 | | |
 | | |--dialog-lb.xml ' Stream: Dialog library index file
 | |
 | |--dialog-lc.xml ' Stream: Dialog library container index file
 |
 | ' From here the folders and streams have nothing to do with libraries

786 OpenOffice.org 1.1 Developer's Guide • June 2003

 |--<DIR> Meta-Inf
 |--content.xml
 |--settings.xml
 |--styles.xml

This example also shows that a Dialogs folder is created in the document package file although the
library Standard and the library Library1 do not contain dialogs. This is done because the Dialog
library Library1 would be lost after reloading the document. Only a single empty library Standard
is assumed to exist, even if it is not stored explicitly.

11.8 Library Deployment
OpenOffice.org has a simple concept to add Basic libraries to an existing installation. Bringing
Basic libraries into a OpenOffice.org installation involves the following steps:

• Package your libraries.

• Place the package into a specific package directory. There is a directory for shared packages in
a network installation and a directory for user packages. This is described later.

• Close all instances of OpenOffice.org, launch a comman- line shell, change to
<OfficePath>/program and run the tool pkgchk from the program directory. The tool pkgchk is
part of the StarOffice Development Kit (SDK).
[<OfficePath>/program] $ pkgchk my_package.zip

The tool analyzes the packages in the package directories and matches them with a cache direc-
tory for user-defined extensions used by OpenOffice.org. Additionally, you can specify pack-
ages as command- line arguments that are copied into the package directory in advance.

The opposite steps are necessary to remove a package from your OpenOffice.org installation:

• Remove the package from the packages directory.

• Close all instances of OpenOffice.org and run pkgchk.

You can run pkgchk with the option '--help' or '-h' to get a comprehensive overview of all the
switches.

Be careful not to run the pkgchk deployment tool while there are running instances of OpenOffice.org. For
ordinary users, this case is recognized by the pkgchk process and leads to abortion, b is not reognized for
shared network installationsusing option '--shared' or '-s'. If any user of a network installation has open proc-
esses, data inconsistencies may occur and OpenOffice.org processes may crash.

Package Structure
A UNO package is a zip file containing Basic libraries, or UNO components and type libraries. The
pkgchk tool unzips all the packages found in the package directory into the cache directory,
preserving the file structure of the zip file.

After the cache directory is ready, pkgchk traverses the cache directory recursively. Depending on
the extension of the files it detects, it carries out the necessary registration steps. Unknown file
types are ignored.

Basic libraries
The pkgchk tool links Basic library files (.xlb) into OpenOffice.org by adding them to the Basic
library container files (.xlc) that reside in the following paths:

Chapter 11 OpenOffice.org Basic and Dialogs 787

Library File User Installation Shared Installation
script.xlb <OfficePath> /user /basic /script.xlc <OfficePath> /share /basic / script.xlc

dialog.xlb <OfficePath> /user /basic /dialog.xlc <OfficePath> /share /basic /dialog.xlc

The files share /basic /*.xlc are created when new libraries are shared among all users using the
pkgchk option -s (--shared) in a network installation.

The name of a Basic library is determined by the name of its parent directory. Therefore,
package complete library folders, including the parent folders into the UNO Basic package. For
example, if your library is named MyLib, there has to be a corresponding folder / MyLib in your
development environment. This folder must be packaged completely into the UNO package, so
that the zip file contains a structure similar to the following:
my_package.zip:
 MyLib/
 script.xlb
 dialog.xlb
 Module1.xba
 Dialog1.xba

Other package components
Pkgchk automatically registers shared libraries, Java archives and type libraries found in a
UNO package. For details, see 4.9.1 Writing UNO Components - Deployment Options for Compo-
nents - UNO Package Installation

The autopilot .xlb libraries are registered in the user/basic/*.xlc files, but located in share/basic. This makes it is
possible to delete and disable the autopilots for certain users even in a network installation. This is impos-
sible for libraries deployed with the pkgchk tooland libraries deployed with the share option are always
shared among all users.

Path Settings
The package directories are called uno-packages by default. There can be one in <OfficePath>/share
for shared installations and another one in <OfficePath>/user for single users. The cache directories
are created automatically within the respective uno-packages directory. OpenOffice.org has to be
configured to look for these paths in the uno.ini file (on Windows, unorc on Unix) in
<OfficePath>/program. When pkgchk is launched, it checks this file for package entries. If they do
not exist, the following default values are added to uno(.ini |rc) .
[Bootstrap]
UNO_SHARED_PACKAGES=${$SYSBINDIR/bootstrap.ini::BaseInstallation}/share/uno_packages
UNO_SHARED_PACKAGES_CACHE=$UNO_SHARED_PACKAGES/cache
UNO_USER_PACKAGES=${$SYSBINDIR/bootstrap.ini::UserInstallation}/user/uno_packages
UNO_USER_PACKAGES_CACHE=$UNO_USER_PACKAGES/cache

The settings reflect the default values for the shared package and cache directory, and the user
package and cache directory as described above.

In a network installation, all users start the office from a common directory on a file server. The
administrator puts the packages for all the users of the network installation into the
<OfficePath>/share/uno_packages folder of the shared installation. If a user wants to install packages
locally so that only a single installation is affected, the user must copy the packages to
<OfficePath>/user/uno_packages.

Pkgchk has to be run differently for a shared and a user installation. To install shared packages,
run pkgchk with the -s (-shared) option which causes pkgchk to process only the shared packages. If
pkgchk is run without command- line parameters, the user packages will be registered.

788 OpenOffice.org 1.1 Developer's Guide • June 2003

Additional Options
By default, the tool logs all actions into the <cache-dir>/log.txt file. You can switch to another log
file through the -l (–log) <file name> option. Option -v (–verbose) logs to stdout, in addition to the
log file.

The tool handles errors loosely. It continues after errors even if a package cannot be inflated or a
shared library cannot be registered. The tool logs these errors and proceeds silently. If you want
the tool to stop on every error, switch on the –strict_error handling.

If there is some inconsistency with the cache and you want to renew it from the ground up,
repeating the installation using the option -r (–renewal).

Chapter 11 OpenOffice.org Basic and Dialogs 789

12 Database Access

12.1 Overview

12.1.1 Capabilities

Platform Independence
The goal of the OpenOffice.org API database integration is to provide platform independent data-
base connectivity for OpenOffice.org API. Well it is necessary to access database abstraction
layers, such as JDBC and ODBC, it is also desirable to have direct access to arbitrary data sources,
if required.

The OpenOffice.org API database integration reaches this goal through an abstraction above the
abstractions with the Star Database Connectivity (SDBC). SDBC accesses data through SDBC
drivers. Each SDBC driver knows how to get data from a particular source. Some drivers handle
files themselves, others use a standard driver model, or existing drivers to retrieve data. The
concept makes it possible to integrate database connectivity for MAPI address books, LDAP direc-
tories and OpenOffice.org Calc into the current version of OpenOffice.org API.

Since SDBC drivers are UNO components, it is possible to write drivers for data sources and thus
extend the database connectivity of OpenOffice.org API.

Functioning of the OpenOffice.org API Database Integration
The OpenOffice.org API database integration is based on SQL. This section discusses how the
OpenOffice.org API handles various SQL dialects and how it integrates with data sources that do
not understand SQL.

OpenOffice.org API has a built-in parser that tests and adjusts the syntax to be standard SQL.
With the parser, differences between SQL dialects, such as case sensitivity, can be handled if the
query composer is used. Data sources that do not understand SQL can be treated by an SDBC
driver that is a database engine of its own, which translates from standard SQL to the mechanisms
needed to read and write data using a non-SQL data source.

791

Integration with OpenOffice.org API
OpenOffice.org API employs SDBC data sources in Writer, Calc and Database Forms. In Writer,
use form letter fields to access database tables, create email form letters, and drag tables and
queries into a document to create tables or lists.

If a table is dragged into a Calc spreadsheet, the database range that can be updated from the data-
base, and data pilots can be created from database connections. Conversely, drag a spreadsheet
range onto a database to import the spreadsheet data into a database.

Another area of database connectivity are database forms. Form controls can be inserted into
Writer or Calc documents to hook them up to database tables to get data aware forms.

While there is no API coverage for direct database integration in Writer, the database connectivity
in Calc and Database Forms can be controlled through the API. Refer to the corresponding chap-
ters 8.3.5 Spreadsheet Documents - Working with Spreadsheets - Database Operations and 13 Forms for
more information. In Writer, database connectivity can be implemented by application program-
mers, for example, by accessing text field context. No API exists for merging complete selections
into text.

Using the OpenOffice.org API database integration enhances or automates the out-of-box database
integration, creates customized office documents from databases, or provides simple, platform-
independent database clients in the OpenOffice.org API environment.

12.1.2 Architecture
The OpenOffice.org API database integration is divided into three layers: SDBC, SDBCX, and SDB.
Each layer extends the functionality of the layer below.

• Star Database (SDB) is the highest layer. This layer provides an application-centered view of
the databases. Services, such as the database context, data sources, advanced connections,
persistent query definitions and command definitions, as well as authentication and row sets
are in this layer.

• Star Database Connectivity Extension (SDBCX) is the middle layer which introduces abstrac-
tions, such as catalogs, tables, views, groups, users, columns, indexes, and keys, as well as the
corresponding containers for these objects.

• Star Database Connectivity (SDBC) is the lowest layer. This layer contains the basic database
functionality used by the higher layers, such as drivers, simple connections, statements and
result sets.

12.1.3 Example: Querying the Bibliography Database
The following example queries the bibliography database that is delivered with the
OpenOffice.org distribution. The basic steps are:

1. Create a com.sun.star.sdb.RowSet.

2. Configure com.sun.star.sdb.RowSet to select from the table "biblio" in the data source "Bibli-
ography".

3. Execute it.

4. Iterate over its rows.

792 OpenOffice.org 1.1 Developer's Guide • June 2003

5. Insert a new row.

If the database requires login, set additional properties for user and password, or connect using
interactive login. There are other options as well. For details, refer to the section 12.3.1 Database
Access - Manipulating Data - The RowSet Service. (Database /OpenQuery.java)
protected void openQuery() throws com.sun.star.uno.Exception, java.lang.Exception {
 xRemoteServiceManager = this.getRemoteServiceManager(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager");

 // first we create our RowSet object and get its XRowSet interface
 Object rowSet = xRemoteServiceManager.createInstanceWithContext(
 "com.sun.star.sdb.RowSet", xRemoteContext);
 com.sun.star.sdbc.XRowSet xRowSet = (com.sun.star.sdbc.XRowSet)
 UnoRuntime.queryInterface(com.sun.star.sdbc.XRowSet.class, rowSet);

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xRowSet);

 // the DataSourceName can be a data source registered with OpenOffice.org, among other possibilities
 xProp.setPropertyValue("DataSourceName", "Bibliography");
 // the CommandType must be TABLE, QUERY or COMMAND – here we use COMMAND
 xProp.setPropertyValue("CommandType", new Integer(com.sun.star.sdb.CommandType.COMMAND));
 // the Command could be a table or query name or a SQL command, depending on the CommandType
 xProp.setPropertyValue("Command", "SELECT IDENTIFIER, AUTHOR FROM biblio");
 // if your database requires logon, you can use the properties User and Password
 // xProp.setPropertyValue("User", "JohnDoe");
 // xProp.setPropertyValue("Password", "mysecret");

 xRowSet.execute();

 // prepare the XRow and XColumnLocate interface for column access
 // XRow gets column values
 com.sun.star.sdbc.XRow xRow = (com.sun.star.sdbc.XRow)UnoRuntime.queryInterface(
 com.sun.star.sdbc.XRow.class, xRowSet);
 // XColumnLocate finds columns by name
 com.sun.star.sdbc.XColumnLocate xLoc = (com.sun.star.sdbc.XColumnLocate)UnoRuntime.queryInterface(
 com.sun.star.sdbc.XColumnLocate.class, xRowSet);

 // print output header
 System.out.println("Identifier\tAuthor");
 System.out.println("----------\t------");

 // output result rows
 while (xRowSet.next()) {
 String ident = xRow.getString(xLoc.findColumn("IDENTIFIER"));
 String author = xRow.getString(xLoc.findColumn("AUTHOR"));
 System.out.println(ident + "\t\t" + author);
 }

 // insert a new row
 // XResultSetUpdate for insertRow handling
 com.sun.star.sdbc.XResultSetUpdate xResultSetUpdate = (com.sun.star.sdbc.XResultSetUpdate)
 UnoRuntime.queryInterface(
 com.sun.star.sdbc.XResultSetUpdate.class, xRowSet);

 // XRowUpdate for row updates
 com.sun.star.sdbc.XRowUpdate xRowUpdate = (com.sun.star.sdbc.XRowUpdate)
 UnoRuntime.queryInterface(
 com.sun.star.sdbc.XRowUpdate.class, xRowSet);

 // move to insertRow buffer
 xResultSetUpdate.moveToInsertRow();

 // edit insertRow buffer
 xRowUpdate.updateString(xLoc.findColumn("IDENTIFIER"), "GOF95");
 xRowUpdate.updateString(xLoc.findColumn("AUTHOR"), "Gamma, Helm, Johnson, Vlissides");

 // write buffer to database
 xResultSetUpdate.insertRow();

 // throw away the row set
 com.sun.star.lang.XComponent xComp = (com.sun.star.lang.XComponent)UnoRuntime.queryInterface(
 com.sun.star.lang.XComponent.class, xRowSet);
 xComp.dispose();
}

Chapter 12 Database Access 793

12.2 Data Sources in OpenOffice.org API

12.2.1 DatabaseContext
In the OpenOffice.org graphical user interface (GUI), define data sources using the data source
administrator and access them in the database browser. A data source has four main aspects. It
contains:

• The general information necessary to connect to a data source.

• Settings to control the presentation of tables.

• SQL query definitions.

• Links to OpenOffice.org API documents, primarily documents containing database forms.

From the API perspective, these functions are mirrored in the
com.sun.star.sdb.DatabaseContext service. The database context is a container for data
sources. It is a singleton, that is, it may exist only once in a running OpenOffice.org API instance
and can be accessed by creating it at the global service manager of the office.

The database context is the entry point for applications that need to connect to a data source
already defined in the OpenOffice.org API. Additionally, it is used to create new data sources and
add them to OpenOffice.org API. The following figure shows the relationship between the data-
base context, the data sources and the connection over a data source.

794 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 170: The Dialog "Data Source Administration"

The database context is used to get a data source that provides a com.sun.star.sdb.Connection
through its com.sun.star.sdb.XCompletedConnection interface.

Existing data sources are obtained from the database context at its interfaces
com.sun.star.container.XNameAccess and com.sun.star.container.XEnumeration. Their
methods getByName() and createEnumeration() deliver the com.sun.star.sdb.DataSource
services defined in the OpenOffice.org GUI.

The code below shows how to print all available data sources: (Database /CodeSamples.java)
// prints all data sources
public static void printDataSources(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {

Chapter 12 Database Access 795

Illustration 171: com.sun.star.sdb.DatabaseContext

 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));
 // print all DataSource names
 String aNames [] = xNameAccess.getElementNames();
 for (int i=0;i<aNames.length;++i)
 System.out.println(aNames[i]);
}

12.2.2 DataSources

The DataSource Service
The com.sun.star.sdb.DataSource service includes all the features of a database defined in
OpenOffice.org API. DataSource provides the following properties for its knowledge about how
to connect to a database and which tables to display:

Properties of com.sun.star.sdb.DataSource
Name [readonly] string ─ The name of the data source.

URL string ─ Indicates a database URL. Valid URL formats are:
jdbc: subprotocol : subname
sdbc: subprotocol : subname

Info sequence< com.sun.star.beans.PropertyValue >. A list of arbi-
trary string tag or value pairs as connection arguments.

User String ─ The login name of the current user.

Password string ─ The password of the current user. It is not stored with the data
source.

IsPasswordRequired boolean ─ Indicates that a password is always necessary and might be
interactively requested from the user by an interaction handler.

IsReadOnly [readonly] boolean ─ Determines if database contents may be modi-
fied.

NumberFormatsSupplier [readonly] [idl.com.sun.star.util.XNumberFormatsSupplier]. Provides
an object for number formatting.

TableFilter sequence< string >. A list of tables the data source should display. If
empty, all tables are hidden. Valid placeholders are % and ?.

TableTypeFilter sequence< string >. A list of table types the DataSource should
display. If empty, all table types are rejected. Possible type strings are
TABLE, VIEW, and SYSTEM TABLE.

SuppressVersionColumns boolean ─ Indicates that components displaying data obtained from this
data source should suppress columns used for versioning.

All other capabilities of a DataSource,such as query definitions, document links, and the actual
process of establishing connections and flushing pending configuration changes are available over
its interfaces.

• com.sun.star.sdb.XQueryDefinitionsSupplier provides access to SQL query definitions
for a database. The definition of queries is discussed in the next section, 12.2.2 Database Access -
Data Sources in OpenOffice.org API - DataSources - Queries.

• com.sun.star.sdb.XCompletedConnection connects to a database. It asks the user to supply
necessary information before it connects. The section 12.2.3 Database Access - Data Sources in

796 OpenOffice.org 1.1 Developer's Guide • June 2003

OpenOffice.org API - Connections - Connecting Through a DataSource shows how to establish a
connection.

• com.sun.star.sdb.XBookmarksSupplier provides access to bookmarks pointing at docu-
ments associated with the DataSource, primarily OpenOffice.org API documents containing
form components. Although it is optional, it is implemented for all data sources in
OpenOffice.org API. The section 12.2.2 Database Access - Data Sources in OpenOffice.org API -
DataSources - Forms and Other Links explains database bookmarks..

• com.sun.star.util.XFlushable forces the data source to flush all information including the
properties above to the configuration repository. However, changes work immediately and are
stored in the OpenOffice.org configuration.

Adding and Editing Datasources
New data sources have to be created by the com.sun.star.lang.XSingleServiceFactory inter -
face of the database context. A new data source must be registered with the database context at its
com.sun.star.uno.XNamingService interface and the necessary properties set.

The lifetime of data sources is controlled through the interfaces
com.sun.star.lang.XSingleServiceFactory, com.sun.star.uno.XNamingService and
com.sun.star.container.XContainer of the database context.

The method createInstance() of XSingleServiceFactory creates new generic data sources. They
are added to the database context using registerObject() at the interface
com.sun.star.uno.XNamingService. The XNamingService allows registering data sources, as
well as revoking the registration. The following are the methods defined for XNamingService:

void registerObject([in] string Name, [in] com::sun::star::uno::XInterface Object)
void revokeObject([in] string Name)
com::sun::star::uno::XInterface getRegisteredObject([in] string Name)

In the following example, a data source is created for a previously generated Adabas D database
named MYDB1 on the local machine. The URL property has to be present, and for Adabas D the
property IsPasswordRequired should be true, otherwise no interactive connection can be estab-
lished. The password dialog requests a user name by setting the User property.
(Database /CodeSamples.java)
// creates a new DataSource
public static void createNewDataSource(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // the XSingleServiceFactory of the database context creates new generic
 // com.sun.star.sdb.DataSources (!)
 // retrieve the database context at the global service manager and get its
 // XSingleServiceFactory interface
 XSingleServiceFactory xFac = (XSingleServiceFactory)UnoRuntime.queryInterface(
 XSingleServiceFactory.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // instantiate an empty data source at the XSingleServiceFactory
 // interface of the DatabaseContext
 Object xDs = xFac.createInstance();
 // register it with the database context
 XNamingService xServ = (XNamingService)UnoRuntime.queryInterface(XNamingService.class, xFac);
 xServ.registerObject("NewDataSourceName", xDs);
 // setting the necessary data source properties
 XPropertySet xDsProps = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xDs);
 // Adabas D URL
 xDsProps.setPropertyValue("URL", "sdbc:adabas::MYDB1");
 // force password dialog
 xDsProps.setPropertyValue("IsPasswordRequired", new Boolean(true));
 // suggest dsadmin as user name
 xDsProps.setPropertyValue("User", "dsadmin");
}

The various possible database URLs are discussed in the section 12.2.3 Database Access - Data
Sources in OpenOffice.org API - Connections - Driver Specifics.

Chapter 12 Database Access 797

To edit an existing data source, retrieve it by name from the
com.sun.star.container.XNameAccess interface of the database context and use its
com.sun.star.beans.XPropertySet interface to configure it, as required.

Queries
A com.sun.star.sdb.QueryDefinition encapsulates a definition of an SQL statement stored in
OpenOffice.org API. It is similar to a view or a stored procedure, because it can be reused, and
executed and altered by the user in the GUI. It is possible to run a QueryDefinition against a
different database by changing the underlying DataSource properties. It can also be created
without being connected to a database.

The purpose of the query services available at a DataSource is to define and edit queries. The
query services by themselves do not offer methods to execute queries. To open a query, use a
com.sun.star.sdb.RowSet service or the com.sun.star.sdb.XCommandPreparation interface of
a connection. See the sections 12.3.1 Database Access - Manipulating Data - The RowSet Service and
12.3.6 Database Access - Manipulating Data - PreparedStatement From DataSource Queries for addi -
tional details.

Adding and Editing Predefined Queries
The query definitions container com.sun.star.sdb.DefinitionContainer is used to work with
the query definitions of a data source. It is returned by the
com.sun.star.sdb.XQueryDefinitionsSupplier interface of the data source, which has a single
method for this purpose:

com::sun::star::container::XNameAccess getQueryDefinitions()

The DefinitionContainer is not only an XNameAccess, but a
com.sun.star.container.XNameContainer, that is, add new query definitions by name (see 2
First Steps). Besides the name access, obtain query definitions through
com.sun.star.container.XIndexAccess and com.sun.star.container.XEnumerationAccess.

798 OpenOffice.org 1.1 Developer's Guide • June 2003

New query definitions are created by the com.sun.star.lang.XSingleServiceFactory interface
of the query definitions container. Its method createInstance() provides an empty QueryDefi-
nition to configure, as required. Then, the new query definition is added to the DefinitionCon-
tainer using insertByName()at the XNameContainer interface.

The optional interface com.sun.star.util.XRefreshable is not supported by the DefinitionContainer
implementation.

A QueryDefinition is configured through the following properties:

Chapter 12 Database Access 799

Illustration 172: DefinitionContainer And QueryDefinition

Properties of com.sun.star.sdb.QueryDefinition
Name string ─ The name of the queryDefinition.

Command string ─ The SQL SELECT command.

EscapeProcessing boolean ─ If true, determines that the query must not be touched by the built-in
SQL parser of OpenOffice.org API.

UpdateCata-
logName

string ─ The name of the update table catalog used to identify tables, supported
by some databases.

UpdateSchemaName string ─ The name of the update table schema used to identify tables, supported
by some databases.

UpdateTableName string The name of the update table catalog used to identify tables, supported by
some databases The name of the table which should be updated. This is usually
used for queries based on more than one table and makes such queries partially
editable. The property UpdateTableName must contain the name of the table with
unique rows in the result set. In a 1:n join this is usually the table on the n side of
the join.

The following example adds a new query definition Query1 to the data source Bibliography that is
provided with OpenOffice.org API. (Database /CodeSamples.java)
// creates a new query definition named Query1
public static void createQuerydefinition(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 XNameAccess xNameAccess = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // we use the datasource Bibliography
 XQueryDefinitionsSupplier xQuerySup = (XQueryDefinitionsSupplier) UnoRuntime.queryInterface(
 XQueryDefinitionsSupplier.class, xNameAccess.getByName("Bibliography"));

 // get the container for query definitions
 XNameAccess xQDefs = xQuerySup.getQueryDefinitions();
 // for new query definitions we need the com.sun.star.lang.XSingleServiceFactory interface
 // of the query definitions container
 XSingleServiceFactory xSingleFac = (XSingleServiceFactory)UnoRuntime.queryInterface(
 XSingleServiceFactory.class, xQDefs);

 // order a new query and get its com.sun.star.beans.XPropertySet interface
 XPropertySet xProp = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class, xSingleFac.createInstance());
 // configure the query
 xProp.setPropertyValue("Command","SELECT * FROM biblio");
 xProp.setPropertyValue("EscapeProcessing", new Boolean(true));

 // insert it into the query definitions container
 XNameContainer xCont = (XNameContainer) UnoRuntime.queryInterface(
 XNameContainer.class, xQDefs);

 xCont.insertByName("Query1", xProp);
}

Runtime Settings For Predefined Queries
The queries in the user interface have a number of advanced settings concerning the formatting
and filtering of the query and its columns. For the API, these settings are available as long as the
data source is connected with the underlying database. The section 12.2.3 Database Access - Data
Sources in OpenOffice.org API - Connections - Connecting Through a DataSource discusses how to get a
connection from a data source. When the connection is made, its interface
com.sun.star.sdb.XQueriesSupplier returns query objects with the advanced settings above.

800 OpenOffice.org 1.1 Developer's Guide • June 2003

The Connection gives you a com.sun.star.sdbcx.Container of com.sun.star.sdb.Query serv-
ices. These Query objects are different from QueryDefinitions.

The com.sun.star.sdb.Query service inherits both the properties from
com.sun.star.sdb.QueryDefinition service described previously, and the properties defined in
the service com.sun.star.sdb.DataSettings. Use DataSettings to customize the appearance of
the query when used in the OpenOffice.org API GUI or together with a
com.sun.star.sdb.RowSet.

Chapter 12 Database Access 801

Illustration 173: Connection, QueryComposer And Query in the sdb Module

Properties of com.sun.star.sdb.DataSettings
Filter string ─ An additional filter for the data object, WHERE clause syntax.

ApplyFilter boolean ─ Indicates if the filter should be applied, default is FALSE.

Order string ─ Is an additional sort order definition.

FontDescriptor struct com.sun.star.awt.FontDescriptor. Specifies the font attributes for
displayed data.

RowHeight long ─ Specifies the height of a data row.

TextColor long ─ Specifies the text color for displayed text in 0xAARRGGBB notation

In addition to these properties, the com.sun.star.sdb.Query service offers a
com.sun.star.sdbcx.XDataDescriptorFactory to create new query descriptors based on the
current query information. Use this query descriptor to append new queries to the
com.sun.star.sdbcx.Container using its com.sun.star.sdbcx.XAppend interface. This is an
alternative to the connection- independent method to create new queries as discussed above. The
section 12.4.3 Database Access - Database Design - Using SDBCX to Access the Database Design - The
Descriptor Pattern explains how to use descriptors to append new elements to database objects.

The com.sun.star.sdbcx.XRename interface is used to rename a query. It has one method:
void rename([in] string newName)

The interface com.sun.star.sdbcx.XColumnsSupplier grants access to the column settings of the
query through its single method getColumns():

com::sun::star::container::XNameAccess getColumns()

The columns returned by getColumns() are com.sun.star.sdb.Column services that provide
column information and the ability to improve the appearance of columns. This service is
explained in the section 12.2.2 Database Access - Data Sources in OpenOffice.org API - DataSources -
Tables and Columns.

The following code sample connects to Bibliography, and prints the column names and types of
the previously defined query Query1. (Database /CodeSamples.java)
public static void printQueryColumnNames(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class,_rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // we use Bibliography
 XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(
 XDataSource.class, xNameAccess.getByName("Bibliography"));

 // simple way to connect
 XConnection con = xDS.getConnection("", "");
 // we need the XQueriesSupplier interface of the connection
 XQueriesSupplier xQuerySup = (XQueriesSupplier)UnoRuntime.queryInterface(
 XQueriesSupplier.class, con);

 // get container with com.sun.star.sdb.Query services
 XNameAccess xQDefs = xQuerySup.getQueries();
 // retrieve XColumnsSupplier of Query1
 XColumnsSupplier xColsSup = (XColumnsSupplier) UnoRuntime.queryInterface(
 XColumnsSupplier.class,xQDefs.getByName("Query1"));
 XNameAccess xCols = xColsSup.getColumns();
 // Access column property TypeName
 String aNames [] = xCols.getElementNames();
 for (int i=0;i<aNames.length;++i) {
 Object col = xCols.getByName(aNames[i]);
 XPropertySet xColumnProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, col);
 System.out.println(aNames[i] + " " + xColumnProps.getPropertyValue("TypeName"));
 }
}

802 OpenOffice.org 1.1 Developer's Guide • June 2003

The SQLQueryComposer
The service com.sun.star.sdb.SQLQueryComposer is a tool that composes SQL SELECT strings. It
hides the complexity of parsing and evaluating SQL statements, and provides sophisticated
methods to configure an SQL statement with filtering and ordering criteria. A query composer is
retrieved over the com.sun.star.sdb.XSQLQueryComposerFactory interface of a
com.sun.star.sdb.Connection:

com::sun::star::sdb::XSQLQueryComposer createQueryComposer()

Its interface com.sun.star.sdb.XSQLQueryComposer is used to supply the SQLQueryComposer
with the necessary information. It has the following methods:

// provide SQL string
void setQuery([in] string command)
string getQuery()
string getComposedQuery()
// control the WHERE clause
void setFilter([in] string filter)
void appendFilterByColumn([in] com::sun::star::beans::XPropertySet column)
string getFilter()
sequence< sequence< com::sun::star::beans::PropertyValue > > getStructuredFilter()
// control the ORDER BY clause
void setOrder([in] string order)
void appendOrderByColumn([in] com::sun::star::beans::XPropertySet column, [in] boolean ascending)
string getOrder()

In the above method, a query command, such as "SELECT Identifier, Address, Author FROM
biblio" is passed to setQuery(), then the criteria for WHERE and ORDER BY is added. The WHERE
expressions are passed without the WHERE keyword to setFilter(), and the method setOrder()
with comma- separated ORDER BY columns or column numbers is provided.

As an alternative, add WHERE conditions using appendFilterByColumn(). This method expects a
com.sun.star.sdb.DataColumn service providing the name and the value for the filter. Similarly,
the method appendOrderByColumn() adds columns that are used for ordering. These columns
could come from the RowSet.

Retrieve the resulting SQL string from getComposedQuery().

The methods getQuery(), getFilter() and getOrder() return the SELECT, WHERE and ORDER BY
part of the SQL command as a string.

The method getStructuredFilter() returns the filter split into OR levels. Within each OR level,
filters are provided as AND criteria with the name of the column and the filter condition string.

The following example prints the structured filter.
// prints the structured filter
public static void printStructeredFilter(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));
 // we use the first datasource
 XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(
 XDataSource.class, xNameAccess.getByName("Bibliography"));
 XConnection con = xDS.getConnection("", "");
 XQueriesSupplier xQuerySup = (XQueriesSupplier)UnoRuntime.queryInterface(
 XQueriesSupplier.class, con);

 XNameAccess xQDefs = xQuerySup.getQueries();

 XPropertySet xQuery = (XPropertySet) UnoRuntime.queryInterface(
 XPropertySet.class,xQDefs.getByName("Query1"));
 String sCommand = (String)xQuery.getPropertyValue("Command");

 XSQLQueryComposerFactory xQueryFac = (XSQLQueryComposerFactory) UnoRuntime.queryInterface(
 XSQLQueryComposerFactory.class, con);

 XSQLQueryComposer xQComposer = xQueryFac.createQueryComposer();
 xQComposer.setQuery(sCommand);

 PropertyValue aFilter [][] = xQComposer.getStructuredFilter();
 for (int i=0; i<aFilter.length;) {

Chapter 12 Database Access 803

 System.out.println("(");
 for (int j=0; j<aFilter[i].length; ++j)
 System.out.println("Name: " + aFilter[i][j].Name + " Value: " + aFilter[i][j].Value);
 System.out.println(")");
 ++i;
 if (i<aFilter.length)
 System.out.println(" OR ");
 }
 }
}

The interface com.sun.star.sdbcx.XTablesSupplier provides access to the tables that are used
in the “FROM” part of the SQL-Statement:

com::sun::star::container::XNameAccess getTables()

The interface com.sun.star.sdbcx.XColumnsSupplier provides the selected columns, which are
listed after the SELECT keyword:

com::sun::star::container::XNameAccess getColumns()

Forms and Other Links
Each data source can maintain an arbitrary number of document links. The primary purpose of
this function is to provide a collection of database forms used with a database. These links are
available at the com.sun.star.sdb.XBookmarksSupplier interface of a data source that has one
method:

com::sun::star::container::XNameAccess getBookmarks()

The returned service is a com.sun.star.sdb.DefinitionContainer. The DefinitionContainer
is not only an XNameAccess, but a com.sun.star.container.XNameContainer, that is, new links
are added using insertByName() as described in the chapter 2 First Steps. Besides the name
access, links are obtained through com.sun.star.container.XIndexAccess and
com.sun.star.container.XEnumerationAccess.

The returned bookmarks are simple strings containing URLs. Usually forms are are stored at file:///
URLs. The following example adds a new document to the data source Bibliography:
public static void addDocumentLink(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class,_rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // we use the predefined Bibliography data source
 XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(
 XDataSource.class, xNameAccess.getByName("Bibliography"));

 // we need the XBookmarksSupplier interface of the data source
 XBookmarksSupplier xBookmarksSupplier = (XBookmarksSupplier)UnoRuntime.queryInterface(
 XBookmarksSupplier.class, xDS);

 // get container with bookmark URLs
 XNameAccess xBookmarks = xBookmarksSupplier.getBookmarks();
 XNameContainer xBookmarksContainer = (XNameContainer)UnoRuntime.queryInterface(
 XNameContainer.class, xBookmarks);

 // insert new link
 xBookmarksContainer.insertByName("MyLink", "file:///home/ada01/Form_Ada01_DSADMIN.Table1.sxw");
}

To load a linked document, use the bookmark URL with the method loadComponentFromUrl() at
the com.sun.star.frame.XComponentLoader interface of the com.sun.star.frame.Desktop
singleton that is available at the global service manager. For details about the Desktop, see 6
Office Development.

804 OpenOffice.org 1.1 Developer's Guide • June 2003

Tables and Columns
A com.sun.star.sdb.Table encapsulates tables in a OpenOffice.org API data source. The
com.sun.star.sdb.Table service changes the appearance of a table and its columns in the GUI,
and it contains read- only information about the table definition, such as the table name and type,
the schema and catalog name, and access privileges.

It is also possible to alter the table definition at the com.sun.star.sdb.Table service. This is
discussed in the section 12.4 Database Access - Database Design below.

The table related services in the database context are unable to access the data in a database table.
Use the com.sun.star.sdb.RowSet service, or to establish a connection to a database and use its
com.sun.star.sdb.XCommandPreparation interface to manipulate table data. For details, see the
sections 12.3.1 Database Access - Manipulating Data - The RowSet Service and 12.3.6 Database Access -
Manipulating Data - PreparedStatement From DataSource Queries.

The following illustration shows the relationship between the com.sun.star.sdb.Connection
and the Table objects it provides, and the services included in com.sun.star.sdb.Table.

Chapter 12 Database Access 805

Illustration 174: Connection and Tables

The com.sun.star.sdbcx.XTablesSupplier interface of a Connection supplies a
com.sun.star.sdbcx.Container of com.sun.star.sdb.Table services through its method
getTables(). The container administers Table services by name, index or as enumeration.

Just like queries, tables include the display properties specified in
com.sun.star.sdb.DataSettings:

Properties of com.sun.star.sdb.DataSettings
Filter string ─ An additional filter for the data object, WHERE clause syntax.

ApplyFilter boolean ─ Indicates if the filter should be applied. The default is FALSE.

Order string ─ Is an additional sort order definition.

FontDescriptor Struct [idl:com.sun.star.awt.FontDescriptor]. Specifies the font attrib-
utes for displayed data.

RowHeight long ─ Specifies the height of a data row.

TextColor long ─ Specifies the text color for displayed text in 0xAARRGGBB notation

Basic table information is included in the properties included with com.sun.star.sdbcx.Table:

Properties of com.sun.star.sdbcx.Table
Name [readonly] string ─ Table name.

CatalogName [readonly] string ─ Catalog name.

SchemaName [readonly] string ─ Schema name.

Description [readonly] string ─ Table Description, if supported by the driver.

Type [readonly] string ─ Table type, possible values are TABLE, VIEW, SYSTEM
TABLE or an empty string if the driver does not support different table types.

The service com.sun.star.sdb.Table is an extension of the service com.sun.star.sdbcx.Table.
It introduces an additional property called Privileges. The Privileges property indicates the
actions the current user may carry out on the table.

Properties of com.sun.star.sdb.Table
Privileges [readonly] long, constants group com.sun.star.sdbcx.Privilege. The prop -

erty contains a bitwise AND combination of the following privileges:

• SELECT user can read the data.

• INSERT user can insert new data.

• UPDATE user can update data.

• DELETE user can delete data.

• READ user can read the structure of a definition object.

• CREATE user can create a definition object.

• ALTER user can alter an existing object.

• REFERENCE user can set foreign keys for a table.

• DROP user can drop a definition object.

The appearance of single columns in a table can be changed. The following illustration depicts the
service com.sun.star.sdb.Column and its relationship with the com.sun.star.sdb.Table
service.

806 OpenOffice.org 1.1 Developer's Guide • June 2003

For this purpose, com.sun.star.sdb.Table supports the interface
com.sun.star.sdbcx.XColumnsSupplier. Its method getColumns() returns a
com.sun.star.sdbcx.Container with the additional column- related interface
com.sun.star.sdbc.XColumnLocate that is useful to get the column number for a certain column
in a table:

long findColumn([in] string columnName)

Chapter 12 Database Access 807

Illustration 175: Table and Table Column

The service com.sun.star.sdb.Column combines com.sun.star.sdbcx.Column and the
com.sun.star.sdb.ColumnSettings to form a column service with the opportunity to alter the
visual appearance of a column.

Properties of com.sun.star.sdb.ColumnSettings
FormatKey long ─ Contains the index of the number format that is used for the column.

The proper value can be determined using the
com.sun.star.util.XNumberFormatter interface. If the value is void, a
default number format is used according to the data type of the column.

Align long ─ Specifies the alignment of column text. Possible values are:

0: left
1: center
2: right

If the value is void, a default alignment is used according to the data type of the
column.

Width long ─ Specifies the width of the column displayed in a grid. The unit is 10th mm.
If the value is void, a default width should be used according to the label of the
column.

Position long ─ The ordinal position of the column within a grid. If the value is void, the
default position should be used according to their order of appearance in
com.sun.star.sdbc.XResultSetMetaData.

Hidden boolean ─ Determines if the column should be displayed.

ControlModel com.sun.star.beans.XPropertySet. May contain a control model that defines
the settings for layout. The default is NULL.

HelpText string ─ Describes an optional help text that can be used by UI components when
representing this column.

ControlDefault string ─ Contains the default value that should be displayed by a control when
moving to a new row.

The Properties of com.sun.star.sdbcx.Column are readonly and can be used for information
purposes:

Properties of com.sun.star.sdbcx.Column
Name [readonly] string ─ The name of the column.

Type [readonly] long ─ The [idl:com.sun.star.sdbc.DataType] of the
column.

TypeName [readonly] string ─ The type name used by the database. If the column type is
a user-defined type, then a fully-qualified type name is returned. May be empty.

Precision [readonly] long ─ The number of decimal digits or chars.

Scale [readonly] long ─ Number of digits after the decimal point.

IsNullable [readonly] long, constants group com.sun.star.sdbc.ColumnValue. Indi -
cates if values may be NULL in the designated column. Possible values are:

NULLABLE: column allows NULL values.
NO_NULLS: column does not allow NULL values.
NULLABLE_UNKNOWN : it is unknown whether or not NULL is allowed

IsAutoIncrement [readonly] boolean ─ Indicates if the column is automatically numbered.

IsCurrency [readonly] boolean ─ Indicates if the column is a cash value.

808 OpenOffice.org 1.1 Developer's Guide • June 2003

Properties of com.sun.star.sdbcx.Column
IsRowVersion [readonly] boolean ─ Indicates whether the column contains a type of time or

date stamp used to track updates.

Description [readonly] string ─ Keeps a description of the object.

DefaultValue [readonly] string ─ Keeps a default value for a column, and is provided as a
string.

12.2.3 Connections

Understanding Connections
A connection is an open communication channel to a database. A connection is required to work
with data in a database or with a database definition. Connections are encapsulated in Connec-
tion objects in the OpenOffice.org API. There are several possibilities to get a Connection:

• Connect to a data source that has already been set up in the database context of OpenOffice.org
API.

• Use the driver manager or a specific driver to connect to a database without using an existing
data source from the database context.

• Get a connection from the connection pool maintained by OpenOffice.org API.

• Reuse the connection of a database form which is currently open in the GUI.

With the above possibilities, a com.sun.star.sdb.Connection is made or at least a
com.sun.star.sdbc.Connection:

Chapter 12 Database Access 809

The service com.sun.star.sdb.Connection has three main functions: communication, data defi-
nition and operation on the OpenOffice.org API application level. The service:

• Handles the communication with a database including statement execution, transactions, data-
base metadata and warnings through the simple connection service of the SDBC layer
com.sun.star.sdbc.Connection.

• Handles database definition tasks, primarily table definitions, through the service
com.sun.star.sdbcx.DatabaseDefinition. Optionally, it manages views, users and groups.

• Organizes query definitions on the application level and provides a method to open queries
and tables defined in OpenOffice.org API. Query definitions are organized by the interfaces
com.sun.star.sdb.XQueriesSupplier and
com.sun.star.sdb.XSQLQueryComposerFactory. Queries and tables can be opened using
com.sun.star.sdb.XCommandPreparation. In case the underlying data source is needed,
com.sun.star.container.XChild provides the parent data source. This is useful when using
an existing connection, for instance, of a database form, to act upon its data source.

Connections are central to all database activities. The connection interfaces are discussed later.

Communication
The main interface of com.sun.star.sdbc.Connection is com.sun.star.sdbc.XConnection. Its
methods control almost every aspect of communication with a database management system:

// general connection control
void close()

810 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 176: com.sun.star.sdb.Connection

boolean isClosed()
void setReadOnly([in] boolean readOnly)
boolean isReadOnly()
// commands and statements
// - generic SQL statement
// - prepared statement
// - stored procedure call
com::sun::star::sdbc::XStatement createStatement()
com::sun::star::sdbc::XPreparedStatement prepareStatement([in] string sql)
com::sun::star::sdbc::XPreparedStatement prepareCall([in] string sql)
string nativeSQL([in] string sql)
// transactions
void setTransactionIsolation([in] long level)
long getTransactionIsolation()
void setAutoCommit([in] boolean autoCommit)
boolean getAutoCommit()
void commit()
void rollback()
// database metadata
com::sun::star::sdbc::XDatabaseMetaData getMetaData()
// data type mapping (driver dependent)
com::sun::star::container::XNameAccess getTypeMap()
void setTypeMap([in] com::sun::star::container::XNameAccess typeMap)
// catalog (subspace in a database)
void setCatalog([in] string catalog)
string getCatalog()

The use of commands and statements are explained in the sections 12.3 Database Access - Manipu-
lating Data and 12.4.2 Database Access - Database Design - Using DDL to change the Database Design.
Transactions are discussed in 12.5.1 Database Access - Using DBMS Features - Transaction Handling.
Database metadata are covered in 12.4.1 Database Access - Database Design - Retrieving Information
about a Database.

The com.sun.star.sdbc.XWarningsSupplier is a simple interface to handle SQL warnings:
any getWarnings()
void clearWarnings()

The exception com.sun.star.sdbc.SQLWarning is usually not thrown, rather it is transported
silently to objects supporting com.sun.star.sdbc.XWarningsSupplier. Refer to the API refer-
ence for more information about SQL warnings.

Data Definition
The interfaces of com.sun.star.sdbcx.DatabaseDefinition are explained in the section 12.4.3
Database Access - Database Design - Using SDBCX to Access the Database Design.

Operation on Application Level
Handling of query definitions through com.sun.star.sdb.XQueriesSupplier and
com.sun.star.sdb.XSQLQueryComposerFactory is discussed in the section 12.2.2 Database Access
- Data Sources in OpenOffice.org API - DataSources - Queries .

Through com.sun.star.sdb.XCommandPreparation get the necessary statement objects to open
predefined queries and tables in a data source, and execute arbitrary SQL statements.

com::sun::star::sdbc::XPreparedStatement prepareCommand([in] string command, [in] long commandType)

If the value of the parameter com.sun.star.sdb.CommandType is TABLE or QUERY, pass a table
name or query name that exists in the com.sun.star.sdb.DataSource of the connection. The
value COMMAND makes prepareCommand() expect an SQL string. The result is a prepared statement
object that can be parameterized and executed. For details and an example, refer to section 12.3.6
Database Access - Manipulating Data - PreparedStatement From DataSource Queries.

Chapter 12 Database Access 811

The interface com.sun.star.container.XChild accesses the parent
com.sun.star.sdb.DataSource of the connection, if available.

com::sun::star::uno::XInterface getParent()
void setParent([in] com::sun::star::uno::XInterface Parent)

Connecting Through A DataSource

Data sources in the database context of OpenOffice.org API offer two methods to establish a
connection, a non-interactive and an interactive procedure. Use the
com.sun.star.sdbc.XDataSource interface to connect. It consists of:

// establish connection
com::sun::star::sdbc::XConnection getConnection([in] string user, [in] string password)
// timeout for connection failure
void setLoginTimeout([in] long seconds)
long getLoginTimeout()

If a database does not support logins, pass empty strings to getConnection(). For instance, use
getConnection() against dBase data sources like Bibliography:
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // we use the Bibliography data source
 XDataSource xDS = (XDataSource)UnoRuntime.queryInterface(
 XDataSource.class, xNameAccess.getByName("Bibliography"));

 // simple way to connect
 XConnection xConnection = xDS.getConnection("", "");

However if the database expects a login procedure, hard code the user and password, although
this is not advisable. Data sources support an advanced login concept. Their interface
com.sun.star.sdb.XCompletedConnection starts an interactive login, if necessary:

com::sun::star::sdbc::XConnection connectWithCompletion(
[in] com::sun::star::task::XInteractionHandler handler)

When you call connectWithCompletion(), OpenOffice.org API shows the common login dialog
to the user if the data source property IsPasswordRequired is true. The login dialog is part of the
com.sun.star.sdb.InteractionHandler provided by the global service factory.
// logs into a database and returns a connection
// expects a reference to the global service manager
com.sun.star.sdbc.XConnection logon(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {

 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // get an Adabas D data source Ada01 generated in the GUI
 Object dataSource = xNameAccess.getByName("Ada01");

 // create a com.sun.star.sdb.InteractionHandler and get its XInteractionHandler interface
 Object interactionHandler = _rMSF.createInstance("com.sun.star.sdb.InteractionHandler");
 XInteractionHandler xInteractionHandler = (XInteractionHandler)UnoRuntime.queryInterface(
 XInteractionHandler.class, interactionHandler);

 // query for the XCompletedConnection interface of the data source
 XCompletedConnection xCompletedConnection = (XCompletedConnection)UnoRuntime.queryInterface(
 XCompletedConnection.class, dataSource);

 // connect with interactive login
 XConnection xConnection = xCompletedConnection.connectWithCompletion(xInteractionHandler);
 return XConnection;
}

Connecting Using the DriverManager and a Database URL
The database context and establishing connections to a database even if there is no data source for
it in OpenOffice.org API can be avoided.

812 OpenOffice.org 1.1 Developer's Guide • June 2003

To create a connection ask the driver manager for it. The com.sun.star.sdbc.DriverManager
manages database drivers. The methods of its interface com.sun.star.sdbc.XDriverManager are
used to connect to a database using a database URL:

// establish connection
com::sun::star::sdbc::XConnection getConnection([in] string url)
com::sun::star::sdbc::XConnection getConnectionWithInfo([in] string url,

 [in] sequence < com::sun::star::beans::PropertyValue > info)

// timeout for connection failure
void setLoginTimeout([in] long seconds)
long getLoginTimeout()

Additionally, the driver manager enumerates all available drivers, and is used to register and
deregister drivers. A URL that identifies a driver and contains information about the database to
connect to must be known. The DriverManager chooses the first registered driver that accepts this
URL. The following line of code illustrates it generally:
Connection xConnection = DriverManager.getConnection(url);

The structure of the URL consists of a protocol name, followed by the driver specific sub-protocol.
The data source administration dialog shows the latest supported protocols. Some protocols are
platform dependent. For example, ADO is only supported on Windows.

The URLs and conditions for the various drivers are explained in section 12.2.3 Database Access -
Data Sources in OpenOffice.org API - Connections - Driver Specifics below.

Frequently a connection needs additional information, such as a user name, password or character
set. Use the method getConnectionWithInfo() to provide this information. The method
getConnectionWithInfo() takes a sequence of com.sun.star.beans.PropertyValue structs.
Usually user and password are supported. For other connection info properties, refer to the
section 12.2.3 Database Access - Data Sources in OpenOffice.org API - Connections - Driver Specifics.
(Database /CodeSamples.java)
 // create the DriverManager
 Object driverManager = xMultiServiceFactory.createInstance("com.sun.star.sdbc.DriverManager");

 // query for the interface XDriverManager
 com.sun.star.sdbc.XDriverManager xDriverManager;

 xDriverManager = (XDriverManager)UnoRuntime.queryInterface(
 XDriverManager.class, driverManager);

 if (xDriverManager != null) {
 // first create the database URL
 String adabasURL = "sdbc:adabas::MYDB0";

 // create the necessary sequence of PropertyValue structs for user and password
 com.sun.star.beans.PropertyValue [] adabasProps = new com.sun.star.beans.PropertyValue[] {
 new com.sun.star.beans.PropertyValue("user", 0, "Scott",
 com.sun.star.beans.PropertyState.DIRECT_VALUE),
 new com.sun.star.beans.PropertyValue("password", 0, "huutsch",
 com.sun.star.beans.PropertyState.DIRECT_VALUE)
 };

 // now create a connection to Adabas
 XConnection xConnection = xDriverManager.getConnectionWithInfo(adabasURL, adabasProps);
 if (adabasConnection != null) {
 System.out.println("Connection was created!");

 // now we dispose the connection to close it
 XComponent xComponent = (XComponent)UnoRuntime.queryInterface(
 XComponent.class, xConnection);

 if (xComponent != null) {
 // connection must be disposed to avoid memory leaks
 xComponent.dispose();
 System.out.println("Connection disposed!");
 }
 } else {
 System.out.println("Connection could not be created!");
 }
 }

Chapter 12 Database Access 813

Connecting Through a Specific Driver
The second method to create an independent, data- source connection is to use a particular driver
implementation, such as writing a driver. There are also several implementations. Create an
instance of the driver and ask it for a connection to decide what driver is used:
(Database /CodeSamples.java)
 // create the Driver using the implementation name
 Object aDriver = xMultiServiceFactory.createInstance("com.sun.star.comp.sdbcx.adabas.ODriver");
 // query for the XDriver interface
 com.sun.star.sdbc.XDriver xDriver;
 xDriver = (XDriver)UnoRuntime.queryInterface(XDriver.class, aDriver);

 if (xDriver != null) {
 // first create the needed url
 String adabasURL = "sdbc:adabas::MYDB0";

 // second create the necessary properties
 com.sun.star.beans.PropertyValue [] adabasProps = new com.sun.star.beans.PropertyValue[] {

 new com.sun.star.beans.PropertyValue("user", 0, "test1",
com.sun.star.beans.PropertyState.DIRECT_VALUE),

 new com.sun.star.beans.PropertyValue("password", 0, "test1",
com.sun.star.beans.PropertyState.DIRECT_VALUE)

 };

 // now create a connection to adabas
 XConnection adabasConnection = xDriver.connect(adabasURL,adabasProps);

 if (xConnection != null) {
 System.out.println("Connection was created!");
 // now we dispose the connection to close it
 XComponent xComponent = (XComponent)UnoRuntime.queryInterface(XComponent.class,
xConnection);
 if (xComponent != null) {
 xComponent.dispose();
 System.out.println("Connection disposed!");
 }
 } else {
 System.out.println("Connection could not be created!");
 }
 }

Driver Specifics
Currently, there are eight driver implementations. Some support only the simple
com.sun.star.sdbc.Driver service, some additionally the more extended service from
com.sun.star.sdbcx.Driver that includes the support for tables, columns, keys, indexes, groups
and users. This section describes the capabilities and the missing functionality in some database
drivers. Below is a list of all available drivers.

Driver URL Solaris Linux Windows
JDBC jdbc:subprotocol: ● ● ●

ODBC 3.5 sdbc:odbc:datasource name ● ● ●

Adabas D sdbc:adabas:database name ● ● ●

ADO sdbc:ado:ADO specific ●

dBase sdbc:dbase:Location of
folder or file

● ● ●

Flat file format (csv) sdbc:flat:Location of folder
or file

● ● ●

OpenOffice.org Calc sdbc:calc:Location of
OpenOffice.org Calc file

● ● ●

814 OpenOffice.org 1.1 Developer's Guide • June 2003

Driver URL Solaris Linux Windows
Mozilla addressbook
(Mozilla, Outlook, Outlook
Express and LDAP)

sdbc:address:Kind of
addressbook

● ● ●

The SDBC Driver for JDBC
The SDBC driver for JDBC is a mapping from SDBC API calls to the JDBC API, and vice versa.
Basically, this driver is a direct bridge to JDBC. The SDBC driver for JDBC requires a special prop-
erty called JavaDriverClass to know which JDBC driver should be used. The expected value of
this property should be the complete class name of the JDBC driver. The following code snippet
uses a MySQL JDBC driver to connect.
 // first create the needed url
 String url = "jdbc:mysql://localhost:3306/TestTables";

 // second create the necessary properties
 com.sun.star.beans.PropertyValue [] props = new com.sun.star.beans.PropertyValue[] {
 new com.sun.star.beans.PropertyValue("user", 0, "test1",
 com.sun.star.beans.PropertyState.DIRECT_VALUE),
 new com.sun.star.beans.PropertyValue("password", 0, "test1",
 com.sun.star.beans.PropertyState.DIRECT_VALUE),
 new com.sun.star.beans.PropertyValue("JavaDriverClass", 0, "org.gjt.mm.mysql.Driver",
 com.sun.star.beans.PropertyState.DIRECT_VALUE)
 };

 // now create a connection to adabas
 xConnection = xDriverManager.getConnectionWithInfo(url, props);

Other properties that require setting during the connect process depend on the JDBC driver that is
used.

The SDBC Driver for ODBC
This driver is comparable to the SDBC driver for JDBC described above. It maps the ODBC func-
tionality to the SDBC API, but not completely. However, some functionality the SDBC API
supports may not work with ODBC, because an ODBC driver may not support this feature and
throws an SQL Exception to indicate this. To create a new connection, the driver uses the
following URL format:

sdbc:odbc: Name of a datasource defined in the system

Additionally, this driver supports several properties through the service
com.sun.star.sdbc.ODBCConnectionProperties. These properties are set while creating a
connection:

Properties of com.sun.star.sdbc.ODBCConnectionProperties
Silent boolean ─ If True,the ODBC driver will not be asked for completion. This

may happen if the user name and password are already known. Otherwise
False.

Timeout int ─ A value corresponding to the number of seconds to wait for any request
on the connection to complete before returning to the application.

UseCatalog boolean ─ If false,the SDBC driver should not use catalogs. Otherwise True.

SystemDriverSettings string ─ Settings that are submitted to the ODBC driver directly.

CharSet string ─ Converts data from the ODBC driver into the corresponding text
encoding. The value must be a value of the list from www.iana.org /assign-
ments /character- sets. Only a few character sets are supported

Chapter 12 Database Access 815

Properties of com.sun.star.sdbc.ODBCConnectionProperties
ParameterNameSubsti-
tution

boolean ─ If True,all occurrences of “?” as a parameter name will be replaced
by a valid parameter name. This is for some drivers that mix the order of the
parameters.

The SDBC Driver for Adabas D
This driver was the first driver to support the extended service com.sun.star.sdbcx.Driver, that
offers access to the structure of a database. The Adabas D driver implementation extends the
Adabas ODBC driver through knowledge about database structure. The URL should look like this:

sdbc:adabas::DATABASENAME

or
sdbc:adabas:HOST:DATABASENAME

To find the correct database name of an Adabas D database in OpenOffice.org API, select Tools –
Data Sources and look in the Data source URL box of the General tab. Find the database folders
in sql/wrk in the Adabas installation folder.

The SDBC Driver for ADO
The SDBC driver for ADO supports the service com.sun.star.sdbcx.Driver. ADO does not
allow modification on the database structure unless the database is a Jet Engine. Information
about the limitations for ADO are available on the Internet. The URL for SDBC driver for ADO
looks like this:

sdbc:ado:<ADO specific connection string>

Possible connection strings are:
– sdbc:ado:PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=c:\northwind.mdb
– sdbc:ado:Provider=msdaora;data source=testdb

The SDBC Driver for dBase
The dBase driver is one of the basic driver implementations and supports the service
com.sun.star.sdbcx.Driver. This driver has a number of limitations concerning its abilities to
modify the database structure and the extent of its SQL support. The URL for this driver is:

sdbc:dbase:<folder or file url>

For instance:
sdbc:dbase:file:///d:/user/database/biblio

Similar to the SDBC driver for ODBC, this driver supports the connection info property CharSet
to set different text encodings. The second possible property is ShowDeleted. When it is set to
true, deleted rows in a table are still visible. In this state, it is not allowed to delete rows.

The following table shows the shortcomings of the SDBCX part of the dBase driver.

Object create alter
table ● ●

column ● ●

key

index ● ●

group

816 OpenOffice.org 1.1 Developer's Guide • June 2003

Object create alter
user

The driver has the following conditions in its support for SQL statements:

– The SELECT statement can not contain more than one table in the FROM clause.

– For comparisons the following operators are valid: =, <, >, <>, >=, <=, LIKE, NOT LIKE, IS NULL,
IS NOT NULL.

– Parameters are allowed, but must be denoted with a leading colon (SELECT * FROM biblio
WHERE Author LIKE :MyParam) or with a single question mark (SELECT * FROM biblio
WHERE Author LIKE ?).

– The driver provides a ResultSet that supports bookmarks to records.

– The first instance of OpenOffice.org API that accesses a dbase database locks the files for exclu-
sive writing. The lock is never released until the OpenOffice.org API instance, which has
obtained the exclusive write access, is closed. This severely limits the access to a dBase data-
base in a network.

The SDBC Driver for Flat File Formats
This driver is another basic driver available in OpenOffice.org API. It can only be used to fetch
data from existing text files, and no modifications are allowed, that is, the whole connection is
read- only. The URL for this driver is:

sdbc:flat:<folder or file url >

For instance:
sdbc:file:file:///d:/user/database/textbase1

Properties that can be set while creating a new connection.

Chapter 12 Database Access 817

Properties of com.sun.star.sdbc.FLATConnectionProperties
Extension string ─ Flat file formats are formats such as:

• comma separated values format (*.csv)

• sdf format (*.sdf)

• text file format (*.txt)

CharSet string ─ Converts data from the ODBC driver into the corresponding text encoding.
The value must be a value of the list from www.iana.org /assignments /character- sets.
Only some are supported, but a new one can be added.

FixedLength boolean ─ If true, all occurrences of "?" as a parameter name will be replaced by a
valid parameter name. This is necessary, because some drivers mix the order of the
parameters.

HeaderLine boolean ─ If true, the first line is used for column generation.

FieldDelimiter string ─ Defines a character which should be used to separate fields and columns.

StringDelimiter string ─ Character to identify strings.

DecimalDelim-
iter

string ─ Character to identify decimal values.

ThousandDelim-
iter

string ─ Character to identify the thousand separator. Must be different from Deci-
malDelimiter.

The SDBC Driver for OpenOffice.org Calc Files
This driver is a basic driver for OpenOffice.org Calc files. It can only be used to fetch data from
existing tables and no modifications are allowed. The connection is read- only. The URL for this
driver is:

sdbc:calc:<file url to a OpenOffice.org Calc file or any other extension known by this application>

For instance:
sdbc:calc:file:///d:/calcfile.sxw

The SDBC driver for addressbook
This driver allows OpenOffice.org API to connect to a system addressbook available on the local
machine. It supports four different kinds of addressbooks.

Addressbook Windows Unix URL
Mozilla ● ● sdbc:address:mozilla

LDAP ● ● sdbc:address:ldap

Outlook Express ● sdbc:address:outlookexp

Outlook ● sdbc:address:outlook

All address book variants support read- only access. The driver itself is a wrapper for the Mozilla
API.

Connection Pooling
In a basic implementation, there is a 1:1 relationship between the com.sun.star.sdb.Connection
object used by the client and physical database connection. When the Connection object is closed,

818 OpenOffice.org 1.1 Developer's Guide • June 2003

the physical connection is dropped, thus the overhead of opening, initializing, and closing the
physical connection is incurred for each client session. A connection pool solves this problem by
maintaining a cache of physical database connections that can be reused across client sessions.
Connection pooling improves performance and scalability, particularly in a three-tier environment
where multiple clients can share a smaller number of physical database connections. In
OpenOffice.org API, the connection pooling is part of a special service called the ConnectionPool.
This service manages newly created connections and reuses old ones when they are currently
unused.

The algorithm used to manage the connection pool is implementation- specific and varies between
application servers. The application server provides its clients with an implementation of the
com.sun.star.sdbc.XPooledConnection interface that makes connection pooling transparent to
the client. As a result, the client gets better performance and scalability. When an application is
finished using a connection, it closes the logical connection using close()at the connection inter-
face com.sun.star.sdbc.XConnection. This closes the logical connection, but not the physical
connection. Instead, the physical connection is returned to the pool so that it can be reused.
Connection pooling is completely transparent to the client: A client obtains a pooled connection
from the com.sun.star.sdbc.ConnectionPool service calling getConnectionWithInfo() at its
interface com.sun.star.sdbc.XDriverManager and uses it just the same way it obtains and uses
a non-pooled connection.

The following sequence of steps outlines what happens when an SDBC client requests a connec-
tion from a ConnectionPool object:

1. The client obtains an instance of the com.sun.star.sdbc.ConnectionPool from the global
service manager and calls the same methods on the ConnectionPool object as on the Driver-
Manager.

2. The application server providing the ConnectionPool implementation checks its connection
pool for a suitable PooledConnection object, a physical database connection, that is available.
Determining the suitability of a given PooledConnection object includes matching the client’s
user authentication information or application type, as well as using other implementation-
specific criteria. The lookup method and other methods associated with managing the connec-
tion pool are specific to the application server.

3. If there are no suitable PooledConnection objects available, the application server creates a
new physical connection and returns the PooledConnection. The ConnectionPool is not
driver specific. It is implemented in a service called com.sun.star.sdbc.ConnectionPool.

4. Regardless if the PooledConnection has been retrieved from the pool or created, the applica-
tion server does internal recording to indicate that the physical connection is now in use.

5. The application server calls the method PooledConnection.getConnection() to get a logical
Connection object. This logical Connection object is a handle to a physical PooledConnection
object. This handle is returned by the XDriverManager method getConnectionWithInfo()
when connection pooling is in effect.

6. The logical Connection object is returned to the SDBC client that uses the same Connection
API as in the standard situation without a ConnectionPool. Note that the underlying physical
connection cannot be reused until the client calls the XConnection method close().

In OpenOffice.org API, connection pooling is enabled by default and can be controlled through
Tools – Options – Data Sources – Connections . If a connection from a data source defined in
OpenOffice.org API is returned, this setting applies to your connection, as well. To take advantage
of the pool independently of OpenOffice.org API data sources, use the
com.sun.star.sdbc.ConnectionPool instead of the DriverManager.

Chapter 12 Database Access 819

Piggyback Connections
Occasionally, there may already be a connected database row set and you want to use its connec-
tion. For instance, if a user has opened a database form. To access the same database as the row set
of the form, use the connection the form is working with, not opening a second connection. For
this purpose, the com.sun.star.sdb.RowSet has a property ActiveConnection that returns a
connection.

Be aware of the fact that the row set owns the connection it uses. That means, once the row set is deleted, the
connection is no longer valid.

12.3 Manipulating Data
There are two possibilities to manipulate data in a database with the OpenOffice.org database
connectivity.

• Use the com.sun.star.sdb.RowSet service that allows using data sources defined in
OpenOffice.org through their tables or queries, or through SQL commands.

• Communicate with a database directly using a Statement object.

This section describes both possibilities.

12.3.1 The RowSet Service
The service com.sun.star.sdb.RowSet is a high- level client side row set that retrieves its data
from a database table, a query, an SQL command or a row set reader, which does not have to
support SQLl. It is a com.sun.star.sdb.ResultSet.

The connection of the row set is a named DataSource, the URL of a data access component, or a
previously instantiated connection. Depending on the property ResultSetConcurrency, the row
set caches all data or uses an optimized method to retrieve data, such as refreshing rows by their
keys or their bookmarks. In addition, it provides events for row set navigation and row set modifi-
cations to approve the actions, and to react upon them.

The row set can be in two different states, before and after execution. Before execution, set all the
properties the row set needs for its work. After calling execute() on the RowSet, move through
the result set, or update and delete rows.

Usage
To use a row set, create a RowSet instance at the global service manager through the service name
com.sun.star.sdb.RowSet. Next, the RowSet needs a connection and a command before it can be
executed. These have to be configured through RowSet properties.

Connection
There are three different ways to establish a connection:

• Setting DataSourceName to a data source from the database context. If the DataSourceName
is not a URL, then the RowSet uses the name to get the DataSource from the DatabaseCon-
text to create a connection to that data source.

820 OpenOffice.org 1.1 Developer's Guide • June 2003

• Setting DataSourceName to a database URL. The row set tries to use this URL to establish a
connection. Database URLs are described in 12.2.3 Database Access - Data Sources in
OpenOffice.org API - Connections - Connecting Using the DriverManager and a Database URL.

• Setting ActiveConnection makes a row set ready for immediate use. The row set uses this
connection.

The difference between the two properties is that in the first case the RowSet owns the connec-
tion. The RowSet disposes the connection when it is disposed. In the second case, the RowSet
only uses the connection. The user of a RowSet is responsible for the disposition of the connec-
tion. For a simple RowSet, use DataSourceName, but when sharing the connection between
different row sets, then use ActiveConnection.

If there is already a connection, for example, the user opened a database form, open another
row set based upon the property ActiveConnection of the form. Put the ActiveConnection of
the form into the ActiveConnection property of the new row set.

Command
With a connection and a command, the row set is ready to be executed calling execute() on
the com.sun.star.sdbc.XRowSet interface of the row set. For interactive logon, use execute-
WithCompletion(), see 12.2.3 Database Access - Data Sources in OpenOffice.org API - Connections
- Connecting Through a DataSource. If interactive logon is not feasible for your application, the
properties User and Password can be used to connect to a database that requires logon.

Once the method for how RowSet creates it connections has been determined, the properties
Command and CommandType have to be set. The CommandType can be TABLE, QUERY or
COMMAND where the Command can be a table or query name, or an SQL command.

The following table shows the properties supported by com.sun.star.sdb.RowSet.

Properties of com.sun.star.sdb.RowSet
ActiveConnection com.sun.star.sdbc.XConnection. The active connection is generated by a

DataSource or by a URL. It could also be set from the outside. If set from outside,
the RowSet is not responsible for disposition of the connection.

DataSourceName string ─ The name of the DataSource to use. This could be a named Data-
Source or the URL of a data access component.

Command string ─ The Command is the command that should be executed. The type of
command depends on the com.sun.star.sdb.CommandType.

CommandType com.sun.star.sdb.CommandType Command type:

TABLE: indicates the command contains a table name that results in a command like
"select * from tablename".

QUERY: indicates the command contains a name of a query component that contains
a certain statement.

COMMAND: indicates the command is an SQL-Statement.

ActiveCommand [readonly] string ─ he command which is currently used.
com.sun.star.sdb.CommandType

IgnoreResult boolean ─ Indicates if all results should be discarded.

Filter string ─ Contains a additional filter for a RowSet.

ApplyFilter boolean ─ Indicates if the filter should be applied. The default is false.

Order An additional sort order definition for a RowSet.

Chapter 12 Database Access 821

Properties of com.sun.star.sdb.RowSet
Privileges [readonly] long, constants group com.sun.star.sdbcx.Privilege. Indi -

cates the privileges for insert, update, and delete.

IsModified [readonly] boolean ─ Indicates if the current row is modified.

IsNew [readonly] boolean ─ Indicates if the current row is the InsertRow and can be
inserted into the database.

RowCount [readonly] boolean ─ Contains the number of rows accessed in a the data
source.

IsRowCountFinal [readonly] boolean ─ Indicates if all rows of the RowSet have been counted.

UpdateTableName string ─ The name of the table that should be updated. This is used for queries
that relate to more than one table.

UpdateSchemaName string ─ The name of the table schema.

UpdateCata-
logName

string ─ The name of the table catalog.

The com.sun.star.sdb.RowSet includes the service com.sun.star.sdbc.RowSet and its proper -
ties. Important settings such as User and Password come from this service:

Properties of com.sun.star.sdbc.RowSet
DataSourceName string ─ Is the name of a named datasource to use.

URL string ─ The connection URL. Can be used instead of the DataSourceName.

Command string ─ The command that should be executed.

TransactionIso-
lation

long ─ Indicates the transaction isolation level that should be used for the connec-
tion, according to com.sun.star.sdbc.TransactionIsolation

TypeMap com::sun::star::container::XNameAccess. The type map that is used for
the custom mapping of SQL structured types and distinct types.

EscapeProcessing boolean ─ Determines if escape processing is on or off. If escape scanning is on
(the default), the driver does the escape substitution before sending the SQL to the
database. This is only evaluated if the CommandType is COMMAND.

QueryTimeOut long ─ Retrieves the number of seconds the driver waits for a Statement to execute.
If the limit is exceeded, a SQLException is thrown. There is no limitation if set to
zero.

MaxFieldSize long ─ Returns the maximum number of bytes allowed for any column value. This
limit is the maximum number of bytes that can be returned for any column value.
The limit applies only to DataType::BINARY , DataType::VARBINARY ,
DataType::LONGVARBINARY , DataType::CHAR , DataType::VARCHAR , and
DataType::LONGVARCHAR columns. If the limit is exceeded, the excess data is
silently discarded. There is no limitation if set to zero.

MaxRows long ─ Retrieves the maximum number of rows that a ResultSet can contain. If the
limit is exceeded, the excess rows are silently dropped. There is no limitation if set
to zero.

User string ─ Determines the user to open the connection for.

Password string ─ Determines the user to open the connection for.

ResultSetType long ─ Determine the result set type according to
com.sun.star.sdbc.ResultSetType

If the command returns results, that is, it selects data, use XRowSet to manipulate the data, because
XRowSet is derived from XResultSet. For details on manipulating a
com.sun.star.sdb.ResultSet, see 12.3.3 Database Access - Manipulating Data - Result Sets.

822 OpenOffice.org 1.1 Developer's Guide • June 2003

The code fragment below shows how to create a RowSet. (Database /RowSet.java)
public static void useRowSet(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // first we create our RowSet object
 XRowSet xRowRes = (XRowSet)UnoRuntime.queryInterface(XRowSet.class,
 _rMSF.createInstance("com.sun.star.sdb.RowSet"));
 System.out.println("RowSet created!");

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xRowRes);
 xProp.setPropertyValue("DataSourceName", "Bibliography");
 xProp.setPropertyValue("Command", "biblio");
 xProp.setPropertyValue("CommandType", new Integer(com.sun.star.sdb.CommandType.TABLE));
 xRowRes.execute();
 System.out.println("RowSet executed!");
 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class, xRowRes);
 xComp.dispose();
 System.out.println("RowSet destroyed!");
}

The value of the read- only RowSet properties is only valid after the first call to execute() on the
RowSet. This snippet shows how to read the privileges out of the RowSet: (Database /RowSet.java)
public static void showRowSetReadOnlyProps(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception
{
 // first we create our RowSet object
 XRowSet xRowRes =
 (XRowSet)UnoRuntime.queryInterface(XRowSet.class_rMSF.createInstance(
 "com.sun.star.sdb.RowSet"));
 System.out.println("RowSet created!");

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xRowRes);
 xProp.setPropertyValue("DataSourceName", "Bibliography");
 xProp.setPropertyValue("Command", "biblio");
 xProp.setPropertyValue("CommandType", new Integer(com.sun.star.sdb.CommandType.TABLE));
 xRowRes.execute();
 System.out.println("RowSet executed!");
 Integer aPriv = (Integer)xProp.getPropertyValue("Privileges");
 int nPriv = aPriv.intValue();

 if ((nPriv & Privilege.SELECT) == Privilege.SELECT) System.out.println("SELECT");
 if ((nPriv & Privilege.INSERT) == Privilege.INSERT) System.out.println("INSERT");
 if ((nPriv & Privilege.UPDATE) == Privilege.UPDATE) System.out.println("UPDATE");
 if ((nPriv & Privilege.DELETE) == Privilege.DELETE) System.out.println("DELETE");

 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class, xRowRes);
 xComp.dispose();
 System.out.println("RowSet destroyed!");
}

The next example reads the properties IsRowCountFinal and RowCount. (Database /RowSet.java)
public static void showRowSetRowCount(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // first we create our RowSet object
 XRowSet xRowRes = (XRowSet)UnoRuntime.queryInterface(XRowSet.class,
 _rMSF.createInstance("com.sun.star.sdb.RowSet"));
 System.out.println("RowSet created!");

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class,xRowRes);
 xProp.setPropertyValue("DataSourceName","Bibliography");
 xProp.setPropertyValue("Command","biblio");
 xProp.setPropertyValue("CommandType",new Integer(com.sun.star.sdb.CommandType.TABLE));
 xRowRes.execute();
 System.out.println("RowSet executed!");

 // now look if the RowCount is already final
 System.out.println("The RowCount is final: " + xProp.getPropertyValue("IsRowCountFinal"));
 XResultSet xRes = (XResultSet)UnoRuntime.queryInterface(XResultSet.class,xRowRes);
 xRes.last();

 System.out.println("The RowCount is final: " + xProp.getPropertyValue("IsRowCountFinal"));
 System.out.println("There are " + xProp.getPropertyValue("RowCount") + " rows!");

 // now destroy the RowSet
 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class,xRowRes);
 xComp.dispose();
 System.out.println("RowSet destroyed!");
}

Chapter 12 Database Access 823

Occasionally, it is useful for the user to be notified when the RowCount is final. That is accom-
plished by adding a com.sun.star.beans.XPropertyChangeListener for the property IsRow-
CountFinal.

Events and Other Notifications
[TOPIC:com.sun.star.sdb.XRowSetApproveBroadcaster;com.sun.star.sdb.XRowSetApproveListen
er;com.sun.star.sdbc.XRowSetListener;com.sun.star.lang.EventObject]The RowSet supports a
number of events and notifications. First, there is the
com.sun.star.sdb.XRowSetApproveBroadcaster interface of the RowSet that allows the user to
add or remove objects derived from the interface com.sun.star.sdb.XRowSetApproveListener.
The interface com.sun.star.sdb.XRowSetApproveListener defines the following methods:

Methods of com.sun.star.sdb.XRowSetApproveListener
approveCursorMove() Called before a RowSet's cursor is moved.

approveRowChange() Called before a row is inserted, updated, or deleted.

approveRowSetChange
()

Called before a RowSet is changed or before a RowSet is re-executed.

All three methods return a boolean value that allows the RowSet to continue when it is true,
otherwise the current action is stopped.

Additionally, the RowSet supports com.sun.star.sdbc.XRowSet that allows the user to add
objects which are notified when the RowSet has changed. This has to be a
com.sun.star.sdbc.XRowSetListener. The methods are:

Methods of com.sun.star.sdbc.XRowSetListener
cursorMoved Called when a RowSet's cursor has been moved.

rowChanged Called when a row has been inserted, updated, or deleted.

rowSetChanged Called when the entire row set has changed, or when the row set has been re-
executed.

When an event occurs, the appropriate listener method is called to notify the registered listener(s).
If a listener is not interested in a particular kind of event, it implements the method for that event
as no-op. All listener methods take a com.sun.star.lang.EventObject struct that ontains the
RowSet object which is the source of the event.

The following table lists the order of events after a specific method call on the RowSet. First the
movements.

Method Call Event Call (before) Event Call (after)
beforeFirst()
first()
next()
previous()
last()
afterLast()
absolute()
relative()
moveToBookmark()
moveRelativeToBookmark()

approveCursorMove() cursorMoved(), only when the move-
ment was successful

modified() event from
com.sun.star.beans.XPropertySet
of property RowCount, only when
changed

modified() event from
com.sun.star.beans.XPropertySet
of property RowCountFinal, only when
changed

824 OpenOffice.org 1.1 Developer's Guide • June 2003

Method Call Event Call (before) Event Call (after)
updateRow()
deleteRow()
insertRow()

approveRowChange() rowChanged()

execute() approveRowSetChange() rowSetChanged()

Consider a simple class which implements the two listener interfaces described above.
(Database /RowSetEventListener.java)
import com.sun.star.sdb.XRowSetApproveListener;
import com.sun.star.sdbc.XRowSetListener;
import com.sun.star.sdb.RowChangeEvent;
import com.sun.star.lang.EventObject;

public class RowSetEventListener implements XRowSetApproveListener,XRowSetListener {
 // XEventListener
 public void disposing(com.sun.star.lang.EventObject event) {
 System.out.println("RowSet will be destroyed!");
 }

 // XRowSetApproveBroadcaster
 public boolean approveCursorMove(EventObject event) {
 System.out.println("Before CursorMove!");
 return true;
 }
 public boolean approveRowChange(RowChangeEvent event) {
 System.out.println("Before row change!");
 return true;
 }
 public boolean approveRowSetChange(EventObject event) {
 System.out.println("Before RowSet change!");
 return true;
 }

 // XRowSetListener
 public void cursorMoved(com.sun.star.lang.EventObject event) {
 System.out.println("Cursor moved!");
 }
 public void rowChanged(com.sun.star.lang.EventObject event) {
 System.out.println("Row changed!");
 }
 public void rowSetChanged(com.sun.star.lang.EventObject event) {
 System.out.println("RowSet changed!");
 }
}

The following method uses the listener implementation above. (Database /RowSet.java)
public static void showRowSetEvents(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // first we create our RowSet object
 XRowSet xRowRes = (XRowSet)UnoRuntime.queryInterface(
 XRowSet.class, _rMSF.createInstance("com.sun.star.sdb.RowSet"));

 System.out.println("RowSet created!");
 // add our Listener
 System.out.println("Append our Listener!");
 RowSetEventListener pRow = new RowSetEventListener();
 XRowSetApproveBroadcaster xApBroad = (XRowSetApproveBroadcaster)UnoRuntime.queryInterface(
 XRowSetApproveBroadcaster.class, xRowRes);
 xApBroad.addRowSetApproveListener(pRow);
 xRowRes.addRowSetListener(pRow);

 // set the properties needed to connect to a database
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class,xRowRes);
 xProp.setPropertyValue("DataSourceName", "Bibliography");
 xProp.setPropertyValue("Command", "biblio");
 xProp.setPropertyValue("CommandType", new Integer(com.sun.star.sdb.CommandType.TABLE));

 xRowRes.execute();
 System.out.println("RowSet executed!");

 // do some movements to check if we got all notifications
 XResultSet xRes = (XResultSet)UnoRuntime.queryInterface(XResultSet.class, xRowRes);
 System.out.println("beforeFirst");
 xRes.beforeFirst();
 // this should lead to no notifications because
 // we should stand before the first row at the beginning
 System.out.println("We stand before the first row: " + xRes.isBeforeFirst());

 System.out.println("next");
 xRes.next();
 System.out.println("next");

Chapter 12 Database Access 825

 xRes.next();
 System.out.println("last");
 xRes.last();
 System.out.println("next");
 xRes.next();
 System.out.println("We stand after the last row: " + xRes.isAfterLast());
 System.out.println("first");
 xRes.first();
 System.out.println("previous");
 xRes.previous();
 System.out.println("We stand before the first row: " + xRes.isBeforeFirst());
 System.out.println("afterLast");
 xRes.afterLast();
 System.out.println("We stand after the last row: " + xRes.isAfterLast());

 // now destroy the RowSet
 XComponent xComp = (XComponent)UnoRuntime.queryInterface(XComponent.class, xRowRes);
 xComp.dispose();
 System.out.println("RowSet destroyed!");
}

Clones of the RowSet Service
Occasionally, a second or third RowSet that operates on the same data as the original RowSet, is
required. This is useful when the rows should be displayed in a graphical representation. For the
graphical part a clone can be used which only moves through the rows and displays the data.
When a modification occurs on one specific row, the original RowSet can be used to do this task.

The new clone is an object that supports the service com.sun.star.sdb.ResultSet if it was
created using the interface com.sun.star.sdb.XResultSetAccess of the original RowSet. It is
interoperable with the RowSet that created it, for example, bookmarks can be exchanged between
both sets. If the original RowSet has not been executed before, null is returned.

826 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 177: Data access of RowSet and clone

12.3.2 Statements
The basic procedure to communicate with a database using an SQL statement is always the same:

1. Get a connection object.

2. Ask the connection for a statement.

3. The statement executes a query or an update command. Use the appropriate method to execute
the command.

4. If the statement returns a result set, process the result set.

Creating Statements
A Statement object is required to send SQL statements to the Database Management System
(DBMS). A Statement object is created using createStatement() at the
com.sun.star.sdbc.XConnection interface of the connection. It returns a
com.sun.star.sdbc.Statement service. This Statement is generic, that is, it does not contain any
SQL command. It can be used for all kinds of SQL commands. Its main interface is
com.sun.star.sdbc.XStatement:

com::sun::star::sdbc::XResultSet executeQuery([in] string sql)
long executeUpdate([in] string sql)
boolean execute([in] string sql)
com::sun::star::sdbc::XConnection getConnection()

Once a Statement is obtained, choose the appropriate execution method for the SQL command.
For a SELECT statement, use the method executeQuery(). For UPDATE, DELETE and INSERT state-
ments, the proper method is executeUpdate(). To have multiple result sets returned, use
execute() together with the interface com.sun.star.sdbc.XMultipleResults of the statement.

Data definition commands, such as CREATE, DROP, ALTER, and GRANT, can be issued with executeUpdate
().

Consider how an XConnection is used to create an XStatement in the following example:
public static void executeSelect(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 // connect
 Object dataSource = xNameAccess.getByName("Ada01");
 XDataSource xDataSource = (XDataSource)UnoRuntime.queryInterface(XDataSource.class, dataSource);
 Object interactionHandler = _rMSF.createInstance("com.sun.star.sdb.InteractionHandler");
 XInteractionHandler xInteractionHandler = (XInteractionHandler)UnoRuntime.queryInterface(
 XInteractionHandler.class, interactionHandler);
 XCompletedConnection xCompletedConnection = (XCompletedConnection)UnoRuntime.queryInterface(
 XCompletedConnection.class, dataSource);
 XConnection xConnection = xCompletedConnection.connectWithCompletion(xInteractionHandler);

 // the connection creates a statement
 XStatement xStatement = xConnection.createStatement();
 // The XStatement interface is used to execute a SELECT command
 // Double quotes for identifiers in the SELECT string must be escaped in Java
 XResultSet xResult = xStatement.executeQuery("Select * from \"Table1\"");
 // process the result ...
 XRow xRow = (XRow)UnoRuntime.queryInterface(XRow.class, xResult);
 while (xResult != null && xResult.next()) {
 System.out.println(xRow.getString(1));
 }
}

The remainder of this section discusses how to enter data into a table and retrieving the data later,
using INSERT and SELECT commands with a com.sun.star.sdbc.Statement.

Chapter 12 Database Access 827

Inserting and Updating Data
The following examples use a sample Adabas D database. Generate an Adabas D database in the
OpenOffice.org API installation and define a new table named SALESMAN.

Illustration 175 shows the definition of the SALESMAN table in the OpenOffice.org API data
source administrator. The description column shows the lengths defined for the text fields of the
table. After all the fields are defined, right-click the row header of the column SNR and choose
Primary Key to make SNR the primary key. Afterwards a small key icon in the row header shows
that SNR is the primary key of the table SALESMAN. When completed, save the table as
SALESMAN. It is important to use uppercase letters for the table name, otherwise the example
SQL code will not work.

The table does not contain any data. Use the following INSERT command to insert data into the
table one row at a time:
INSERT INTO SALESMAN (
 SNR,
 FIRSTNAME,
 LASTNAME,
 STREET,
 STATE,
 ZIP,
 BIRTHDATE
)
VALUES (
 1,
 'Joseph',
 'Smith',
 'Bond Street',
 'CA',
 '95460',
 '1946-07-02'
)

Note the single quotes around the values for the text fields. Single quotes denote character strings in SQL,
while double quotes are used for case-sensitive identifiers,such as table and column names.

The following code sample inserts one row of data with the value 1 in the column SNR, 'Joseph'
in FIRSTNAME, 'Smith' in LASTNAME,with other information in the following columns of the table
SALESMAN. To issue the command against the database, create a Statement object and then
execute it using the method executeUpdate():
 XStatement xStatement = xConnection.createStatement();

 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +

828 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 178: SALESMAN Table Design

 "VALUES (1, 'Joseph', 'Smith','Bond Street','CA','95460','1946-07-02')");

The next call to executeUpdate() inserts more rows into the table SALESMAN. Note the State-
ment object stmt is reused, rather than creating a new one for each update.
 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (2, 'Frank', 'Jones', 'Lake Silver', 'CA', '95460', '1963-12-24')");

 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (3, 'Jane', 'Esperanza', '23 Hollywood drive', 'CA', '95460', '1972-01-04')");

 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (4, 'George', 'Flint', '12 Washington street', 'CA', '95460', '1953-02-13')");

 xStatement.executeUpdate("INSERT INTO SALESMAN (" +
 "SNR, FIRSTNAME, LASTNAME, STREET, STATE, ZIP, BIRTHDATE) " +
 "VALUES (5, 'Bob', 'Meyers', '2 Moon way', 'CA', '95460', '1949-09-07')");

Updating tables is basically the same process. The SQL command:
UPDATE SALESMAN
SET STREET='Grant Street', STATE='FL'
WHERE SNR=2

writes a new street and state entry for Frank Jones who has SNR=2. The corresponding execute-
Update() call looks like this:
 int n = xStatement.executeUpdate("UPDATE SALESMAN " +
 "SET STREET='Grant Street', STATE='FL' " +
 "WHERE SNR=2");

The return value of executeUpdate() is an int that indicates how many rows of a table were
updated. Our update command affected one row, so n is equal to 1.

Note that it depends on the database and the driver,if the return value of executeUpdate() reflects the
actual changes.

Getting Data from a Table
Now that the table SALESMAN has values in it, write a SELECT statement to access those values.
The asterisk * in the following SQL statement indicates that all columns should be selected. Since
there is no WHERE clause to select less rows, the following SQL statement selects the whole table:
SELECT * FROM SALESMAN

The result contains the following data:

SNR FIRSTNAME LASTNAME STREET STATE ZIP BIRTHDATE
1 Joseph Smith Bond Street CA 95460 07.02.46

2 Frank Jones Lake silver CA 95460 24.12.63

3 Jane Esperanza 23 Hollywood drive CA 95460 01.04.72

4 George Flint 12 Washington street CA 95460 13.02.53

5 Bob Meyers 2 Moon way CA 95460 07.09.49

The following is another example of a SELECT statement. This statement gets a list with the names
and addresses of all the salespersons. Only the columns FIRSTNAME, LASTNAME and STREET
were selected.
SELECT FIRSTNAME, LASTNAME, STREET FROM SALESMAN

The result of this query only contains three columns:

Chapter 12 Database Access 829

FIRSTNAME LASTNAME STREET
Joseph Smith Bond Street

Frank Jones Lake silver

Jane Esperansa 23 Hollywood drive

George Flint 12 Washington street

Bob Meyers 2 Moon way

The SELECT statement above extracts all salespersons in the table. The following SQL statement
limits the SALESMAN SELECT to salespersons who were born before 01/01 /1950:
SELECT FIRSTNAME, LASTNAME, BIRTHDATE
FROM SALESMAN
WHERE BIRTHDATE < '1950-01-01'

The resulting data is:

FIRSTNAME LASTNAME BIRTHDATE
Joseph Smith 02/07 /46

Bob Meyers 09/07 /49

When a database is accessed through the OpenOffice.org API database integration, the results are
retrieved through ResultSet objects. The next section discusses how to use result sets. The
following executeQuery() call executes the SQL command above. Note that the Statement is
used again: (Database /Sales.java)
com.sun.star.sdbc.XResultSet xResult = xStatement.executeQuery("SELECT FIRSTNAME, LASTNAME, BIRTHDATE "
+
 "FROM SALESMAN " +
 "WHERE BIRTHDATE < '1950-01-01'");

12.3.3 Result Sets
The ResultSet objects represent the output of an SQL SELECT command in data rows and
columns to retrieve the data using a row cursor that points to one data row at a time. The
following illustration shows the inheritance of com.sun.star.sdb.ResultSet. Each layer of the
OpenOffice.org API database integration adds capabilities to OpenOffice.org API result sets.

The fundamental com.sun.star.sdbc.ResultSet is the most powerful of the three result set
services. Basically this result set is sufficient to process SELECT results. It is used to navigate
through the resulting rows, and to retrieve and update data rows and the column values in a row.

830 OpenOffice.org 1.1 Developer's Guide • June 2003

The com.sun.star.sdbcx.ResultSet can add bookmarks through
com.sun.star.sdbcx.XRowLocate and allows row deletion by bookmarks through
com.sun.star.sdbcx.XDeleteRows.

The com.sun.star.sdb.ResultSet service extends the com.sun.star.sdbcx.ResultSet service
by the additional interface com.sun.star.sdbcx.XColumnsSupplier that allows the user to
access information about the appearance of the selected columns in the application. The interface
XColumnsSupplier returns a com.sun.star.sdbcx.Container of ResultColumns.

Chapter 12 Database Access 831

Illustration 179: ResultSet

The com.sun.star.sdb.ResultColumn service inherits the properties of the services
com.sun.star.sdbcx.Column and com.sun.star.sdb.ColumnSettings.

The following table explains the properties introduced with com.sun.star.sdb.ResultColumn.
For the inherited properties, refer to the section 12.2.2 Database Access - Data Sources in
OpenOffice.org API - DataSources - Tables and Columns.

Properties of com.sun.star.sdb.ResultColumn
IsSearchable boolean ─ Indicates if the column can be used in a “WHERE” clause.

IsSigned boolean ─ Indicates if values in the column are signed numbers.

IsCaseSensitive boolean ─ Indicates if a column is case sensitive.

DisplaySize long ─ Indicates the column's normal, maximum width in chars.

Label string ─ Gets the suggested column title for use with GUI controls and printouts.

IsReadOnly boolean ─ If True, cannot write to the column.

IsWritable boolean ─ If True, an attempt to write to the column may succeed.

IsDefinitelyWri-
table

boolean ─ If True, the column is writable.

ServiceName string ─ Returns the fully-qualified name of the service that is returned when the
com.sun.star.sdbc.XRow method getObject() is called to retrieve a value
from the column.

832 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 180: ResultColumn

Properties of com.sun.star.sdb.ResultColumn
TableName string ─ Gets the database table name where the column comes from.

SchemaName string ─ Gets the schema name of the column.

CatalogName string ─ Gets the catalog name of the column.

Retrieving Values from Result Sets
A call to execute() on a com.sun.star.sdb.RowSet or a call to executeQuery() on a Statement
produces a com.sun.star.sdb.ResultSet. (Database /Sales.java)
com.sun.star.sdbc.XResultSet xResult = xStatement.executeQuery("SELECT FIRSTNAME, LASTNAME, STREET " +
 "FROM SALESMAN " +
 "VWHERE BIRTHDATE < '1950-01-01'");

Moving the Result Set Cursor
The ResultSet stored in the variable xResult contains the following data after the call above:

FIRSTNAME LASTNAME BIRTHDATE
Joseph Smith 02/07 /46

Bob Meyers 09/07 /49

To access the data, go to each row and retrieve the values according to their types. The method
next() is used to move the row cursor from row to row. Since the cursor is initially positioned just
above the first row of a ResultSet object, the first call to next() moves the cursor to the first row
and makes it the current row. For the same reason, use the method next() to access the first row
even if there is only one row in a result set. Subsequent invocations of next() move the cursor
down one row at a time.

The interface com.sun.star.sdbc.XResultSet offers methods to move to specific row numbers,
and to positions relative to the current row, in addition to moving the cursor back and forth one
row at a time:

// move one row at a time
boolean next()
boolean previous()
// move a number of rows
boolean absolute([in] long row)
boolean relative([in] long rows)
// move to result set borders and beyond
boolean first()
boolean last()
void beforeFirst()
void afterLast()
//detect position
boolean isBeforeFirst()
boolean isAfterLast()
boolean isFirst()
boolean isLast()
long getRow()
// refetch row from the database
void refreshRow()
// row has been updated, inserted or deleted
boolean rowUpdated()
boolean rowInserted()
boolean rowDeleted()
// get the statement which created the result set

Chapter 12 Database Access 833

com::sun::star::uno::XInterface getStatement()

Note that you can only move the cursor backwards if you set the statement property ResultSetType to
SCROLL_INSENSITIVE or SCROLL_SENSITIVE. For details, refer to chapter 12.3.3 Database Access -
Manipulating Data - Result Sets - Scrollable Result Sets.

Using the getXXX Methods
To get column values from the current row, use the interface com.sun.star.sdbc.XRow. It offers a
large number of get methods for all SDBC data types, or rather getXXX methods. The XXX stands
for the type retrieved by the method.

Usually, the getXXX method is used for the appropriate type to retrieve the value in each column.
For example, the first column in each row of xResult is FIRSTNAME. It is the first column and
contains a value of SQL type VARCHAR. The appropriate method to retrieve a VARCHAR value is
getString(). It should be used for the second column, as well. The third column BIRTHDATE
stores DATE values, the method for date types is getDate(). SDBC is flexible and allows a
number of type conversions through getXXX. See the table below for details.

The following code accesses the values stored in the current row of xResult and prints a line with
the column values separated by tabs. Each time next() is invoked, the next row becomes the
current row, and the loop continues until there are no more rows in xResult.
(Database /SalesMan.java)
public static void selectSalespersons(XMultiServiceFactory _rMSF) throws com.sun.star.uno.Exception {
 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface
 XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 //connect
 Object dataSource = xNameAccess.getByName("Ada01");
 XDataSource xDataSource = (XDataSource)UnoRuntime.queryInterface(XDataSource.class, dataSource);
 Object interactionHandler = _rMSF.createInstance("com.sun.star.sdb.InteractionHandler");
 XInteractionHandler xInteractionHandler = (XInteractionHandler)UnoRuntime.queryInterface(
 XInteractionHandler.class, interactionHandler);
 XCompletedConnection xCompletedConnection = (XCompletedConnection)UnoRuntime.queryInterface(
 XCompletedConnection.class, dataSource);
 XConnection xConnection = xCompletedConnection.connectWithCompletion(xInteractionHandler);

 // create statement and execute query
 XStatement xStatement = xConnection.createStatement();
 XResultSet xResult = xStatement.executeQuery("SELECT FIRSTNAME, LASTNAME, BIRTHDATE FROM SALESMAN");

 // process result
 XRow xRow = (XRow)UnoRuntime.queryInterface(XRow.class, xResult);
 while (xResult != null && xResult.next()) {
 String firstName = xRow.getString(1);
 String lastName = xRow.getString(2);
 com.sun.star.util.Date birthDate = xRow.getDate(3);
 System.out.println(firstName + "\t" + lastName + "\t\t" +
 birthDate.Month + "/" + birthDate.Day + "/" + birthDate.Year);
 }
}

The output looks like this:

Joseph Smith 7/2/1946
Frank Jones 12/24/1963
Jane Esperanza 4/1/1972
George Flint 2/13/1953
Bob Meyers 9/7/1949

In this code, how the getXXX methods work are shown and the two getXXX calls are examined.
String firstName = xRow.getString(1);

The method getString() is invoked on xRow , that is, getString() gets the value stored in
column no. 1 in the current row of xResult, which is FIRSTNAME. The value retrieved by
getString() has been converted from a VARCHAR to a String in the Java programming
language, and assigned to the String object firstname.

834 OpenOffice.org 1.1 Developer's Guide • June 2003

The situation is similar with the method getDate(). It retrieves the value stored in column no. 3
(BIRTHDATE), which is an SQL DATE , and converts it to a com.sun.star.util.Date before
assigning it to the variable birthDate.

Note that the column number refers to the column number in the result set, not in the original
table.

SDBC is flexible as to which getXXX methods can be used to retrieve the various SQL types. For
example, the method getInt() can be used to retrieve any of the numeric or character types. The
data it retrieves is converted to an int; that is, if the SQL type is VARCHAR, SDBC attempts to parse
an integer out of the VARCHAR. To be sure that no information is lost, the method getInt() is only
recommended for SQL INTEGER types, and it cannot be used for the SQL types BINARY, VARBI-
NARY , LONGVARBINARY, DATE, TIME, or TIMESTAMP.

Although getString() is recommended for the SQL types CHAR and VARCHAR, it is possible to
retrieve any of the basic SQL types with it. The new SQL3 data types can not be retrieved with it.
Getting values with getString() can be useful, but has its limitations. For instance, if it is used to
retrieve a numeric type, getString() converts the numeric value to a Java String object, and the
value has to be converted back to a numeric type before it can be used for numeric operations.

The value will be treated as a string, so if an application is to retrieve and display arbitrary
column values of any standard SQL type other than SQL3 types, use getString().

 shows all getXXX() methods and the corresponding SDBC data types defined in
com.sun.star.sdbc.DataType. The illustration above shows which methods can legally be used
to retrieve SQL types, and which methods are recommended for retrieving the various SQL types.

• x with grey background indicates that the getXXX() method is the recommended method to
retrieve an SDBC data type. No data will be lost due to type conversion.

• x indicates that the getXXX() method may legally be used to retrieve the given SDBC type.
However, type conversion will take place and affect the values you obtain.

Chapter 12 Database Access 835

Illustration 181: Methods to Retrieve SQL Types

Scrollable Result Sets
The interface com.sun.star.sdbc.XResultSet offers methods to move the cursor back and forth
to an arbitrary row, and get the current position of the cursor. Scrollable result sets are necessary
to create GUI tools that can browse result sets. It also may be required to move a specific row to
work with it. Before taking advantage of these features, create a scrollable ResultSet object. The
following lines of code illustrate one way to create a scrollable ResultSet object:
 XStatement xStatement = xConnection.createStatement();
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xStatement);

 xProp.setPropertyValue("ResultSetType",new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new java.lang.Integer
(ResultSetConcurrency.UPDATABLE));

 XResultSet xResult = xStatement.executeQuery("SELECT FIRSTNAME, LASTNAME FROM SALES");

This code is similar to what was used earlier, except that it sets two property values at the State-
ment object. These properties have to be set before the statement is executed.

The value of the property ResultSetType must be one of three constants defined in
com.sun.star.sdbc.ResultSetType: FORWARD_ONLY, SCROLL_INSENSITIVE and SCROLL_SENSI-
TIVE.

The property ResultSetConcurrency must be one out of the two
com.sun.star.sdbc.ResultSetConcurrency constants READ_ONLY and UPDATABLE. When a
ResultSetType is specified, it must be specified if it is read- only or modifiable.

If any constants for the type and modifiability of a ResultSet object are not specified,
FORWARD_ONLY and READ_ONLY will automatically be created.

Specifying the constant FORWARD_ONLY creates a non-scrollable result set, that is, the cursor moves
forward only. A scrollable ResultSet is obtained by specifying SCROLL_INSENSITIVE or
SCROLL_SENSITIVE. Sensitive or insensitive refers to changes made to the underlying data after
the result set has been opened. A SCROLL_INSENSITIVE result set does not reflect changes to the
underlying data, while a SCROLL_SENSITIVE result set shows changes. However, not all drivers
and databases support change sensitivity.

In scrollable result sets, the counterpart to next() is the method previous(), which moves the
cursor backward. Both methods return false when the cursor goes to the position after the last
row or before the first row. This allows them to be used in a while loop.

The following two examples show the usage of next() and previous() together with while:
(Database /Sales.java)
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType",new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new java.lang.Integer
(ResultSetConcurrency.READ_ONLY));

 XResultSet srs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");

 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, srs);

 while (srs.next()) {
 String name = row.getString(1);
 float price = row.getFloat(2);
 System.out.println(name + " " + price);
}

The printout will look similar to this:

Linux 32
Beef 15.78
Orange juice 1.50

836 OpenOffice.org 1.1 Developer's Guide • June 2003

To process the rows going backward, the cursor must start out after the last row. The cursor is
moved to the position after the last row with the method afterLast(). Then previous() moves
the cursor from the position after the last row to the last row, and then up to the first row with
each iteration through the while loop. The loop ends when the cursor reaches the position before
the first row, where previous() returns false. (Database /Sales.java)
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class,stmt);
 xProp.setPropertyValue("ResultSetType", new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new java.lang.Integer
(ResultSetConcurrency.READ_ONLY));

 XResultSet srs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");

 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, srs);

 srs.afterLast();
 while (srs.previous()) {
 String name = row.getString(1);
 float price = row.getFloat(2);
 System.out.println(name + " " + price);
}

The printout will look similar to this:

Orange juice 1.50
Beef 15.78
Linux 32

The column values are the same, but the rows are in the reverse order.

The cursor can be moved to a specific row in a ResultSet object. The methods first(), last(),
beforeFirst(), and afterLast() move the cursor to the row indicated by the method names.

The method absolute() moves the cursor to the row number indicated in the argument passed. If
the number is positive, the cursor moves the given number from the beginning. Calling absolute
(1) moves the cursor to the first row. If the number is negative, the cursor moves the given
number of rows from the end. Calling absolute(-1) sets the cursor to the last row. The following
line of code moves the cursor to the fourth row of srs:
srs.absolute(4);

If srs has 500 rows, the following line of code moves the cursor to row 497:
srs.absolute(-4);

The method relative() moves the cursor by an arbitrary number of rows from the current row.
A positive number moves the cursor forward, and a negative number moves the cursor back-
wards. For example, in the following code fragment, the cursor moves to the fourth row, then to
the first row, and finally to the third row:
 srs.absolute(4); // cursor is on the fourth row
 ...
 srs.relative(-3); // cursor is on the first row
 ...
 srs.relative(2); // cursor is on the third row

The method getRow() returns the number of the current row. For example, use getRow() to verify
the current position of the cursor in the previous example using the following code:
 srs.absolute(4);
 int rowNum = srs.getRow(); // rowNum should be 4
 srs.relative(-3);
 rowNum = srs.getRow(); // rowNum should be 1
 srs.relative(2);
 rowNum = srs.getRow(); // rowNum should be 3

Note that some drivers do not support the getRow method. They always return 0.

There are four methods to verify if the cursor is at a particular position. The position is stated in
their names: isFirst(), isLast(), isBeforeFirst(), and isAfterLast(). These methods return
a boolean that can be used in a conditional statement. For example, the following code fragment

Chapter 12 Database Access 837

tests if the cursor is after the last row before invoking the method previous() in a while loop. If
the method isAfterLast() returns false, the cursor is not after the last row, so the method
afterLast can be invoked. This guarantees that the cursor is after the last row and that using the
method previous() in the while loop stop at every row in srs.
 if (srs.isAfterLast() == false) {
 srs.afterLast();
 }
 while (srs.previous()) {
 String name = row.getString(1);
 float price = row.getFloat(2);
 System.out.println(name + " " + price);
 }

How to use the two methods from the XResultSetUpdate interface to move the cursor: moveToIn-
sertRow() and moveToCurrentRow() are discussed in the next section. There are examples illus-
trating why moving the cursor to certain positions may be required.

Modifiable Result Sets
Another feature of SDBC is the ability to update rows in a result set using methods in the
programming language, rather than sending an SQL command. Before doing this, a modifiable
result set must be created. To create a modifiable result set, supply the ResultSetConcurrency
constant UPDATABLE to the Statement property ResultSetConcurrency, so that the Statement
object creates an modifiable ResultSet object each time it executes a query.

The following code fragment creates a modifiable XResultSet object rs . Note that the code also
makes rs scrollable. A modifiable ResultSet object does not have to be scrollable, but when
changes are made to a result set, the user may want to move around in it. With a scrollable result
set, there is the ability to move to particular rows that you can work with. If the type is
SCROLL_SENSITIVE, the new value in a row can be obtained after it has changed without
refreshing the whole result set.
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType", new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new java.lang.Integer
(ResultSetConcurrency.UPDATABLE));

 XResultSet rs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");

 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, rs);

The ResultSet object rs may look similar to this:

NAME PRICE
Linux $30.00

Beef $15.78

Orange juice $1.50

The methods can now be used in the com.sun.star.sdbc.XRowUpdate interface of the result set
to insert a new row into rs, delete an existing row from rs, or modify a column value in rs.

Update
An update is the modification of a column value in the current row. Suppose the price of orange
juice is lowered to 0.99. Using the example above, the update would look like this:
 stmt.executeUpdate("UPDATE SALES SET PRICE = 0.99" +
 "WHERE SALENR = 4");

838 OpenOffice.org 1.1 Developer's Guide • June 2003

The following code fragment shows another way to accomplish the same update, this time using
SDBC:
 rs.last();
 XRowUpdate updateRow = (XRowUpdate)UnoRuntime.queryInterface(XRowUpdate.class, rs);
 updateRow.updateFloat(2, (float)0.99);

Update operations in the SDBC API affect column values in the row where the cursor is posi-
tioned. In the first line, the ResultSet rs calls last() to move the cursor to the last row where the
column NAME has the value Orange juice. Once the cursor is on the last row, all of the update
methods that are called operate on that row until the cursor is moved to another row.

The second line changes the value of the PRICE column to 0.99 by calling updateFloat(). This
method is used because the column value we want to update is a float in Java programming
language.

The updateXXX() methods in com.sun.star.sdbc.XRowUpdate take two parameters: the number
of the column to update and the new column value. There are specialized updateXXX() methods
for each data type, such as updateString()and updateInt(), just like the getXXX methods
discussed above.

At this point, the price in rs for Orange juice is 0.99, but the price in the table SALES in the data -
base is still 1.50. To ensure the update takes effect in the database and not just the result set, the
com.sun.star.sdbc.XResultSetUpdate method updateRow()is called. Here is what the code
should look like to update rs and SALES:
 rs.last();

 XRowUpdate updateRow = (XRowUpdate)UnoRuntime.queryInterface(XRowUpdate.class, rs);
 updateRow.updateFloat(2, (float)0.99);
 XResultSetUpdate updateRs = (XResultSetUpdate)UnoRuntime.queryInterface(XResultSetUpdate.class, rs);

 // update the data in DBMS
 updateRs.updateRow();

If the cursor is moved to a different row before calling updateRow(), the update is lost. The
update can be cancelled by calling cancelRowUpdates(), for instance, the price should have been
0.79 instead of 0.99. The cancelRowUpdates() has to be invoked before invoking updateRow().
The cancelRowUpdates()does nothing when updateRow() has been called. Note that cancelRow-
Updates cancels all the updates in a row, that is, if there were more than one updateXXX method
in the row, they are all cancelled.. The following code fragment cancels the update to the price
column to 0.99, and then updates it to 0.79:
 rs.last();

 updateRow.updateFloat(2, (float)0.99);
 updateRs.cancelRowUpdates();
 updateRow.updateFloat(2, (float)0.79);
 updateRs.updateRow();

In the above example, only one column value is updated, but an appropriate updateXXX() method
can be called for any or all of the column values in a single row. Updates and related operations
apply to the row where the cursor is positioned. Even if there are many calls to updateXXX
methods, it takes only one call to the method updateRow() to update the database with all
changes made in the current row.

To update the price for beef as well, move the cursor to the row containing that product. The row
for beef immediately precedes the row for orange juice, so the method previous() can be called
to position the cursor on the row for Beef. The following code fragment changes the price in that
row to 10.79 in the result set and underlying table in the database:
 rs.previous();

 updateRow.updateFloat(2, (float)10.79);
 updateRs.updateRow();

Chapter 12 Database Access 839

All cursor movements refer to rows in a ResultSet object, not to rows in the underlying data-
base. If a query selects five rows from a database table, there are five rows in the result set with the
first row being row 1, the second row being row 2, and so on. Row 1 can also be identified as the
first row, and in a result set with five rows, row 5 is the last.

The order of the rows in the result set has nothing to do with the physical order of the rows in the
underlying table. In fact, the order of the rows in a database table is indeterminate. The DBMS
keeps track of which rows were selected, and it makes updates to the proper rows, but they may
be located anywhere in the table physically. When a row is inserted, there is no way to know
where in the table it was inserted.

Insert
The previous section described how to modify a column value using methods in the SDBC API,
rather than SQL commands. With the SDBC API, a new row can also be inserted into a table or an
existing row deleted programmatically.

Suppose our salesman Bob sold a new product to one of our customers, FTOP Darjeeling tea, and
we need to add the new sale to the database. Using the previous example, write code that passes
an SQL insert statement to the DBMS. The following code fragment, in which stmt is a State-
ment object, shows this approach: (Database /Sales.java)
 stmt.executeUpdate("INSERT INTO SALES " +
 "VALUES (4, 102, 5, 'FTOP Darjeeling tea', '2002-01-02',150)");

The same thing can be done, without using any SQL commands, by using ResultSet methods in
the SDBC API. After a ResultSet object is obtained with the results from the table SALES, build
the new row and then insert it into the result set and the table SALES in one step. First, build a new
row in the insert row, a special row associated with every ResultSet object. This row is not part of
the result set. It can be considered as a separate buffer in which a new row is composed prior to
insertion.

The next step is to move the cursor to the insert row by invoking the method moveToInsertRow.().
Then set a value for each column in the row that should not be null by calling the appropriate
updateXXX() method for each value. Note that these are the same updateXXX() methods used to
change a column value in the previous section.

Finally, call insertRow() to insert the row that was populated with values into the result set. This
method simultaneously inserts the row into the ResultSet object, as well as the database table
from where the result set was selected.

The following code fragment creates a scrollable and modifiable ResultSet object rs that
contains all of the rows and columns in the table SALES: (Database /Sales.java)
 XConnection con = XDriverManager.getConnection("jdbc:mySubprotocol:mySubName");
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType", new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new java.lang.Integer
(ResultSetConcurrency.UPDATABLE));

 XResultSet rs = stmt.executeQuery("SELECT * FROM SALES");
 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, rs);

The next code fragment uses the XResultSetUpdate interface of rs to insert the row for FTOP
Darjeeling tea, shown in the SQL code example. It moves the cursor to the insert row, sets the six
column values, and inserts the new row into rs and SALES: (Database /Sales.java)
 XRowUpdate updateRow = (XRowUpdate)UnoRuntime.queryInterface(XRowUpdate.class, rs);
 XResultSetUpdate updateRs = (XResultSetUpdate)UnoRuntime.queryInterface(XResultSetUpdate.class, rs);

 updateRs.moveToInsertRow();

840 OpenOffice.org 1.1 Developer's Guide • June 2003

 updateRow.updateInt(1, 4);
 updateRow.updateInt(2, 102);
 updateRow.updateInt(3, 5);
 updateRow.updateString(4, "FTOP Darjeeling tea");
 updateRow.updateDate(5, new Date((short)1, (short)2, (short)2002));
 updateRow.updateFloat(6, 150);

 updateRs.insertRow();

The updateXXX() methods behave differently from the way they behaved in the update examples.
In those examples, the value set with an updateXXX() method immediately replaced the column
value in the result set, because the cursor was on a row in the result set. When the cursor is on the
insert row, the value set with an updateXXX() method is immediately set, but it is set in the insert
row rather than in the result set itself.

In updates and insertions, calling an updateXXX() method does not affect the underlying database
table. The method updateRow() must be called to have updates occur in the database. For inser-
tions, the method insertRow() inserts the new row into the result set and the database at the
same time.

If a value is not supplied for a column that was defined to accept SQL NULL values, then the value
assigned to that column is NULL . If a column does not accept null values, an SQLException is
returned when an updateXXX() method is not called to set a value for it. This is also true if a table
column is missing in the ResultSet object. In the example above, the query was SELECT *
FROM SALES, which produced a result set with all the columns of all the rows. To insert one or
more rows, the query does not have to select all rows, but it is advisable to select all columns.
Additionally if the table has many rows, use a WHERE clause to limit the number of rows returned
by the SELECT statement.

After the method insertRow()is called, start building another insert row, or move the cursor back
to a result set row. Any of the methods can be executed that move the cursor to a specific row,
such as first(), last(), beforeFirst(), afterLast(), and absolute(). The methods previous
(), relative(), and moveToCurrentRow()can also be used. Note that only moveToCurrentRow()
can be invoked as long as the cursor is on the insert row.

When the method moveToInsertRow()is called, the result set records which row the cursor is in,
that is by definition the current row. As a consequence, the method moveToCurrentRow() can
move the cursor from the insert row back to the row that was the current row previously. This also
explains why the methods previous() and relative()can be used, because require movement
relative to the current row.

Delete
In the previous sections, how to update a column and insert a new row was explained. This
section discusses how to modify the ResultSet object by deleting a row. The method deleteRow
()is called to delete the row where the cursor is placed. For example, to delete the fourth row in
the ResultSet rs, the code look like this: (Database /Sales.java)
 rs.absolute(4);

 XResultSetUpdate updateRs = (XResultSetUpdate)UnoRuntime.queryInterface(XResultSetUpdate.class, rs);
 updateRs.deleteRow();

The fourth row is removed from rs and also from the database.

The only issue about deletions is what the ResultSet object does when it deletes a row. With
some SDBC drivers, a deleted row is removed and no longer visible in a result set. Other SDBC
drivers use a blank row as a placeholder (a "hole") where the deleted row used to be. If there is a
blank row in place of the deleted row, the method absolute() can be used with the original row
positions to move the cursor, because the row numbers in the result set are not changed by the
deletion.

Chapter 12 Database Access 841

Remember that different SDBC drivers handle deletions differently. For example, if an application
is meant to run with different databases, the code should not depends on holes in a result set.

Seeing Changes in Result Sets
When data is modified in a ResultSet object, the change is always visible immediately. That is, if
the same query is re-executed, a new result set is produced based on the data currently in a table.
This result set reflects the earlier changes.

If the changes made by you or others are visible while the ResultSet object is open, is dependent
on the DBMS, the driver, and the type of ResultSet object.

With a SCROLL_SENSITIVE ResultSetType object, the updates to column values are visible. As
well, insertions and deletions are visible, but to ensure this information is returned, use the
com.sun.star.sdbc.XDatabaseMetaData methods.

The amount of visibility for changes can be regulated by raising or lowering the transaction isola-
tion level for the connection with the database. For example, the following line of code, where con
is an active Connection object, sets the connection's isolation level to READ_COMMITTED:
 con.setTransactionIsolation(TransactionIsolation.READ_COMMITTED);

With this isolation level, the ResultSet object does not show changes before they are committed,
but it shows changes that may have other consistency problems. To allow fewer data inconsisten-
cies, raise the transaction isolation level to REPEATABLE_READ. Note that the higher the isolation
level, the poorer the performance. The database and driver also limited what is actually provided.
Many programmers use their database's default transaction isolation level. Consult the DBMS
manual for more information about transaction isolation levels.

In a ResultSet object that is SCROLL_INSENSITIVE, changes are not visible while it is still open.
Some programmers only use this type of ResultSet object to get a consistent view of the data
without seeing changes made by others.

The method refreshRow() is used to get the latest values for a row straight from the database.
This method is time consuming, especially if the DBMS returns multiple rows refreshRow()is
called. The method refreshRow()can be valuable if it is critical to have the latest data. Even when
a result set is sensitive and changes are visible, an application may not always see the latest
changes that have been made to a row if the driver retrieves several rows at a time and caches
them. Thus, using the method refreshRow()ensures that only up- to-date data is visible.

The following code sample illustrates how an application might use the method refreshRow()
when it is critical to see the latest changes. Note that the result set should be sensitive. If the
method refreshRow() with a SCROLL_INSENSITIVE ResultSet is used, refreshRow() does
nothing. Getting the latest data for the table SALES is not realistic with these methods. A more
realistic scenario is when an airline reservation clerk needs to ensure that the seat he is about to
reserve is still available. (Database /Sales.java)
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType",new java.lang.Integer(ResultSetType.SCROLL_SENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new java.lang.Integer
(ResultSetConcurrency.READ_ONLY));

 XResultSet rs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");

 XRow row = (XRow)UnoRuntime.queryInterface(XRow.class, rs);

 rs.absolute(4);

 float price1 = row.getFloat(2);
 // do something ...
 rs.absolute(4);
 rs.refreshRow();

842 OpenOffice.org 1.1 Developer's Guide • June 2003

 float price2 = row.getFloat(2);
 if (price2 != price1) {
 // do something ...
 }

12.3.4 ResultSetMetaData
When you develop applications that allow users to create their own SQL statements, for example,
through a user interface, information about the result set to be displayed is required. For this
reason, the result set supports a method to examine the meta data, that is, information about the
columns in the result set. This information could cover items, such as the name of the column, if it
is null, if it is an auto increment column, or a currency column. For detailed information, see the
interface com.sun.star.sdbc.XResultSetMetaData. The following code fragment shows the use
of the XResultSetMetaData interface: (Database /Sales.java)
 XStatement stmt = con.createStatement();

 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, stmt);
 xProp.setPropertyValue("ResultSetType",new java.lang.Integer(ResultSetType.SCROLL_INSENSITIVE));
 xProp.setPropertyValue("ResultSetConcurrency", new java.lang.Integer
(ResultSetConcurrency.READ_ONLY));

 XResultSet rs = stmt.executeQuery("SELECT NAME, PRICE FROM SALES");
 XResultSetMetaDataSupplier xRsMetaSup = (XResultSetMetaDataSupplier)UnoRuntime.queryInterface(
 XResultSetMetaDataSupplier.class, rs);
 XResultSetMetaData xRsMetaData = xRsMetaSup.getMetaData();

 int nColumnCount = xRsMetaData.getColumnCount();

 for (int i=1 ;i <= nColumnCount; ++i) {
 System.out.println(“Name: “ + xRsMetaData.getColumnName(i) + " Type: " +
 xRsMetaData.getColumnType(i));
}

The printout looks similar to this:

Name: NAME Type: 12
Name: PRICE Type: 3

Notice that the Type returned is the number for the corresponding SQL data type. In this case,
VARCHAR has the value 12 and the type 3 is the SQL data type DECIMAL. The whole list of data
types can be found at com.sun.star.sdbc.DataType.

Note that the com.sun.star.sdbc.XResultSetMetaData can be requested before you move to the
first row.

12.3.5 Using Prepared Statements
Sometimes it is convenient or efficient to use a PreparedStatement object to send SQL statements
to the database. This special type of statement includes the more general service
com.sun.star.sdbc.Statement already discussed.

When to Use a PreparedStatement Object
Using a PreparedStatement object reduces execution time, if executing a Statement object many
times as in the example above.

The main feature of a PreparedStatement object is that it is given an SQL statement when it is
created, unlike a Statement object. This SQL statement is sent to the DBMS right away where it is
compiled. As a result, the PreparedStatement object contains not just an SQL statement, but an
SQL statement that has been precompiled. This means that when the PreparedStatement is

Chapter 12 Database Access 843

executed, the DBMS can run the PreparedStatement's SQL statement without having to analyze
and optimize it again.

The PreparedStatement objects can be used for SQL statements without or without parameters.
The advantage of using SQL statements with parameters is that the same statement can be used
with different values supplied each time it is executed. This is shown in an example in the
following sections.

Creating a PreparedStatement Object
Similar to Statement objects, PreparedStatement objects are created using prepareStatement
() on a Connection object. Using our open connection con from the previous examples, code
could be written like the following to create a PreparedStatement object that takes two input
parameters:
 XPreparedStatement updateStreet = con.prepareStatement(
 "UPDATE SALESMAN SET STREET = ? WHERE SNR = ?");

The variable updateStreet now contains the SQL update statement that has also been sent to the
DBMS and precompiled.

Supplying Values for PreparedStatement Parameters
Before executing a PreparedStatement object, values to replace the question mark place-
holders or named parameters, such as param1 or param2 have to be supplied. This is accom-
plished by calling one of the setXXX() methods defined in the interface
com.sun.star.sdbc.XParameters of the prepared statement. For instance, to substitute a ques-
tion mark with a value that is a Java int, call setInt(). If the value is a Java String, call the
method setString(). There is a setXXX() method for each type in the Java programming
language.

Using the PreparedStatement object updateStreet() from the previous example, the following
line of code sets the first question mark placeholder to a Java String with a value of '34 Main
Road':
 XParameters setPara = (XParameters)UnoRuntime.queryInterface(XParameters.class, updateStreet);
 setPara.setString(1, "34 Main Road");

The example shows that the first argument given to a setXXX() method indicates which question
mark placeholder should be set, and the second argument contains the value for the placeholder.
The next example sets the second placeholder parameter to the Java int 1:
 setPara.setInt(2, 1);

After these values have been set for its two input parameters, the SQL statement in updateStreet
is equivalent to the SQL statement in the String object updateString() used in the previous
update example. Therefore, the following two code fragments accomplish the same thing:

Code Fragment 1: (Database /Sales.java)
 String updateString = "UPDATE SALESMAN SET STREET = '34 Main Road' WHERE SNR = 1";
 stmt.executeUpdate(updateString);

Code Fragment 2: (Database /Sales.java)
 XPreparedStatement updateStreet = con.prepareStatement(
 "UPDATE SALESMAN SET STREET = ? WHERE SNR = ? ");
 XParameters setPara = (XParameters)UnoRuntime.queryInterface(XParameters.class,updateStreet);
 setPara.setString(1, "34 Main Road");
 setPara.setInt(2, 1);
 updateStreet.executeUpdate();

844 OpenOffice.org 1.1 Developer's Guide • June 2003

The method executeUpdate() was used to execute the Statement stmt and the PreparedState-
ment updateStreet. Notice that no argument is supplied to executeUpdate() when it is used to
execute updateStreet . This is true because updateStreet already contains the SQL statement to
be executed.

Looking at the above examples, a PreparedStatement object with parameters was used instead of
a statement that involves fewer steps. If a table is going to be updated once or twice, a statement
is sufficient, but if the table is going to be updated often, it is efficient to use a PreparedStatement
object. This is especially true in situation where a for loop or while loop can be used to set a
parameter to a succession of values. This is shown later in this section.

Once a parameter has been set with a value, it retains that value until it is reset to another value or
the method clearParameters() is called. Using the PreparedStatement object updateStreet,
the following code fragment illustrates reusing a prepared statement after resetting the value of
one of its parameters and leaving the other one as is:
 // set the 1st parameter (the STREET column) to Maryland
 setPara.setString(1, "Maryland");

 // use the 2nd parameter to select George Flint, his unique identifier SNR is 4
 setPara.setInt(2, 4);

 // write changes to database
 updateStreet.executeUpdate();

 // changes STREET column back to Michigan road
 // the 2nd parameter for SNR still is 4, only the first parameter is adjusted
 updateStreet.executeUpdate();
 setPara.setString(1, "Michigan road");

 // write changes to database
 updateStreet.executeUpdate();

12.3.6 PreparedStatement From DataSource Queries
Use the com.sun.star.sdb.XCommandPreparation to get the necessary statement objects to open
predefined queries and tables in a data source, and to execute arbitrary SQL statements:

com::sun::star::sdbc::XPreparedStatement prepareCommand([in] string command, [in] long commandType)

If the value of the parameter com.sun.star.sdb.CommandType is TABLE or QUERY, pass a table
name or query name that exists in the com.sun.star.sdb.DataSource of the connection. The
value COMMAND makes prepareCommand() expect an SQL string. The result is a prepared statement
object that can be parameterized and executed.

The following fragment opens a predefined query in a database Ada01:
 // retrieve the DatabaseContext and get its com.sun.star.container.XNameAccess interface

XNameAccess xNameAccess = (XNameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, _rMSF.createInstance("com.sun.star.sdb.DatabaseContext"));

 Object dataSource = xNameAccess.getByName("Ada01");
 XDataSource xDataSource = (XDataSource)UnoRuntime.queryInterface(XDataSource.class, dataSource);
 Object interactionHandler = _rMSF.createInstance("com.sun.star.sdb.InteractionHandler");
 XInteractionHandler xInteractionHandler = (XInteractionHandler)UnoRuntime.queryInterface(

 XInteractionHandler.class, interactionHandler);

 XCompletedConnection xCompletedConnection = (XCompletedConnection)UnoRuntime.queryInterface(
 XCompletedConnection.class, dataSource);

 XConnection xConnection = xCompletedConnection.connectWithCompletion(xInteractionHandler);

 XCommandPreparation xCommandPreparation = (XCommandPreparation)UnoRuntime.queryInterface(
 XCommandPreparation.class, xConnection);
 XPreparedStatement xPreparedStatement = xCommandPreparation.prepareCommand(

 "Query1", CommandType.QUERY);

 XResultSet xResult = xPreparedStatement.executeQuery();
 XRow xRow = (XRow)UnoRuntime.queryInterface(XRow.class, xResult);
 while (xResult != null && xResult.next()) {
 System.out.println(xRow.getString(1));

Chapter 12 Database Access 845

 }

12.4 Database Design

12.4.1 Retrieving Information about a Database
The com.sun.star.sdbc.XDatabaseMetaData interface is implemented by SDBC drivers to
provide information about their underlying database. It is used primarily by application servers
and tools to determine how to interact with a given data source. Applications may also use XData-
baseMetaData methods to get information about a database. The
com.sun.star.sdbc.XDatabaseMetaData interface includes over 150 methods, that are catego-
rized according to the types of information they provide:

• General information about the database.

• If the database supports a given feature or capability.

• Database limits.

• What SQL objects the database contains and attributes of those objects.

• Transaction support offered by the data source.

Additionally, the com.sun.star.sdbc.XDatabaseMetaData interface uses a resultset with more
than 40 possible columns as return values in many com.sun.star.sdbc.XDatabaseMetaData
methods. This section presents an overview of the com.sun.star.sdbc.XDatabaseMetaData
interface, and provides examples illustrating the categories of metadata methods. For a compre-
hensive listing, consult the SDBC API specification.

• Creating the XDatabaseMetaData objects

A com.sun.star.sdbc.XDatabaseMetaData object is created using the Connection method
getMetaData(). Once created, it can be used to dynamically discover information about the
underlying data source. The following code example creates a
com.sun.star.sdbc.XDatabaseMetaData object and uses it to determine the maximum number
of characters allowed for a table name.
 // xConnection is a Connection object
 XDatabaseMetaData dbmd = xConnection.getMetaData();
 int maxLen = dbmd.getMaxTableNameLength();

Retrieving General Information
Some com.sun.star.sdbc.XDatabaseMetaData methods are used to dynamically discover
general information about a database, as well as details about its implementation. Some of the
methods in this category are:

• getURL()
• getUserName()
• getDatabaseProductVersion(), getDriverMajorVersion() and getDriverMinorVersion()
• getSchemaTerm(), getCatalogTerm() and getProcedureTerm()
• nullsAreSortedHigh() and nullsAreSortedLow()
• usesLocalFiles() and usesLocalFilePerTable()

846 OpenOffice.org 1.1 Developer's Guide • June 2003

• getSQLKeywords()

Determining Feature Support
A large group of com.sun.star.sdbc.XDatabaseMetaData methods can be used to determine
whether a given feature or set of features is supported by the driver or underlying database.
Beyond this, some of the methods describe what level of support is provided. Some of the
methods that describe support for individual features are:

• supportsAlterTableWithDropColumn()
• supportsBatchUpdates()
• supportsTableCorrelationNames()
• supportsPositionedDelete()
• supportsFullOuterJoins()
• supportsStoredProcedures()
• supportsMixedCaseQuotedIdentifiers()
Methods to describe the level of feature support include:

• supportsANSI92EntryLevelSQL()
• supportsCoreSQLGrammar()

Database Limits
Another group of methods provides the limits imposed by a given database. Some of the methods
in this category are:

• getMaxRowSize()
• getMaxStatementLength()
• getMaxTablesInSelect()
• getMaxConnections()
• getMaxCharLiteralLength()
• getMaxColumnsInTable()
Methods in this group return the limit as an int. A return value of zero means there is no limit or
the limit is unknown.

SQL Objects and their Attributes
Some methods provide information about the SQL objects that populate a given database. This
group also includes methods to determine the attributes of those objects. Methods in this group
return ResultSet objects in which each row describes a particular object. For example, the method
getUDTs() returns a ResultSet object in which there is a row for each user defined type (UDT)
that has been defined in the database. Examples of this category are:

• getSchemas() and getCatalogs()
• getTables()
• getPrimaryKeys()
• getColumns()

Chapter 12 Database Access 847

• getProcedures() and getProcedureColumns()
• getUDTs()
For example, to display the structure of a table that consists of columns and keys (primary keys,
foreign keys), and also indexes defined on the table, the
com.sun.star.sdbc.XDatabaseMetaData interface is required: (Database /CodeSamples.java)
 XDatabaseMetaData dm = con.getMetaData();
 XResultSet rsTables = dm.getTables(null, "%", "SALES", null);
 XRow rowTB = (XRow)UnoRuntime.queryInterface(XRow.class, rsTables);

 while (rsTables.next()) {
 String catalog = rowTB.getString(1);
 if (rowTB.wasNull())
 catalog = null;

 String schema = rowTB.getString(2);
 if (rowTB.wasNull())
 schema = null;

 String table = rowTB.getString(3);
 String type = rowTB.getString(4);
 System.out.println("Catalog: " + catalog +
 " Schema: " + schema + " Table: " + table + "Type: " + type);
 System.out.println("------------------ Columns ------------------");
 XResultSet rsColumns = dm.getColumns(catalog, schema, table, "%");
 XRow rowCL = (XRow)UnoRuntime.queryInterface(XRow.class, rsColumns);
 while (rsColumns.next()) {
 System.out.println("Column: " + rowCL.getString(4) +
 " Type: " + rowCL.getInt(5) + " TypeName: " + rowCL.getString(6));

}
 }

Another method often used when creating SQL statements is the method getIdentifierQuoteS-
tring(). This method is always used when table or column names need to be quoted in the SQL
statement. For example:
 SELECT "Name", "Price" FROM "Sales"

In this case, the identifier quotation is the character ". The combination of XDatabaseMetaData
methods in the following code fragment may be useful to know if the database supports catalogs
and /or schemata. (Database /CodeSamples.java)
public static String quoteTableName(XConnection con, String sCatalog, String sSchema,
 String sTable) throws com.sun.star.uno.Exception {
 XDatabaseMetaData dbmd = con.getMetaData();
 String sQuoteString = dbmd.getIdentifierQuoteString();
 String sSeparator = ".";
 String sComposedName = "";
 String sCatalogSep = dbmd.getCatalogSeparator();
 if (0 != sCatalog.length() && dbmd.isCatalogAtStart() && 0 != sCatalogSep.length()) {
 sComposedName += sCatalog;
 sComposedName += dbmd.getCatalogSeparator();
 }
 if (0 != sSchema.length()) {
 sComposedName += sSchema;
 sComposedName += sSeparator;
 sComposedName += sTable;
 } else {
 sComposedName += sTable;
 }
 if (0 != sCatalog.length() && !dbmd.isCatalogAtStart() && 0 != sCatalogSep.length()) {
 sComposedName += dbmd.getCatalogSeparator();
 sComposedName += sCatalog;
 }
 return sComposedName;
}

12.4.2 Using DDL to Change the Database Design
To show the usage of statements for data definition purposes, we will show how to create the
tables in our example database using CREATE statements. The first table, SALESMAN, contains

848 OpenOffice.org 1.1 Developer's Guide • June 2003

essential information about the salespersons, including the first name, last name, street address,
city, and birth date. The table SALESMAN that is described in more detail later, is shown here:

SNR FIRSTNAME LASTNAME STREET STATE ZIP BIRTH DATE
1 0 0 0 0 95460 02/07 /46

2 0 0 0 0 95460 12/24 /63

3 0 0 0 0 95460 04/01 /72

4 0 0 0 0 95460 02/13 /53

5 0 0 0 0 95460 09/07 /49

The first column is the column SNR of SQL type INTEGER. This column contains a unique number
for each salesperson. Since there is a different SNR for each person, the SNR column can be used to
uniquely identify a particular salesman,the is, the primary key. If this were not the case, an addi-
tional column that is unique would have to be introduced, such as the social security number. The
column for the first name is FIRSTNAME that holds values of the SQL type VARCHAR with a
maximum length of 50 characters. The third column, LASTNAME, is also a VARCHAR with a maximum
length of 100 characters. The STREET and STATE columns are VARCHARs with 50 characters. The
column ZIP uses INTEGER and the column BIRTHDATE uses the type DATE. By using the type DATE
instead of VARCHAR,the dates of birth can be compared with the current date.

The second table, CUSTOMER, in our database, contains information about customers:

COS_NR LASTNAME STREET CITY STATE ZIP
100 0 0 0 0 95199

101 0 0 0 0 95460

102 0 0 0 0 93966

The first column is the personal number COS_NR of our customer. This column is used to uniquely
identify the customers, and declare this column to be the primary key. The types of the other
columns are identical to the first table, SALESMAN.

Another table to show joins is required. For this purpose, the table SALES is used. This table
contains all sales that our salespersons could enter into an agreement with the customers. This table
needs a column SALENR to identify each sale, a column for COS_NR to identify the customer and a
column SNR for the sales person who made the sale, and the columns that defines the article sold.

SALENR COS_NR SNR NAME DATE PRICE
1 100 1 0 02/12/01 $39.99

2 101 2 0 10/18/01 $15.78

3 102 4 Orange juice 08/09/01 $1.50

To show the relationship between the three tables, consider the diagram below.

The table SALES contains the column COS_NR and the column SNR. These two columns can be
used in SELECT statements to get data based on the information in this table, for example, all sales
made by the salesperson Jane. The column COS_NR is the primary key in the table CUSTOMER and
it uniquely identifies each of the customers. The same is true for the column SNR in the table
SALESMAN. In the table SALES, the fields COS_NR and SNR are foreign keys. Note that each
COS_NR and SNR number may appear more than once in the SALES table, because a third
column SALENR was introduced. This is required for a primary key. An example of how to use
primary and foreign keys in a SELECT statement is provided later.

Chapter 12 Database Access 849

The following CREATE TABLE statement creates the table SALESMAN. The entries within the
outer pair of parentheses consist of the name of a column followed by a space and the SQL type to
be stored in that column. A comma separates the column entries where each entry consists of a
column name and SQL type. The type VARCHAR is created with a maximum length, so it takes a
parameter indicating the maximum length. The parameter must be in parentheses following the
type. The SQL statement shown here specifies that the name in column FIRSTNAME may be up to
50 characters long:
CREATE TABLE SALESMAN
(SNR INTEGER NOT NULL,
 FIRSTNAME VARCHAR(50),
 LASTNAME VARCHAR(100),
 STREET VARCHAR(50),
 STATE VARCHAR(50),
 ZIP VARCHAR(10),
 BIRTHDATE DATE,
 PRIMARY KEY(SNR)
)

This code does not end with a DBMS statement terminator that can vary from DBMS to DBMS. For example,
Oracle uses a semicolon (;) to indicate the end of a statement, and Sybase uses the word go. The driver you
are using automatically supplies the appropriate statement terminator, so that you will not need to include it
in your SDBC code.

In the CREATE TABLE statement above, key words are printed in capital letters, and each item is
on a separate line. SQL does not require the use of these conventions, it makes the statements
easier to read. The standard in SQL is that keywords are not case sensitive, therefore, the
following SELECT statement can be written in various ways:
SELECT "FirstName", "LastName"
FROM "Employees"
WHERE "LastName" LIKE 'Washington'

is equivalent to
select "FirstName", LastName" from "Employees" where
"LastName" like 'Washington'

Single quotes '...' denote a string literal, double quotes mark case sensitive identifiers in many SQL
databases.

Requirements can vary from one DBMS to another for identifier names. For example, some
DBMSs require that column and table names must be given exactly as they were created in the
CREATE TABLE statement, while others do not. We use uppercase letters for identifiers such as
SALESMAN, CUSTOMERS and SALES. Another way would be to ask the XDatabaseMetaData inter -
face if the method storesMixedCaseQuotedIdentifiers() returns true, and to use the string that
the method getIdentifierQuoteString() returns.

The data types used in our CREATE TABLE statement are the generic SQL types (also called SDBC
types) that are defined in the com.sun.star.sdbc.DataType. DBMSs generally uses these stan-
dard types.

To issue the commands above against our database, use the connection con to create a statement
and the method executeUpdate() at its interface com.sun.star.sdbc.XStatement. In the
following code fragment, executeUpdate() is supplied with the SQL statement from the
SALESMAN example above: (Database /SalesMan.java)
 XStatement xStatement = con.createStatement();
 int n = xStatement.executeUpdate("CREATE TABLE SALESMAN " +
 "(SNR INTEGER NOT NULL, " +
 "FIRSTNAME VARCHAR(50), " +
 "LASTNAME VARCHAR(100), " +
 "STREET VARCHAR(50), " +
 "STATE VARCHAR(50), " +
 "ZIP INTEGER, " +
 "BIRTHDATE DATE, " +
 "PRIMARY KEY(SNR) " +
 ")");

850 OpenOffice.org 1.1 Developer's Guide • June 2003

The method executeUpdate() is used because the SQL statement contained in createTable-
Salesman is a DDL (data definition language) statement. Statements that create a table, alter a
table, or drop a table are all examples of DDL statements, and are executed using the method
executeUpdate().

When the method executeUpdate() is used to execute a DDL statement, such as CREATE
TABLE, it returns zero. Consequently, in the code fragment above that executes the DDL state-
ment used to create the table SALESMAN , n is assigned a value of 0.

12.4.3 Using SDBCX to Access the Database Design

The Extension Layer SDBCX

The SDBCX layer introduces several abstractions built upon the SDBC layer that define general
database objects, such as catalog, table, view, group, user, key, index, and column, as well as
support for schema and security tasks. These objects are used to manage database design tasks.

Chapter 12 Database Access 851

Illustration 182: SDBCX Object design

The ability of the SDBCX layer to define new data structures makes it an alternative to SQL DDL.
The above Illustration 172 gives an overview to the SDBCX objects an their containers.

All objects mentioned previously have matching containers, except for the catalog. Each container
implements the service com.sun.star.sdbcx.Container. The interfaces that the container
supports depend on the objects that reside in it. For instance, the container for keys does not
support an com.sun.star.container.XNameAccess interface. These containers are used to add
and manage new objects in a catalog. The users and groups container manage the control permis-
sions for other SDBCX objects, such as tables and views.

Illustration 171 shows the container specification for SDBCX DatabaseDefinition services.

Catalog Service
The Catalog object is the highest- level container in the SDBCX layer. It contains structural features
of databases, like the schema and security model for the database. The connection, for instance,
represents the database, and the Catalog is the database container for the tables, views, groups,

852 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 183: Database definition

and users within a connection or database. To create a catalog object, the database driver must
support the interface com.sun.star.sdbcx.XDataDefinitionSupplier and an existing connec-
tion object. The following code fragment lists tables in a database. (Database /sdbcx.java)
 // create the Driver with the implementation name
 Object aDriver = xORB.createInstance("com.sun.star.comp.sdbcx.adabas.ODriver");
 // query for the interface
 com.sun.star.sdbc.XDriver xDriver;
 xDriver = (XDriver)UnoRuntime.queryInterface(XDriver.class, aDriver);
 if (xDriver != null) {
 // first create the needed url
 String adabasURL = "sdbc:adabas::MYDB0";
 // second create the necessary properties
 com.sun.star.beans.PropertyValue [] adabasProps = new com.sun.star.beans.PropertyValue[] {
 new com.sun.star.beans.PropertyValue("user", 0, "test1",
 com.sun.star.beans.PropertyState.DIRECT_VALUE),
 new com.sun.star.beans.PropertyValue("password", 0, "test1",
 com.sun.star.beans.PropertyState.DIRECT_VALUE)
 };

 // now create a connection to adabas
 XConnection adabasConnection = xDriver.connect(adabasURL, a dabasProps);
 if(adabasConnection != null) {
 System.out.println("Connection could be created!");
 // we need the XDatabaseDefinitionSupplier interface
 // from the driver to get the XTablesSupplier
 XDataDefinitionSupplier xDDSup = (XDataDefinitionSupplier)UnoRuntime.queryInterface(
 XDataDefinitionSupplier.class, xDriver);
 if (xDDSup != null) {
 XTablesSupplier xTabSup = xDDSup.getDataDefinitionByConnection(adabasConnection);
 if (xTabSup != null) {
 XNameAccess xTables = xTabSup.getTables();
 // now print all table names
 System.out.println("Tables available:");
 String [] aTableNames = xTables.getElementNames();
 for (int i =0; i<= aTableNames.length-1; i++)
 System.out.println(aTableNames[i]);
 }
 }
 else {
 System.out.println("The driver is not SDBCX capable!");
 }

 // now we dispose the connection to close it
 XComponent xComponent = (XComponent)UnoRuntime.queryInterface(
 XComponent.class, adabasConnection);
 if (xComponent != null) {
 xComponent.dispose();
 System.out.println("Connection disposed!");
 }
 }
 else {
 System.out.println("Connection could not be created!");
 }
 }

Table Service
The Table object is a member of the tables container that is a member of the Catalog object. Each
Table object supports the same properties, such as Name, CatalogName, SchemaName, Description,
and an optional Type. The properties CatalogName and SchemaName can be empty when the data -
base does not support these features. The Description property contains any comments that were
added to the table object at creation time. The optional property Type is a string property may
contain a database specific table type when supported, . Common table types are "TABLE",
"VIEW", "SYSTEM TABLE", and "TEMPORARY TABLE". All these properties are read- only as
long as this is not a descriptor. The descriptor pattern is described later.

Chapter 12 Database Access 853

The Table object also supports the com.sun.star.sdbcx.XColumnsSupplier interface, because a
table can not exist without columns. The other interfaces are optional, that is, they do not have to
be supported by the actual table object:

• com.sun.star.sdbcx.XDataDescriptorFactory interface that is used to copy a table object.

• com.sun.star.sdbcx.XIndexesSupplier interface that returns the container for indexes.

• com.sun.star.sdbcx.XKeysSupplier interface that returns the keys container.

• com.sun.star.sdbcx.XRename interface that allows renaming a table object.

854 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 184: Table

• com.sun.star.sdbcx.XAlterTable interface that allows the altering of columns of a table
object.

The code example below shows the use of the table container and prints the table properties of the
first table in the container. (Database /sdbcx.java)

 ...
 XNameAccess xTables = xTabSup.getTables();
 if (0 != aTableNames.length) {
 Object table = xTables.getByName(aTableNames[0]);
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, table);
 System.out.println("Name: " + xProp.getPropertyValue("Name"));
 System.out.println("CatalogName: " + xProp.getPropertyValue("CatalogName"));
 System.out.println("SchemaName: " + xProp.getPropertyValue("SchemaName"));
 System.out.println("Description: " + xProp.getPropertyValue("Description"));
 // the following property is optional so we first must check if it exists
 if(xProp.getPropertySetInfo().hasPropertyByName("Type"))
 System.out.println("Type: " + xProp.getPropertyValue("Type"));
 }

The Table object contains access to the columns, keys, and indexes when the above mentioned
interfaces are supported. (Database /sdbcx.java)
// print all columns of a XColumnsSupplier
// later on used for keys and indexes as well
public static void printColumns(XColumnsSupplier xColumnsSup)
 throws com.sun.star.uno.Exception,SQLException {
 System.out.println("Example printColumns");
 // the table must at least support a XColumnsSupplier interface
 System.out.println("--- Columns ---");
 XNameAccess xColumns = xColumnsSup.getColumns();
 String [] aColumnNames = xColumns.getElementNames();
 for (int i =0; i<= aColumnNames.length-1; i++)
 System.out.println(" " + aColumnNames[i]);
}

// print all keys including the columns of a key
public static void printKeys(XColumnsSupplier xColumnsSup)
 throws com.sun.star.uno.Exception,SQLException {
 System.out.println("Example printKeys");
 XKeysSupplier xKeysSup = (XKeysSupplier)UnoRuntime.queryInterface(
 XKeysSupplier.class, xColumnsSup);
 if (xKeysSup != null) {
 System.out.println("--- Keys ---");
 XIndexAccess xKeys = xKeysSup.getKeys();
 for (int i =0; i < xKeys.getCount(); i++) {
 Object key = xKeys.getByIndex(i);
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class,key);
 System.out.println(" " + xProp.getPropertyValue("Name"));
 XColumnsSupplier xKeyColumnsSup = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, xProp);
 printColumns(xKeyColumnsSup);
 }
 }
}

// print all indexes including the columns of an index
public static void printIndexes(XColumnsSupplier xColumnsSup)
 throws com.sun.star.uno.Exception,SQLException {
 System.out.println("Example printIndexes");
 XIndexesSupplier xIndexesSup = (XIndexesSupplier)UnoRuntime.queryInterface(
 XIndexesSupplier.class, xColumnsSup);
 if (xIndexesSup != null) {
 System.out.println("--- Indexes ---");
 XNameAccess xIndexs = xIndexesSup.getIndexes();
 String [] aIndexNames = xIndexs.getElementNames();
 for (int i =0; i<= aIndexNames.length-1; i++) {
 System.out.println(" " + aIndexNames[i]);
 Object index = xIndexs.getByName(aIndexNames[i]);
 XColumnsSupplier xIndexColumnsSup = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, index);
 printColumns(xIndexColumnsSup);
 }
 }
}

Chapter 12 Database Access 855

Column Service
The Column object is the simplest object structure in the SDBCX layer. It is a collection of proper-
ties that define the Column object. The columns container exists for table, key, and index objects.
The Column object is a different for these objects:

– The normal Column service is used for the table object.

– com.sun.star.sdbcx.KeyColumn extends the “normal” com.sun.star.sdbcx.Column service
with an extra property named RelatedColumn. This property is the name of a referenced
column out of the referenced table.

– com.sun.star.sdbcx.IndexColumn extends the com.sun.star.sdbcx.Column service with
an extra boolean property named IsAscending. This property is true when the index is
ascending, otherwise it is false.

The Column object is defined by the following properties:

Properties of com.sun.star.sdbcx.Column
Name string ─ The name of the column.

Type com.sun.star.sdbc.DataType, long ─ The SDBC data type.

TypeName string ─ The database name for this type.

Precision long ─ The column's number of decimal digits.

Scale long ─ The column's number of digits to the left of the decimal point.

856 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 185: Column

Properties of com.sun.star.sdbcx.Column
IsNullable long ─ Indicates the nullification of values in the designated column.

com.sun.star.sdbc.ColumnValue
IsAutoIncrement boolean ─ Indicates if the column is automatically numbered.

IsCurrency boolean ─ Indicates if the column is a cash value.

IsRowVersion boolean ─ Indicates that the column contains some kind of time or date stamp used
to track updates (optional).

Description string ─ Keeps a description of the object (optional).

DefaultValue string ─ Keeps a default value for a column (optional).

The Column object also supports the com.sun.star.sdbcx.XDataDescriptorFactory interface
that creates a copy of this object. (Database /sdbcx.java)
// column properties
public static void printColumnProperties(Object column) throws com.sun.star.uno.Exception,SQLException {

System.out.println("Example printColumnProperties");
XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class,column);
System.out.println("Name: " + xProp.getPropertyValue("Name"));
System.out.println("Type: " + xProp.getPropertyValue("Type"));
System.out.println("TypeName: " + xProp.getPropertyValue("TypeName"));
System.out.println("Precision: " + xProp.getPropertyValue("Precision"));
System.out.println("Scale: " + xProp.getPropertyValue("Scale"));
System.out.println("IsNullable: " + xProp.getPropertyValue("IsNullable"));
System.out.println("IsAutoIncrement: " + xProp.getPropertyValue("IsAutoIncrement"));
System.out.println("IsCurrency: " + xProp.getPropertyValue("IsCurrency"));
// the following property is optional so we first must check if it exists
if(xProp.getPropertySetInfo().hasPropertyByName("IsRowVersion"))

System.out.println("IsRowVersion: " + xProp.getPropertyValue("IsRowVersion"));
if(xProp.getPropertySetInfo().hasPropertyByName("Description"))

System.out.println("Description: " + xProp.getPropertyValue("Description"));
if(xProp.getPropertySetInfo().hasPropertyByName("DefaultValue"))

System.out.println("DefaultValue: " + xProp.getPropertyValue("DefaultValue"));
}

Index Service
The Index service encapsulates indexes at a table object. An index is described through the proper-
ties Name, Catalog, IsUnique, IsPrimaryKeyIndex, and IsClustered. All properties are read-
only if an index has not been added to a tables index container. The last three properties are
boolean values that indicate an index object only allows unique values, is used for the primary
key, and if it is clustered. The property IsPrimaryKeyIndex is only available after the index has
been created because it defines a special index that is created by the database while creating a
primary key for a table object. Not all databases currently available in OpenOffice.org API support
primary keys.

Chapter 12 Database Access 857

The following code fragment displays the properties of a given index object:
(Database /sdbcx.java)
// index properties
public static void printIndexProperties(Object index) throws Exception, SQLException {
 System.out.println("Example printIndexProperties");
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, index);
 System.out.println("Name: " + xProp.getPropertyValue("Name"));
 System.out.println("Catalog: " + xProp.getPropertyValue("Catalog"));

858 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 186: Index

 System.out.println("IsUnique: " + xProp.getPropertyValue("IsUnique"));
 System.out.println("IsPrimaryKeyIndex: " + xProp.getPropertyValue("IsPrimaryKeyIndex"));
 System.out.println("IsClustered: " + xProp.getPropertyValue("IsClustered"));
}

Key Service
The Key service provides the foreign and primary keys behavior through the following properties.
The Name property is the name of the key. It could happen that the primary key does not have a
name. The property Type contains the kind of the key, that could be PRIMARY, UNIQUE, or
FOREIGN, as specified by the constant group com.sun.star.sdbcx.KeyType. The property
ReferencedTable contains a value when the key is a foreign key and it designates the table to
which a foreign key points. The DeleteRule and UpdateRule properties determine what happens
when a primary key is deleted or updated. The possibilities are defined in
com.sun.star.sdbc.KeyRule: CASCADE, RESTRICT, SET_NULL, NO_ACTION and
SET_DEFAULT.

Chapter 12 Database Access 859

The following code fragment displays the properties of a given key object: (Database /sdbcx.java)

/ / key properties
public static void printKeyProperties(Object key) throws Exception, SQLException {
 System.out.println("Example printKeyProperties");
 XPropertySet xProp = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, key);
 System.out.println("Name: " + xProp.getPropertyValue("Name"));
 System.out.println("Type: " + xProp.getPropertyValue("Type"));

860 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 187: Key

 System.out.println("ReferencedTable: " + xProp.getPropertyValue("ReferencedTable"));
 System.out.println("UpdateRule: " + xProp.getPropertyValue("UpdateRule"));
 System.out.println("DeleteRule: " + xProp.getPropertyValue("DeleteRule"));
}

View Service
A view is a virtual table created from a SELECT on other database tables or views. This service
creates a database view programmatically. It is not necessary to know the SQL syntax for the
CREATE VIEW statement, but a few properties have to be set. When creating a view, supply the
value for the property Name, the SELECT statement to the property Command and if the database
driver supports a check option, set it in the property CheckOption. Possible values of
com.sun.star.sdbcx.CheckOption are NONE, CASCADE and LOCAL. A schema or catalog
name can be provided (optional).

Group Service
The service [idl:com.sun.star.sdbcx.Group] is the first of the two security services, Group and
User. The Group service represents the group account that has access permissions to a secured
database and it has a Name property to identify it. It supports the interface
com.sun.star.sdbcx.XAuthorizable that allows current privilege settings to be obtained, and to
grant or revoke privileges. The second interface is the com.sun.star.sdbcx.XUsersSupplier.
The word 'Supplier' in the interface name identifies the group object as a container for users. The
container returned here is a collection of all users that belong to this group.

Chapter 12 Database Access 861

Illustration 188: View

(Database /sdbcx.java)
// print all groups and the users with their privileges who belong to this group
public static void printGroups(XTablesSupplier xTabSup) throws com.sun.star.uno.Exception, SQLException
{
 System.out.println("Example printGroups");
 XGroupsSupplier xGroupsSup = (XGroupsSupplier)UnoRuntime.queryInterface(
 XGroupsSupplier.class, xTabSup);
 if (xGroupsSup != null) {
 // the table must be at least support a XColumnsSupplier interface
 System.out.println("--- Groups ---");
 XNameAccess xGroups = xGroupsSup.getGroups();
 String [] aGroupNames = xGroups.getElementNames();
 for (int i =0; i < aGroupNames.length; i++) {
 System.out.println(" " + aGroupNames[i]);
 XUsersSupplier xUsersSup = (XUsersSupplier)UnoRuntime.queryInterface(

XUsersSupplier.class, xGroups.getByName(aGroupNames[i]));
 if (xUsersSup != null) {
 XAuthorizable xAuth = (XAuthorizable)UnoRuntime.queryInterface(
 XAuthorizable.class, xUsersSup);
 // the table must be at least support a XColumnsSupplier interface
 System.out.println("\t--- Users ---");
 XNameAccess xUsers = xUsersSup.getUsers();
 String [] aUserNames = xUsers.getElementNames();
 for (int j = 0; j < aUserNames.length; j++) {
 System.out.println("\t " + aUserNames[j] +
 " Privileges: " + xAuth.getPrivileges(aUserNames[j], PrivilegeObject.TABLE));
 }
 }
 }
 }
}

862 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 189: Group

User Service
The [idl:com.sun.star.sdbcx.User] service is the second security service, representing a user
in the catalog. This object has the property Name that is the user name. Similar to the Group
service, the User service supports the interface com.sun.star.sdbcx.XAuthorizable. This is
achieved through the interface com.sun.star.sdbcx.XUser derived from XAuthorizable. In
addition to this interface, the XUser interface supports changing the password of a specific user.
Similar to the Group service above, the User service is a container for the groups the user belongs
to.

The Descriptor Pattern
The descriptor is a special kind of object that mirrors the structure of the object which should be
appended to a container object. This means that a descriptor, once created, can be appended more
than once with only small changes to the structure. For example, when appending columns to the
columns container, we:

– Create one descriptor with com.sun.star.sdbcx.XDataDescriptorFactory.

– Set the needed properties.

– Add the descriptor to the container.

– Adjust some properties, such as the name.

Chapter 12 Database Access 863

Illustration 190: User

– Add the modified descriptor to the container.

– Repeat the steps, as necessary.

therefore, only create one descriptor to append more than one column.

– Creating a Table

An important use of the SDBCX layer is that it is possible to programmatically create tables, along
with their columns, indexes, and keys.

The method of creating a table is the same as creating a table with a graphical table design. To
create it programmatically is easy. First, create a table object by asking the tables container for its
com.sun.star.sdbcx.XDataDescriptorFactory interface. When the createDataDescriptor
method is called, the com.sun.star.beans.XPropertySet interface of an object that implements
the service com.sun.star.sdbcx.TableDescriptor is returned. As described above, use this
descriptor to create a new table in the database, by adding the descriptor to the Tables container.
Before appending the descriptor, append the columns to the table descriptor. Use the same
method as with the containers used in the SDBCX layer. On the column object, some properties
need to be set, such as Name, and Type. The properties to be set depend on the SDBC data type of
the column.

The column name must be unique in the columns container.

After the columns are appended, add the TableDescriptor object to its container or define some
key objects, such as a primary key. (Database /sdbcx.java)
// create the table salesmen
public static void createTableSalesMen(XNameAccess xTables) throws Exception, SQLException {
 XDataDescriptorFactory xTabFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class, xTables);

 if (xTabFac != null) {
 // create the new table
 XPropertySet xTable = xTabFac.createDataDescriptor();
 // set the name of the new table
 xTable.setPropertyValue("Name", "SALESMAN");

 // append the columns
 XColumnsSupplier xColumSup = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class,xTable);
 XDataDescriptorFactory xColFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class, xColumSup.getColumns());
 XAppend xAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xColFac);

 // we only need one descriptor
 XPropertySet xCol = xColFac.createDataDescriptor();
 // create first column and append
 xCol.setPropertyValue("Name", "SNR");
 xCol.setPropertyValue("Type", new Integer(DataType.INTEGER));
 xCol.setPropertyValue("IsNullable", new Integer(ColumnValue.NO_NULLS));
 xAppend.appendByDescriptor(xCol);
 // 2nd only set the properties which differ
 xCol.setPropertyValue("Name", "FIRSTNAME");
 xCol.setPropertyValue("Type", new Integer(DataType.VARCHAR));
 xCol.setPropertyValue("IsNullable", new Integer(ColumnValue.NULLABLE));
 xCol.setPropertyValue("Precision", new Integer(50));
 xAppend.appendByDescriptor(xCol);
 // 3rd only set the properties which differ
 xCol.setPropertyValue("Name", "LASTNAME");
 xCol.setPropertyValue("Precision", new Integer(100));
 xAppend.appendByDescriptor(xCol);
 // 4th only set the properties which differ

864 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 191: Descriptor Pattern

 xCol.setPropertyValue("Name", "STREET");
 xCol.setPropertyValue("Precision",n ew Integer(50));
 xAppend.appendByDescriptor(xCol);
 // 5th only set the properties which differ
 xCol.setPropertyValue("Name", "STATE");
 xAppend.appendByDescriptor(xCol);
 // 6th only set the properties which differ
 xCol.setPropertyValue("Name", "ZIP");
 xCol.setPropertyValue("Type", new Integer(DataType.INTEGER));
 xCol.setPropertyValue("Precision", new Integer(10)); // default value integer
 xAppend.appendByDescriptor(xCol);
 // 7th only set the properties which differs
 xCol.setPropertyValue("Name", "BIRTHDATE");
 xCol.setPropertyValue("Type", new Integer(DataType.DATE));
 xCol.setPropertyValue("Precision", new Integer(10)); // default value integer
 xAppend.appendByDescriptor(xCol);
 // now we create the primary key
 XKeysSupplier xKeySup = (XKeysSupplier)UnoRuntime.queryInterface(XKeysSupplier.class, xTable);
 XDataDescriptorFactory xKeyFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class,xKeySup.getKeys());
 XAppend xKeyAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xKeyFac);

 XPropertySet xKey = xKeyFac.createDataDescriptor();
 xKey.setPropertyValue("Type", new Integer(KeyType.PRIMARY));
 // now append the columns to key
 XColumnsSupplier xKeyColumSup = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, xKey);
 XDataDescriptorFactory xKeyColFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class,xKeyColumSup.getColumns());
 XAppend xKeyColAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xKeyColFac);

 // we only need one descriptor
 XPropertySet xKeyCol = xKeyColFac.createDataDescriptor();
 xKeyCol.setPropertyValue("Name", "SNR");
 // append the key column
 xKeyColAppend.appendByDescriptor(xKeyCol);
 // append the key
 xKeyAppend.appendByDescriptor(xKey);
 // the last step is to append the new table to the tables collection
 XAppend xTableAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xTabFac);
 xTableAppend.appendByDescriptor(xTable);
 }
}

Adding an Index
To add an index, the same programmatic logic is followed. Create an IndexDescriptor with the
com.sun.star.sdbcx.XDataDescriptorFactory interface from the index container. Then follow
the same steps as for the table. Next, append the columns to be indexed.

Note that only an index can be added to an existing table. It is not possible to add an index to a
TableDescriptor.

The task is completed when the index object is added to the index container, unless the append()
method throws an com.sun.star.sdbc.SQLException. This may happen when adding a unique
index on a column that already contains values that are not unique.+

Creating a User
The procedure to create a user is the same. The com.sun.star.sdbcx.XDataDescriptorFactory
interface is used from the users container. Create a user with the UserDescriptor. The
com.sun.star.sdbcx.UserDescriptor has an additional property than the User service
supports. This additional property is the Password property which should be set. Then the UserD-
escriptor object can be appended to the user container. (Database /sdbcx.java)
// create a user
public static void createUser(XNameAccess xUsers) throws Exception,SQLException {
 System.out.println("Example createUser");
 XDataDescriptorFactory xUserFac = (XDataDescriptorFactory)UnoRuntime.queryInterface(
 XDataDescriptorFactory.class, xUsers);
 if (xUserFac != null) {

Chapter 12 Database Access 865

 // create the new table
 XPropertySet xUser = xUserFac.createDataDescriptor();
 // set the name of the new table
 xUser.setPropertyValue("Name", "BOSS");
 xUser.setPropertyValue("Password","BOSSWIFENAME");
 XAppend xAppend = (XAppend)UnoRuntime.queryInterface(XAppend.class, xUserFac);
 xAppend.appendByDescriptor(xUser);
 }
}

Adding a Group
Creating a com.sun.star.sdbcx.GroupDescriptor object is the same as the methods described
above. Follow the same steps:

1. Set a name for the group in the Name property.

2. Append all the users to the user container of the group.

3. Append the GroupDescriptor object to the group container of the catalog.

12.5 Using DBMS Features

12.5.1 Transaction Handling
Transactions combine several separate SQL executions, so that they can be seen as a single event
that is executed completely (commit) or not at all (rollback). A typical example for a transaction is
a money transfer. It consists of two steps: withdrawing an amount of money from one bank
account and crediting another account with it. Both steps must be successful or they must be
canceled. Transactions in SDBC are handled by the com.sun.star.sdbc.XConnection interface of
connections. The transaction related methods of this interface are:

// transactions
void setTransactionIsolation([in] long level)
long getTransactionIsolation()
void setAutoCommit([in] boolean autoCommit)
boolean getAutoCommit()
void commit()
void rollback()

Usually all transactions are in auto commit mode, that means, a commit takes place after each
single SQL command. Therefore to control a transaction manually, switch auto commit off using
setAutoCommit(false). The first SQL command without auto commit starts a transaction that is
active until the corresponding methods have been committed or rolled back.

Afterwards, the auto commit mode can be reinstated using setAutoCommit(true).
Transactions bring about a synchronization problem. If data is read from a table, it is possible that
the data has just been changed by a command of a transaction started by another process. If the
other transaction is rolled back, there may be inconsistencies between the results and contents of
the database.

Transaction isolation controls the behavior of the database in case of parallel transactions. There
are several isolation levels:

Values of constants com.sun.star.sdbc.TransactionIsolation
NONE Indicates that transactions are not supported.

866 OpenOffice.org 1.1 Developer's Guide • June 2003

Values of constants com.sun.star.sdbc.TransactionIsolation
READ_UNCOMMITTED Dirty reads, non-repeatable reads and phantom reads can

occur. This level allows a row changed by one transaction to
be read by another transaction before any changes in that row
have been committed (a "dirty read"). If any of the changes
are rolled back, the second transaction retrieves an invalid
row.

[IDLs:com.sun.star.sdbc.TransactionI
solation:READ_COMMITTED]

Dirty reads are prevented; non- repeatable reads and phantom
reads can occur. This level only prohibits a transaction from
reading a row with uncommitted changes in it.

REPEATABLE_READ Dirty reads and non-repeatable reads are prevented; phantom
reads can occur. This level prohibits a transaction from
reading a row with uncommitted changes in it, and it also
prohibits the situation where one transaction reads a row, a
second transaction alters the row, and the first transaction
rereads the row, getting different values the second time (a
"non-repeatable read").

SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are
prevented. This level includes the prohibitions in REPEAT-
ABLE_READ and further prohibits the situation where one
transaction reads all rows that satisfy a WHERE condition, a
second transaction inserts a row that satisfies that WHERE
condition, and the first transaction rereads for the same condi-
tion, retrieving the additional "phantom" row in the second
read.

12.5.2 Stored Procedures
Stored procedures are server- side processes execute several SQL commands in a single step, and
can be embedded in a server language for stored procedures with enhanced control capabilities. A
procedure call usually has to be parameterized, and the results are result sets and additional out
parameters. Stored procedures are handled by the method prepareCall()of the interface
com.sun.star.sdbc.XConnection.

com::sun::star::sdbc::XPreparedStatement prepareCall([in] string sql)

The method prepareCall()takes a an SQL statement that may contain one or more '?' in
parameter placeholders. It returns a com.sun.star.sdbc.CallableStatement. A Calla-
bleStatement is a com.sun.star.sdbcx.PreparedStatement with two additional interfaces for
out parameters:

com.sun.star.sdbc.XOutParameters is used to declare parameters as out parameters. All out
parameters must be registered before a stored procedure is executed.

Methods of com.sun.star.sdbc.XOutParameters
registerOutParameter() Takes the arguments long parameterIndex, long sqlType, string type-

Name. Registers an output parameter and should be used for a user-
named or REF output parameter. Examples of user-named types
include: STRUCT, DISTINCT, OBJECT, and named array types.

registerNumericOutParameter
()

Takes the arguments long parameterIndex, long sqlType, long scale.
Registers an out parameter in the ordinal position parameterIndex
with the com.sun.star.sdbc.DataType sqlType; scale is the
number of digits on the right-hand side of the decimal point.

Chapter 12 Database Access 867

The com.sun.star.sdbc.XRow is used to retrieve the values of out parameters. It consists of
getXXX() methods and should be well-known from the common result sets.

12.6 Writing Database Drivers
In the following sections, implementing an SDBC driver is described. The user should have some
experience in the use of the SDBC API, or be familiar with the previous chapter about SDBC and
SDBCX.

This section is divided into two parts. The first part describes the simple driver that includes only
the SDBC layer with the PreparedStatements, Statements and ResultSets. The second part extends
the simple driver from part one to a more sophisticated one. This driver provides access to Tables,
Views, Groups, Users and others.

A skeleton for a C++ SDBC driver is provided in the samples folder. Some changes are necessary
to create a working driver. Adjust the namespace and replace the word "skeleton" by a suitable
driver name, and implement the necessary functions for the database.

An SDBC driver is simply the implementation of some SDBC services previously discussed.

12.6.1 SDBC Driver
The SDBC driver consists of seven services. Each service needs to be defined and are described in
the next sections. Below is a list of all the services that define the driver:

• Driver, a singleton which creates the connection object.

• Connection, creates Statement, PreparedStatement and gives access to the DatabaseMeta-
Data.

• DatabaseMetaData, returns information about the used database.

• Statement, creates ResultSets.

• PreparedStatement, creates ResultSets in conjunction with parameters.

• ResultSet, fetches the data returned by an SQL statement.

• ResultSetMetaData, describes the columns of a ResultSet.
The relationship between these services is depicted in Illustration 170.

868 OpenOffice.org 1.1 Developer's Guide • June 2003

12.6.2 Driver Service
The Driver service is the entry point to create the first contact with any database. As shown in the
illustration above, the class that implements the service Driver is responsible for creating a
connection object that represents the database on the client side.

The class must be derived from the interface com.sun.star.sdbc.XDriver that defines the
methods needed to create a connection object. The code in the following lines shows a snippet of a
driver class. (Database /DriverSkeleton /SDriver.cxx)
// --
Reference< XConnection > SAL_CALL SkeletonDriver::connect(const ::rtl::OUString& url,

const Sequence< PropertyValue >& info) throw(SQLException, RuntimeException)
{

// create a new connection with the given properties and append it to our vector
OConnection* pCon = new OConnection(this);
Reference< XConnection > xCon = pCon; // important here because otherwise the connection

// could be deleted inside (refcount goes -> 0)
pCon->construct(url,info); // late constructor call which can throw exception

Chapter 12 Database Access 869

Illustration 192: Dependency between driver classes

// and allows a correct dtor call when so
m_xConnections.push_back(WeakReferenceHelper(*pCon));

return xCon;
}
// --
sal_Bool SAL_CALL SkeletonDriver::acceptsURL(const ::rtl::OUString& url)

throw(SQLException, RuntimeException)
{

// here we have to look if we support this url format
// change the URL format to your needs, but please be aware that
//the first who accepts the URL wins.
return (!url.compareTo(::rtl::OUString::createFromAscii("sdbc:skeleton:"),14));

}
// --
Sequence< DriverPropertyInfo > SAL_CALL SkeletonDriver::getPropertyInfo(const ::rtl::OUString& url,

const Sequence< PropertyValue >& info) throw(SQLException, RuntimeException)
{

// if you have something special to say, return it here :-)
return Sequence< DriverPropertyInfo >();

}
// --
sal_Int32 SAL_CALL SkeletonDriver::getMajorVersion() throw(RuntimeException)
{

return 0; // depends on you
}
// --
sal_Int32 SAL_CALL SkeletonDriver::getMinorVersion() throw(RuntimeException)
{

return 1; // depends on you
}
// --

The main methods of this class are acceptsURL and connect:

• The method acceptsURL() is called every time a user wants to create a connection through the
DriverManager, because the DriverManager decides the Driver it should ask to connect to the
given URL. Therefore this method should be small and run very fast.

• The method connect() is called after the method acceptsURL() is invoked and returned true.
The connect() could be seen as a factory method that creates Connection services specific for
a driver implementation. To accomplish this, the Driver class must be singleton. Singleton
means that only one instance of the Driver class may exist at the same time.

If more information is required about the other methods, refer to com.sun.star.sdbc.Driver for
a complete description.

12.6.3 Connection Service
The com.sun.star.sdbc.Connection is the database client side. It is responsible for the creation
of the Statements and the information about the database itself. The service consists of three inter-
faces that have to be supported:

• The interface com.sun.star.lang.XComponent that is responsible to close the connection
when it is disposed.

• The interface com.sun.star.sdbc.XWarningsSupplier that controls the chaining of warnings
which may occur on every call.

• The interface com.sun.star.sdbc.XConnection that is the main interface to the database.

The first two interfaces introduce some access and closing mechanisms that can be best described
inside the code fragment of the Connection class. To understand the interface
com.sun.star.sdbc.XConnection, we must have a closer look at some methods. The others not
described are simple enough to handle them in the code fragment.

First there is the method getMetaData() that returns an object which implements the interface
com.sun.star.sdbc.XDatabaseMetaData. This object has many methods and depends on the

870 OpenOffice.org 1.1 Developer's Guide • June 2003

capabilities of the database. Most return values are found in the database documentation or in the
first step, assuming some values match. The methods, such as getTables(), getColumns()and
getTypeInfo()are described in the next chapter.

The following methods are used to create statements. Each of them is a factory method that creates
the three different kinds of statements.

Important Methods of com.sun.star.sdbc.XConnection
createStatement() Creates a new com.sun.star.sdbc.Statement object for sending

SQL statements to the database. SQL statements without parameters are
executed using Statement objects.

prepareStatement(sql) Creates a com.sun.star.sdbc.PreparedStatement object for
sending parameterized SQL statements to the database.

prepareCall(sql) Creates a com.sun.star.sdbc.CallableStatement object for
calling database stored procedures.

 (Database /DriverSkeleton /SDriver.cxx)

Reference< XStatement > SAL_CALL OConnection::createStatement() throw(SQLException, RuntimeException)
{

::osl::MutexGuard aGuard(m_aMutex);
checkDisposed(OConnection_BASE::rBHelper.bDisposed);

// create a statement
// the statement can only be executed once
Reference< XStatement > xReturn = new OStatement(this);
m_aStatements.push_back(WeakReferenceHelper(xReturn));
return xReturn;

}
// --
Reference< XPreparedStatement > SAL_CALL OConnection::prepareStatement(const ::rtl::OUString& _sSql)

throw(SQLException, RuntimeException)
{

::osl::MutexGuard aGuard(m_aMutex);
checkDisposed(OConnection_BASE::rBHelper.bDisposed);

// the pre
if(m_aTypeInfo.empty())

buildTypeInfo();

// create a statement
// the statement can only be executed more than once
Reference< XPreparedStatement > xReturn = new OPreparedStatement(this,m_aTypeInfo,_sSql);
m_aStatements.push_back(WeakReferenceHelper(xReturn));
return xReturn;

}
// --
Reference< XPreparedStatement > SAL_CALL OConnection::prepareCall(const ::rtl::OUString& _sSql)

throw(SQLException, RuntimeException)
{

::osl::MutexGuard aGuard(m_aMutex);
checkDisposed(OConnection_BASE::rBHelper.bDisposed);

// not implemented yet :-) a task to do
return NULL;

}

All other methods can be omitted at this stage. For detailed descriptions, refer to the API Refer-
ence Manual.

12.6.4 XDatabaseMetaData Interface
The com.sun.star.sdbc.XDatabaseMetaData interface is the largest interface existing in the
SDBC API. This interface knows everything about the used database. It provides information, such
as the available tables with their columns, keys and indexes, and information about identifiers that
should be used. This chapter explains some of the methods that are frequently used and how they
are used to achieve a robust Driver.

Chapter 12 Database Access 871

Important Methods of com.sun.star.sdbc.XDatabaseMetaData
isReadOnly() Returns the state of the database. When true, the database is

not editable later in OpenOffice.org API.

usesLocalFiles() Returns true when the catalog name of the database should
not appear in the DatasourceBrowser of OpenOffice.org API,
otherwise false is returned.

supportsMixedCaseQuotedIdenti-
fiers()

When this method returns true,the quoted identifiers are case
sensitive. For example, in a driver that supports mixed case
quoted identifiers, SELECT * FROM "MyTable" retrieves data
from a table with the case-sensitive name MyTable.

getTables() Returns a ResultSet object that returns a single row for each
table that fits the search criteria, such as the catalog name,
schema pattern, table name pattern and sequence of table
types. The correct column count and names of the columns
are found at
com.sun.star.sdbc.XDatabaseMetaData:getTables
(). If this method does not return any rows, this driver does
not work with OpenOffice.org API.

Any other getXXX() method can be implemented step by step. For the the first step they return an
empty ResultSet object that contains no rows. It is not allowed to return NULL here.

The skeleton driver defines empty ResultSets for these get methods.
(Database /DriverSkeleton /SDriver.cxx)
Reference< XResultSet > SAL_CALL ODatabaseMetaData::getTables(

const Any& catalog, const ::rtl::OUString& schemaPattern,
const ::rtl::OUString& tableNamePattern, const Sequence< ::rtl::OUString >& types)
throw(SQLException, RuntimeException)

{
// this returns an empty resultset where the column-names are already set
// in special the metadata of the resultset already returns the right columns
ODatabaseMetaDataResultSet* pResultSet = new ODatabaseMetaDataResultSet();
Reference< XResultSet > xResultSet = pResultSet;
pResultSet->setTablesMap();
return xResultSet;

}

12.6.5 Statements
Statements are used to create ResultSets or to update the database. The executeQuery() method
creates new ResultSets . The following code snippet shows how the new ResultSet is created.
There can be only one ResultSet at a time. (Database /DriverSkeleton /SDriver.cxx)
Reference< XResultSet > SAL_CALL OStatement_Base::executeQuery(const ::rtl::OUString& sql)

throw(SQLException, RuntimeException)
{

::osl::MutexGuard aGuard(m_aMutex);
checkDisposed(OStatement_BASE::rBHelper.bDisposed);

Reference< XResultSet > xRS = NULL;
// create a resultset as result of executing the sql statement
// something needs to be done here :-)
m_xResultSet = xRS; // we nedd a reference to it for later use
return xRS;

}

The executeUpdate() methods only return the rows that were affected by the given SQL state-
ment. The last method execute returns true when a ResultSet object is returned when calling the
method getResultSet(), otherwise it returns false. All other methods have to be implemented.

872 OpenOffice.org 1.1 Developer's Guide • June 2003

PreparedStatement
The PreparedStatement is used when an SQL statement should be executed more than once. In
addition to the statement class, it must support the ability to provide information about the
parameters when they exist. For this reason, this class must support the
com.sun.star.sdbc.XResultSetMetaDataSupplier interface and also the
com.sun.star.sdbc.XParameters interface to set values for their parameters.

Result Set
The ResultSet needs to be implemented. For the first step, only forward ResultSets could be
implemented, but it is recommended to support all ResultSet methods.

12.6.6 Support Scalar Functions
SDBC supports numeric, string, time, date, system, and conversion functions on scalar values. The
Open Group CLI specification provides additional information on the semantics of the scalar func-
tions. The functions supported are listed below for reference.

If a DBMS supports a scalar function, the driver should also. Scalar functions are supported by
different DBMSs with different syntax, it is the driver's job to map the functions into the appro-
priate syntax or to implement the functions directly in the driver.

By calling metadata methods, a user can find out which functions are supported. For example, the
method XdatabaseMetaData.getNumericFunctions() returns a comma separated list of the
Open Group CLI names of the numeric functions supported. Similarly, the method
XDatabaseMetaData.getStringFunctions() returns a list of string functions supported.

In the following table, the scalar functions are listed by category.

Open Group CLI Numeric Functions
Numeric Function Function Returns
ABS(number) Absolute value of number

ACOS(float) Arccosine, in radians, of float

ASIN(float) Arcsine, in radians, of float

ATAN(float) Arctangent, in radians, of float

ATAN2(float1, float2) Arctangent, in radians, of float2 / float1

CEILING(number) Smallest integer >= number

COS(float) Cosine of float radians

COT(float) Cotangent of float radians

DEGREES(number) Degrees in number radians

EXP(float) Exponential function of float

FLOOR(number) Largest integer <= number

LOG(float) Base e logarithm of float

LOG10(float) Base 10 logarithm of float

Chapter 12 Database Access 873

Numeric Function Function Returns
MOD(integer1, integer2) Remainder for integer1 / integer2

PI() The constant pi

POWER(number, power) number raised to (integer) power

RADIANS(number) Radians in number degrees

RAND(integer) Random floating point for seed integer

ROUND(number, places) number rounded to places places

SIGN(number) -1 to indicate number is < 0; 0 to indicate number is = 0; 1 to indi-
cate number is > 0

SIN(float) Sine of float radians

SQRT(float) Square root of float

TAN(float) Tangent of float radians

TRUNCATE(number, places) number truncated to places places

Open Group CLI String Functions
String Functions Function Returns
ASCII(string) Integer representing the ASCII code value of the leftmost character in string.
CHAR(code) Character with ASCII code value code, where the code is between 0 and 255.
CONCAT(string1,
string2)

Character string formed by appending string2 to string1. If a string is null, the
result is DBMS-dependent.

DIFFERENCE(string1,
string2) Integer indicating the difference between the values returned by the function

SOUNDEX for string1 and string2.
INSERT(string1, start,
length, string2)

A character string formed by deleting length characters from string1 begin-
ning at the start, and inserting string2 into string1 at the start.

LCASE(string) Converts all uppercase characters in string to lowercase.
LEFT(string, count) The count leftmost characters from string.
LENGTH(string) Number of characters in string, excluding trailing blanks.
LOCATE(string1, string2
[, start]) Position in string2 of the first occurrence of string1, searching from the begin-

ning of string2. If start is specified, the search begins from position start. A 0
is returned if string2 does not contain string1. Position 1 is the first character
in string2.

LTRIM(string) Characters of string with leading blank spaces removed.
REPEAT(string, count) A character string formed by repeating string count times.
REPLACE(string1,
string2, string3)

Replaces all occurrences of string2 in string1 with string3.

RIGHT(string, count) The count rightmost characters in string.
RTRIM(string) The characters of string with no trailing blanks.
SOUNDEX(string) A character string that is data source-dependent, representing the sound of

the words in string, such as a four-digit SOUNDEX code, or a phonetic repre-
sentation of each word.

SPACE(count) A character string consisting of count spaces.

874 OpenOffice.org 1.1 Developer's Guide • June 2003

String Functions Function Returns
SUBSTRING(string,
start, length)

A character string formed by extracting length characters from string begin-
ning at start.

UCASE(string) Converts all lowercase characters in string to uppercase.

Open Group CLI Time and Date Functions
Time and Date Func-
tions

Function Returns

CURDATE() The current date as a date value.
CURTIME() The current local time as a time value.
DAYNAME(date) A character string representing the day component of the date. The name for

the day is specific to the data source.
DAYOFMONTH(date) An integer from 1 to 31 representing the day of the month in date.
DAYOFWEEK(date) An integer from 1 to 7 representing the day of the week in date, where 1

represents Sunday.
DAYOFYEAR(date) An integer from 1 to 366 representing the day of the year in date.
HOUR(time) An integer from 0 to 23 representing the hour component of time.
MINUTE(time) An integer from 0 to 59 representing the minute component of time.
MONTH(date) An integer from 1 to 12 representing the month component of date.
MONTHNAME(date) A character string representing the month component of date. The name for

the month is specific to the data source.
NOW() A timestamp value representing the current date and time.
QUARTER(date) An integer from 1 to 4 representing the quarter in date, where 1 represents

January 1 through March 31.
SECOND(time) An integer from 0 to 59 representing the second component of time.
TIMESTAMPADD(interval,
 count,
 timestamp)

A timestamp calculated by adding count interval(s) to timestamp. Interval
may be one of the following: SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK,
SQL_TSI_MONTH, SQL_TSI_QUARTER, or SQL_TSI_YEAR.

TIMESTAMPDIFF(interval,
 timestamp1,
 timestamp2)

An integer representing the number of interval(s) by which timestamp2 is
greater than timestamp1. Interval may be one of the
following:SQL_TSI_FRAC_SECOND, SQL_TSI_SECOND,
SQL_TSI_MINUTE, SQL_TSI_HOUR, SQL_TSI_DAY, SQL_TSI_WEEK,
SQL_TSI_MONTH, SQL_TSI_QUARTER, or SQL_TSI_YEAR

WEEK(date) An integer from 1 to 53 representing the week of the year in date.
YEAR(date) An integer representing the year component of date.

Open Group CLI System Functions
System Functions Function Returns
DATABASE() Name of the database.
IFNULL(expression,
value) Value if the expression is null; expression if expression is not null.

Chapter 12 Database Access 875

System Functions Function Returns
USER() User name in the DBMS.

Open Group CLI Conversion Functions
Conversion Function Function Returns
CONVERT(value, SQLtype) Value converted to SQLtype where SQLtype may be one of the following SQL

types: BIGINT, BINARY, BIT, CHAR, DATE, DECIMAL, DOUBLE, FLOAT,
INTEGER, LONGVARBINARY, LONGVARCHAR, REAL, SMALLINT,
TIME, TIMESTAMP, TINYINT, VARBINARY, or VARCHAR.

Handling Unsupported Functionality
Some variation is allowed for drivers written for databases that do not support certain function-
ality. For example, some databases do not support out parameters with stored procedures. In this
case, the CallableStatement methods that deal with out parameters (registerOutParameter
and the various XCallableStatement.getXXX() methods) do not apply, and they should be
implemented in such a way that they throw a com.sun.star.sdbc.SQLException.

The following features are optional in drivers for DBMSs that do not support them. When a DBMS
does not support a feature, the methods that support the feature may throw a SQLException. The
following list of optional features indicate if the com.sun.star.sdbc.XDatabaseMetaData
methods are supported by the DBMS and driver.

• scrollable result sets: supportsResultSetType()
• modifiable result sets: supportsResultSetConcurrency()
• batch updates: supportsBatchUpdates()
• SQL3 data types: getTypeInfo()
• storage and retrieval of Java objects:

- getUDTs() returns descriptions of the user defined types in a given schema
- getTypeInfo() returns descriptions of the data types available in the DBMS.

876 OpenOffice.org 1.1 Developer's Guide • June 2003

13 Forms

13.1 Introduction
Forms offer a method of control-based data input. A form or form document consists of a set of
controls, where each one enters a single piece of data. In a simple case, this could be a plain text
field allowing you to insert some text without any word breaks. When we speak of forms, we
mean forms and controls, because these cannot be divided.

 If an internet site asks you for information, for example, for a product registration you are
presented with fields to enter your name, your address and other information. These are HTML
forms.

Basically, this is what OpenOffice.org forms do. They enhance nearly every document with
controls for data input. This additional functionality put into a document is called the form layer
within the scope of this chapter.

The most basic functionality provides the controls for HTML form documents mentioned above: If
you open an HTML document with form elements in OpenOffice.org Writer, these elements are
represented by components from com.sun.star.form.

The more enhanced functionality provides support for data-aware forms. These are forms and
controls that are bound to a data source registered in OpenOffice.org to enter data into tables of a
database. For more information about data sources and data access in general, refer to the 12 Data-
base Access.

When discussing forms, the difference between form documents and logical forms have to be
distnguished. The form document refers to a document as a whole, and logical forms is a logical
concept, basically a set of controls with additional properties. See below for details.
Within the scope of this chapter, when a "form" is referred to, we mean the logical form. The
logical form is more interesting from the API programmer's perspective.

13.2 Models and Views

13.2.1 The Model-View Paradigm
A basic concept to understand about forms and controls in OpenOffice.org is the model-view
paradigm. For a given element in your document,for example, a text field in your HTML form, it
says that you have exactly one model and an arbitrary number of views.

877

The model is what is part of your document in that it describes how this element looks , and how
it behaves. The model even exists when you do not have an open instance of your document. If it
is stored in a file, the file contains a description of the model of your element.

In UNO, the simplest conceivable model is a component implementing
com.sun.star.beans.XPropertySet only. Every aspect of the view could then be described by a single
property. In fact, as you will see later, models for form controls are basically property sets.

The view is a visual representation of your model. It is the component which looks and behaves
according to the requirements of the model. You can have multiple views for one model, and they
would all look alike as the model describes it. The view is visible to the user. It is for visualizing
the model and handles interactions with the user. The model, however, is merely a "dumb"
container of data.

A good example to illustrate this is available in OpenOffice.org. Open an arbitrary document and
choose the menu item Window - New Window . A second window is opened showing the same
document displayed in the first window. This does not mean that the document was opened
twice, it means you opened a second view of the same document, which is a difference. In
particular, if you type some text in one of the windows, this change is visible in both windows.
That is what the model-view paradigm is about: Keep your document data once in the model, and
when you need to visualize the data to the user, or need interaction from the user that modifies
the document, create views to the model as needed.

Between model and view a 1:n relationship exists:

Note that the relation is directed. Usually, a view knows its model, but the model itself does not know about
the views which visualize it.

13.2.2 Models and Views for Form Controls
Form controls follow the model-view paradigm. This means if you have a form document that
contains a control, there is a model describing the control's behavior and appearance, and a view
that is the component the user is sees.

Note that the term "control" is ambiguous here. Usually, from the user's perspective, it is what is seen in the
document. As the model-view paradigm may not be obvious to the user, the user tends to consider the
visible representation and the underlying model of the control as one thing, that is, a user who refers to the
control usually means the combination of the view and the model.
As opposed to the user's perspective, when the UNO API for the form layer refers to a control, this means the
view of a form element, if not stated otherwise.

The base for the controls and models used in the form layer are found in the module
com.sun.star.awt, the com.sun.star.awt.UnoControl and
com.sun.star.awt.UnoControlModel services. As discussed later, the model hierarchy in
com.sun.star.form.component extends the hierarchy of com.sun.star.awt, whereas the control
hierarchy in com.sun.star.form.control is small.

Everything the model-view interaction for form controls is true for other UNO controls and UNO
control models, as well. Another example for components that use the model-view paradigm are

878 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 193

the controls and control models in OpenOffice.org Basic dialogs (11.5.2 Basic and Dialogs - Program-
ming Dialogs and Dialog Controls - Dialog Controls).

13.2.3 Model-View Interaction
When a model and a view interoperate, a data transfer in both directions is required, from the
model to the view and conversely.

Consider a simple text field. The model for a control implements a
com.sun.star.form.component.TextField service. This means it has a property Text,
containing the current content of the field, and a property BackgroundColor specifying the color
that should be used as background when drawing the text of the control.

First, if f the value of the BackgroundColor property is changed, the control is notified of the
change. This is done by UNO listener mechanisms, such as the
com.sun.star.beans.XPropertyChangeListener allowing the control to listen for changes to
model properties and react accordingly. Here the control would have to redraw itself using the
new background color.

In fact this is a common mechanism for the communication between model and view: The view
adds itself as listener for any aspect of the model which could affect it, and when it is notified of
changes, it adjusts itself to the new model state. This means that the model is always the passive
part. The model does not know its views, or at least not as views, but only their role as listeners,
while the views know their model.

On the other hand, if the view is used for interaction with the user, of the data needs to be propa-
gated from the view to the model. The user enters data in a text field, and the change is reflected in
the model. Remember that the user sees the control only, and everything affects the control in the
first step. If the user interacts with the view with the intention of modifying the model, the view
propagates changes to the model.

In our example, the user enters text into the control, the control automatically updates the respec-
tive property at the model (Text), thus modifying the document containing the model.

13.2.4 Form Layer Views

View Modes
An important aspect to know when dealing with forms is that the view for a form layer is in
different modes. More precise, there is a design mode available, opposite to a live mode. In design
mode, you design your form. interactively with OpenOffice.org by inserting new controls, resizing
them, and modifying their properties,together with control models and shapes. although
OpenOffice.org hides this. In live mode, the controls interact with the user for data input.

The live mode is the natural mode for forms views, because usually a form is designed once and
used again.

The following example switches a given document view between the two modes:
(Forms /DocumentViewHelper.java)
/** toggles the design mode of the form layer of active view of our sample document
*/
protected void toggleFormDesignMode() throws java.lang.Exception {
 // get a dispatcher for the toggle URL
 URL[] aToggleURL = new URL[] {new URL()};

Chapter 13 Forms 879

 aToggleURL[0].Complete = new String(".uno:SwitchControlDesignMode");
 XDispatch xDispatcher = getDispatcher(aToggleURL);

 // dispatch the URL - this will result in toggling the mode
 PropertyValue[] aDummyArgs = new PropertyValue[] {};
 xDispatcher.dispatch(aToggleURL[0], aDummyArgs);
}

The basic idea is to dispatch the URL ".uno:SwitchControlDesignMode" into the current view.
This triggers the same functionality as if the button Design Mode On/Off was pressed in
OpenOffice.org.In fact, SwitchControlDesignMode is the UNO name for the slot triggered by this
button.

Locating Controls
A common task when working with form documents using the OpenOffice.org API is to obtain
controls. Given that there is a control model, and a view to the document it belongs to, you may
want to know the control that is used to represent the model in that view. This is what the inter-
face com.sun.star.view.XControlAccess at the controller of a document view is made for.
(Forms/DocumentViewHelper.java)
/** retrieves a control within the current view of a document
 @param xModel
 specifies the control model which's control should be located
 @return
 the control tied to the model
*/
public XControl getControl(XControlModel xModel) throws com.sun.star.uno.Exception {
 XControlAccess xCtrlAcc = (XControlAccess)UnoRuntime.queryInterface(
 XControlAccess.class , m_xController);
 // delegate the task of looking for the control
 return xCtrlAcc.getControl(xModel);
}

Focussing Controls
To focus a specific control in your document, or more precisely, in one of the views of your docu-
ment: (Forms /DocumentViewHelper.java)
/** sets the focus to a specific control
 @param xModel
 a control model. The focus is set to that control which is part of our view
 and associated with the given model.
*/
public void grabControlFocus(Object xModel) throws com.sun.star.uno.Exception {
 // look for the control from the current view which belongs to the model
 XControl xControl = getControl(xModel);

 // the focus can be set to an XWindow only
 XWindow xControlWindow = (XWindow)UnoRuntime.queryInterface(Xwindow.class, xControl);

 // grab the focus
 xControlWindow.setFocus();
}

As you can see, focussing controls is reduced to locating controls. Once you have located the
control, the com.sun.star.awt.XWindow interface provides everything needed for focussing.

13.3 Form Elements in the Document Model
The model of a document is the data that is made persistent, so that all form elements are a part of
it. Refer to chapter 6.1.1 Office Development - OpenOffice.org Application Environment - Overview -
Framework API - Frame-Controller-Model Paradigm for additional information. This is true for logical

880 OpenOffice.org 1.1 Developer's Guide • June 2003

forms, as well as for control models. Controls , that is, the view part of form elements, are not
made persistent, thus are not accessible in the document model.

13.3.1 A Hierarchy of Models
The components in the form layer are organized hierarchically in an object tree. Their relationship
is organized using the standard interfaces, such as com.sun.star.container.XChild and
com.sun.star.container.XIndexAccess.

As in every tree, there is a root with inner nodes and leaves. There are different components
described below that take on one or several of these roles.

FormComponent Service
The basis for all form related models is the com.sun.star.form.FormComponent service. Its basic
characteristics are:

 it exports the com.sun.star.container.XChild interface

 it has a property Name
 it exports the com.sun.star.lang.XComponent interface

Form components have a parent and a name, and support lifetime control that the common
denominator for form elements and logical forms, as well as for control models.

FormComponents Service
In the level above, a single form component is a container for components. Stepping away from
the document model, you are looking for a specific form component, such as the model of a
control, you pass where all the control models are attached. This is the
com.sun.star.form.FormComponents component. The service offers basic container function-
ality, namely an access to its elements by index or by name), and a possibility to enumerate its
elements.

Provided that you have a container at hand, the access to its elements is straightforward. For
example, assume you want to enumerate all the elements in the container, and apply a specific
action for every element. The enumFormComponents() method below does this by recursively
enumerating the elements in a com.sun.star.form.FormComponents container.
(Forms /FormLayer.java)
/** enumerates and prints all the elements in the given container
*/
public static void enumFormComponents(XNameAccess xContainer, String sPrefix)
 throws java.lang.Exception {
 // loop through all the element names
 String aNames[] = xContainer.getElementNames();
 for (int i=0; i<aNames.length; ++i) {
 // print the child name
 System.out.println(sPrefix + aNames[i]);

 // check if it's a FormComponents component itself
 XServiceInfo xSI = (XServiceInfo)UnoRuntime.queryInterface(XServiceInfo.class,
 xContainer.getByName(aNames[i]));

 if (xSI.supportsService("com.sun.star.form.FormComponents")) {
 // yep, it is
 // -> step down
 XNameAccess xChildContainer = (XnameAccess)UnoRuntime.queryInterface(
 XNameAccess.class, xSI);
 enumFormComponents(xChildContainer, new String(" ") + sPrefix);

Chapter 13 Forms 881

 }
 }
}

/** enumerates and prints all the elements in the given container, together with the container itself
*/
public static void enumFormComponents(XNameAccess xContainer) throws java.lang.Exception {
 XNamed xNameAcc = (XNamed)UnoRuntime.queryInterface(XNamed.class, xContainer);
 String sObjectName = xNameAcc.getName();
 System.out.println(new String("enumerating the container named \"") + sObjectName +
 new String("\"\n"));

 System.out.println(sObjectName);
 enumFormComponents(xContainer, " ");
}

Logical Forms
Forms as technical objects are also part of the document model. In contrast to control models,
forms do not have a view representation. For every control model, there is a control the user inter-
acts with, and presents the data back to the user. For the form, there is no view component.

The basic service for logical forms is com.sun.star.form.component.Form. See below for details
regarding this service. For now, we are interested in that it exposes the
com.sun.star.form.FormComponent service, as well as the
com.sun.star.form.FormComponents service. This means it is part of a form component
container, and it is a container. Thus, in our hierarchy of models, it can be any node, such as an
inner node having children, that is, other form components,, as well as a leaf node having no chil-
dren, but a parent container. Of course both of these roles are not exclusive. This is how data
aware forms implement master-detail relationships. Refer to the 13.5 Forms - Data Awareness.

Forms Container
In our model hierarchy, we have inner nodes called the logical forms, and the basic element called
the form component. As in every tree, our hierarchy has a root, that is, an instance of the
com.sun.star.form.Forms service. This is nothing more than an instance of
com.sun.star.form.FormComponents. In fact, the differentiation exists for a non-ambiguous
runtime instantiation of a root.

Note that the com.sun.star.form.Forms service does not state that components implementing it are a
com.sun.star.form.FormComponent. This means this service acts as a tree root only, opposite to a
com.sun.star.form.Forms that is a container, as well as an element, thus it can be placed anywhere in
the tree.

Actually, it is not necessary for external components to instantiate a service directly. Every docu-
ment has at least one instance of it. A root forms container is tied to a draw page, which is an
element of the document model, as well. Refer to com.sun.star.drawing.DrawPage. A page
optionally supports the interface com.sun.star.form.XFormsSupplier giving access to the
collection. In the current OpenOffice.org implementation, Writer and Calc documents fully
support draw pages supplying forms.

The following example shows how to obtain a root forms collection, if the document model is
known which is denoted with s_aDocument. (Forms /DocumentHelper.java)
/** gets the <type scope="com.sun.star.drawing">DrawPage</type> of our sample document
*/
public static XDrawPage getDocumentDrawPage() throws java.lang.Exception {
 XDrawPage xReturn;

 // in case of a Writer document, this is rather easy: simply ask the XDrawPageSupplier
 XDrawPageSupplier xSuppPage = (XDrawPageSupplier)UnoRuntime.queryInterface(
 XDrawPageSupplier.class, s_aDocument);
 xReturn = xSuppPage.getDrawPage();

882 OpenOffice.org 1.1 Developer's Guide • June 2003

 if (null == xReturn) {
 // the model itself is no draw page supplier - then it may be an Impress or Calc
 // (or any other multi-page) document
 XDrawPagesSupplier xSuppPages = (XDrawPagesSupplier)UnoRuntime.queryInterface(
 XDrawPagesSupplier.class, s_aDocument);
 XDrawPages xPages = xSuppPages.getDrawPages();

 xReturn = (XdrawPage)UnoRuntime.queryInterface(XDrawPage.class, xPages.getByIndex(0));

 // Note that this is not really error-proof code: If the document model does not support the
 // XDrawPagesSupplier interface, or if the pages collection returned is empty, this will break.
 }

 return xReturn;
}

/** retrieves the root of the hierarchy of form components
*/
public static XNameContainer getFormComponentTreeRoot() throws java.lang.Exception {
 XFormsSupplier xSuppForms = (XFormsSupplier)UnoRuntime.queryInterface(
 XFormsSupplier.class, getDocumentDrawPage());

 XNameContainer xFormsCollection = null;
 if (null != xSuppForms) {
 xFormsCollection = xSuppForms.getForms();
 }
 return xFormsCollection;
}

Form Control Models
The control models are discussed in these sections. The basic service for a form layer control
model is com.sun.star.form.FormControlModel that is discussedin more detail below. A form
control model promises to support the com.sun.star.form.FormComponent service, meaning that
it can act as a child in our model hierarchy.

In addition, it does not claim that the com.sun.star.form.FormComponents service (plural s) is
supported meaning that form control models are leaves in our object tree. The only exception from
this is the grid control model. It is allowed to have children representing the models of the
columns.

An overview of the whole model tree has been provided. With the code fragments introduced
above, the following code dumps a model tree to the console:
 // dump the form component tree
 enumFormComponents(getFormComponentTreeRoot());

13.3.2 Control Models and Shapes
There is more to know about form components in a document.

From 9.3.2 Drawing - Working with Drawing Documents - Shapes, you already know about shapes.
They are also part of a document model. The control shapes,
com.sun.star.drawing.ControlShape are made to be tied to control models. They are special-
ized to fully integrate form control models into a document.

In theory, there can be a control shape without a model tied to it, or a control model which is part
of the form component hierarchy, but not associated with any shape. In the first case, an empty
shape is displayed in the document view. In the second case, you see nothing. It is possible to have
a shape which is properly tied to a control model, but the control model is not part of the form
component hierarchy. The model can not interact with the rest of the form layer. For example, it is
unable to take advantage of its data awareness capabilities.

Chapter 13 Forms 883

The user interface of OpenOffice.org does not allow the creation of orphaned objects, but you can create
them using the API. When dealing with controls through the API, ensure that there is always a valid rela-
tionship between forms, control models, and shapes.

A complete object structure in a document model with respect to the components relevant for our
form layer looks the following:

Programmatic Creation of Controls
As a consequence from the previous paragraph, we now know that to insert a form control, we
need to insert a control shape and control model into the document's model.

The following code fragment accomplishes that: (Forms /FormLayer.java)
/** creates a control in the document

 <p>Note that control here is an incorrect terminology. What the method really does is
 it creates a control shape, together with a control model, and inserts them into the document model.
 This will result in every view to this document creating a control described by the model-shape
 pair.</p>

 @param sFormComponentService
 the service name of the form component to create, e.g. "TextField"
 @param nXPos
 the abscissa of the position of the newly inserted shape
 @param nXPos
 the ordinate of the position of the newly inserted shape
 @param nWidth
 the width of the newly inserted shape
 @param nHeight

884 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 194

 the height of the newly inserted shape
 @return
 the property access to the control's model
*/
public static XPropertySet createControlAndShape(String sFormComponentService, int nXPos,
 int nYPos, int nWidth, int nHeight) throws java.lang.Exception {
 // let the document create a shape
 XMultiServiceFactory xDocAsFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, s_aDocument);
 XControlShape xShape = (XControlShape)UnoRuntime.queryInterface(XControlShape.class,
 xDocAsFactory.createInstance("com.sun.star.drawing.ControlShape"));

 // position and size of the shape
 xShape.setSize(new Size(nWidth * 100, nHeight * 100));
 xShape.setPosition(new Point(nXPos * 100, nYPos * 100));

 // and in a OOo Writer doc, the anchor can be adjusted
 XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface(XPropertySet.class, xShape);
 TextContentAnchorType eAnchorType = TextContentAnchorType.AT_PAGE;
 if (classifyDocument(s_aDocument) == DocumentType.WRITER) {
 eAnchorType = TextContentAnchorType.AT_PARAGRAPH;
 }
 xShapeProps.setPropertyValue("AnchorType", eAnchorType);

 // create the form component (the model of a form control)
 String sQualifiedComponentName = "com.sun.star.form.component." + sFormComponentService;
 XControlModel xModel = (XControlModel)UnoRuntime.queryInterface(XControlModel.class,
 s_aMSF.createInstance(sQualifiedComponentName));

 // knitt them
 xShape.setControl(xModel);

 // add the shape to the shapes collection of the document
 XShapes xDocShapes = (XShapes)UnoRuntime.queryInterface(XShapes.class, getDocumentDrawPage());
 xDocShapes.add(xShape);

 // and outta here with the XPropertySet interface of the model
 XPropertySet xModelProps = (XpropertySet)UnoRuntime.queryInterface(
 XpropertySet.class, xModel);
 return xModelProps;
}

Looking at the example above, the basic procedure is:

• create and initialize a shape

• create a control model

• announce the control model to the shape

• insert the shape into the shapes collection of a draw page

The above does not mention about inserting the control model into the form component hierarchy,
which is a contradiction of our previous discussion. We have previously said that every control
model must be part of this hierarchy to prevent corrupted documents, but it is not harmful.

In every document, when a new control shape is inserted into the document, through the API or
an interaction with a document's view, the control model is checked if it is a member of the model
hierarchy. If it is not, it is automatically inserted. Moreover, if the hierarchy does not exist or is
incomplete, for example, if the draw page does not have a forms collection, or this collection does
not contain a form, this is also corrected automatically.

With the code fragment above applied to a new document, a logical form is created automatically,
inserted into the forms hierarchy, and the control model is inserted into this form.

Note that this is an implementation detail. Internally, there is an instance listening at the page's shapes, that
reacts upon insertions. In theory, there could be other implementations of OpenOffice.org API that do not
contain this mechanism. In practice, the only known implementation is OpenOffice.org.

Note that the order of operations is important. If you insert the shape into the page's shape collection, and tie
it to its control model after, the document would be corrupted: Nobody would know about this new model
then, and it would not be inserted properly into the form component hierarchy, unless you do this.

Chapter 13 Forms 885

You may have noticed that there is nothing about the view. We only created a control model. As
you can see in the complete example for this chapter, when you have an open document, and
insert a model and a shape, a control (the visual representation) is also created or else you would
not see anything that looks like a control.

The control and model have a model-view relationship. If the document window is open, this
window is the document view. If the document or the model is modified by inserting a control
model, the view for every open view for this document reacts appropriately and creates a control
as described by the model. The com.sun.star.awt.UnoControlModel:DefaultControl property
describes the service to be instantiated when automatically creating a control for a model.

13.4 Form Components

13.4.1 Basics
According to the different form document types, there are different components in the
com.sun.star.form module serving different purposes. Basically, we distinguish between HTML
form functionality and data awareness functionality that are covered by the form layer API.

Control Models
As you know from 13.3.1 Forms - Form Elements in the Document Model - Hierarchy - Form Control
Models, the base for all our control models is the com.sun.star.form.FormControlModel service.
Let us look at the most relevant elements of the declaration of this service and what a component
must do to support it:

com.sun.star.awt.UnoControlModel
This service specifies that a form control model complies to everything required for a control
model by the UNO windowing toolkit as described in module com.sun.star.awt. This means
support for the com.sun.star.awt.XControlModel interface, for property access and persis-
tence.

com.sun.star.form.FormComponent
This service requires a form control model is part of a form component hierarchy. Refer to
chapter 13.3.1 Forms - Form Elements in the Document Model - Hierarchy.

com.sun.star.beans.XPropertyState
This optional interface allows the control model properties to have a default value. All known
implementations of the FormControlModel service support this interface.

com.sun.star.form.FormControlModel:ClassId
This property determines the class of a control model you have , and it assumes a value from
the com.sun.star.form.FormComponentType enumeration. The same is done using the
com.sun.star.lang.XServiceInfo interface that is supported by every component, and as
shown below it can be indispensable. Using the
com.sun.star.form.FormControlModel:ClassId property is faster.

Note that the com.sun.star.form.FormControlModel service does not state anything about data
awareness. It describes the requirements for a control model which can be part of a form layer.

See chapter 13.5 Forms - Data Awareness for additional information about the controls which are data aware.

886 OpenOffice.org 1.1 Developer's Guide • June 2003

The following example shows how to determine the type of a control model using the ClassId
property introduced above: (Forms /FLTools.java)
/** retrieves the type of a form component.
 <p>Speaking strictly, the function recognizes more than form components. Especially,
 it survives a null argument. which means it can be safely applied to the a top-level
 forms container; and it is able to classify grid columns (which are no form components)
 as well.</p>
*/
static public String classifyFormComponentType(XPropertySet xComponent)
 throws com.sun.star.uno.Exception {
 String sType = "<unknown component>";

 XServiceInfo xSI = (XserviceInfo)UnoRuntime.queryInterface(XServiceInfo.class, xComponent);

 XPropertySetInfo xPSI = null;
 if (null != xComponent)
 xPSI = xComponent.getPropertySetInfo();

 if ((null != xPSI) && xPSI.hasPropertyByName("ClassId")) {
 // get the ClassId property
 XPropertySet xCompProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xComponent);

 Short nClassId = (Short)xCompProps.getPropertyValue("ClassId");
 switch (nClassId.intValue())
 {
 case FormComponentType.COMMANDBUTTON: sType = "Command button"; break;
 case FormComponentType.RADIOBUTTON : sType = "Radio button"; break;
 case FormComponentType.IMAGEBUTTON : sType = "Image button"; break;
 case FormComponentType.CHECKBOX : sType = "Check Box"; break;
 case FormComponentType.LISTBOX : sType = "List Box"; break;
 case FormComponentType.COMBOBOX : sType = "Combo Box"; break;
 case FormComponentType.GROUPBOX : sType = "Group Box"; break;
 case FormComponentType.FIXEDTEXT : sType = "Fixed Text"; break;
 case FormComponentType.GRIDCONTROL : sType = "Grid Control"; break;
 case FormComponentType.FILECONTROL : sType = "File Control"; break;
 case FormComponentType.HIDDENCONTROL: sType = "Hidden Control"; break;
 case FormComponentType.IMAGECONTROL : sType = "Image Control"; break;
 case FormComponentType.DATEFIELD : sType = "Date Field"; break;
 case FormComponentType.TIMEFIELD : sType = "Time Field"; break;
 case FormComponentType.NUMERICFIELD : sType = "Numeric Field"; break;
 case FormComponentType.CURRENCYFIELD: sType = "Currency Field"; break;
 case FormComponentType.PATTERNFIELD : sType = "Pattern Field"; break;

 case FormComponentType.TEXTFIELD :
 // there are two known services with this class id: the usual text field,
 // and the formatted field
 sType = "Text Field";
 if ((null != xSI) && xSI.supportsService(
 "com.sun.star.form.component.FormattedField")) {
 sType = "Formatted Field";
 }
 break;

 default:
 break;
 }
 }
 else {
 if ((null != xSI) && xSI.supportsService("com.sun.star.form.component.DataForm")) {
 sType = "Form";
 }
 }

 return sType;
}

Note the special handling for the value com.sun.star.form.FormComponentType:TEXTFIELD.
There are two different services where a component implementing them is required to act as text
field, the com.sun.star.form.component.TextField and
com.sun.star.form.component.FormattedField. Both services describe a text component, thus
both have a class id of com.sun.star.form.FormComponentType:TEXTFIELD. To distinguish
between them, ask the components for more details using the com.sun.star.lang.XServiceInfo
interface.

Chapter 13 Forms 887

Forms
The OpenOffice.org API features different kinds of forms, namely the
com.sun.star.form.component.Form, com.sun.star.form.component.HTMLForm, and
com.sun.star.form.component.DataForm. The two different aspects described with these serv-
ices are HTML forms used in HTML documents, and data aware forms used to access databases.
Data awareness is discussed thoroughly in 13.5 Forms - Data Awareness.

Though different services exist for HTML and data aware forms, there is only one form implementation in
OpenOffice.org htat implements both services simultaneously.

The common denominator of HTML forms and data aware forms is described in the
com.sun.star.form.component.Form service. It includes the FormComponent and FormCompo-
nents service, in addition to the following elements:

com.sun.star.form.XForm
This interface identifies the component as a form that can be done with other methods, such as
the com.sun.star.lang.XServiceInfo interface. The com.sun.star.form.XForm interface
distinguishes a form component as a form. The XForm interface inherits from
com.sun.star.form.XFormComponent to indicate the difference, and does not add any further
operations.

com.sun.star.awt.XTabControllerModel
This is used for controlling tab ordering and control grouping. As a logical form is a container
for control models, it is a natural place to administer information about the relationship of its
control children. The tab order, that is, the order in which the focus travels through the controls
associated with the control models when the user presses the Tab key, is a relationship, and
thus is maintained on the form.

Note that changing the tab order through this interface also affects the models. The
com.sun.star.form.FormControlModel service has an optional property TabIndexthat
contains the relative position of the control in the tabbing order. For example, a straightforward
implementation of com.sun.star.awt.XTabControllerModel:setControlModels() would
be simply to adjust all the TabIndex properties of the models passed to this method.

13.4.2 HTML Forms
The com.sun.star.form.component.HTMLForm service reflects the requirements for HTML form
documents. Looking at HTML specifications, you can submit forms using different encodings and
submit methods, and reset forms. The HTMLForm service description reflects this by supporting the
interfaces com.sun.star.form.XReset and com.sun.star.form.XSubmit, as well as some addi-
tional properties related to the submit functionality.

The semantics of these interfaces and properties are straightforward.For additional details, refer to
the service description, as well as the HTML specification.

13.5 Data Awareness
A major feature of forms in OpenOffice.org is that they can be data aware. You create form docu-
ments where the user manipulates data from a database that is accessible in OpenOffice.org. For
more details about data sources, refer to chapter 12 Database Access. This includes data from any
table of a database, or data from a query based on one or more tables.

888 OpenOffice.org 1.1 Developer's Guide • June 2003

The basic idea is that a logical form cis associated with a database result set. A form control model,
which is a child of that form, is bound to a field of this result set, exchanging the data entered by
the user with the result set field.

13.5.1 Forms

Forms as Row Sets
Besides forms, there is already a component that supports a result set, the
com.sun.star.sdb.RowSet.If you look at the com.sun.star.form.component.DataForm, a Data-
Form also implements the com.sun.star.sdb.RowSet service, and extends it with additional
functionality. Row sets are described in 12.3.1 Database Access - Manipulating Data - The RowSet
Service.

Loadable Forms
A major difference of data forms compared to the underlying row set is the that forms are loaded,
and t provide an interface to manipulate this state.
 XLoadable xLoad = (XLoadable)FLTools.getParent(aControlModel, XLoadable.class);
 xLoad.reload();

Loading is the same as executing the underlying row set, that is, invoking the
com.sun.star.sdbc.XRowSet:execute() method. The com.sun.star.form.XLoadable is
designed to fit the needs of a form document, for example, it a unloads an already loaded form.

The example above shows how to reload a form. Reloading is executing the row set again. Using
reload instead of execute has the advantage of advanced listener mechanisms:

Look at the com.sun.star.form.XLoadable interface. You can add a
com.sun.star.form.XLoadListener. This listener not only tells you when load- related events
have occurred that is achieved by the com.sun.star.sdbc.XRowSetListener, but also when they
are about to happen. In a complex scenario where different listeners are added to different aspects
of a form, you use the com.sun.star.form.XLoadable:reloading() call to disable all other
listeners temporarily. Re-executing a row set is a complex process, thus it triggers a lot of events
that are only an after effect of the re-execution.

Though all the functionality provided by com.sun.star.form.XLoadable can be simulated using the
com.sun.star.sdbc.XRowSet interface, you should always use the former. Due to the above-mentioned,
more sophisticated listener mechanisms, implementations have a chance to do loading, reloading and
unloading much smoother then.

An additional difference between loading and executing is the positioning of the row set: When
using com.sun.star.sdbc.XRowSet:execute(), the set is positioned before the first record. When
you use com.sun.star.form.XLoadable:load(), the set is positioned on the first record, as you
would expect from a form.

Sub Forms
A powerful feature of OpenOffice.org are sub forms. This does not mean that complete form docu-
ments are embedded into other form documents, instead sub form relationships are realized by
nesting logical forms in the form component hierarchy.

Chapter 13 Forms 889

When a form notices that its parent is not the forms container when it is loaded and in live mode,
but is dependent on another form, it no longer acts as a top- level form. Whenever the parent or
master form moves to another record, the content of the sub or detail form is re-fetched. This way,
the content of the sub form is made dependent on the actual value of one or more fields of the
parent form.

Typical use for a relationship are tables that are linked through key columns, usually in a 1:n rela-
tionship. You use a master form to travel trough all records of the table on the 1 side of the rela-
tionship, and a detail form that shows the records of the table on the n side of the relationship
where the foreign key matches the primary key of the master table.

To create nested forms at runtime, use the following example: (Forms/FormLayer.java)
 // retrieve or create the master form
 m_xMasterForm =

 // bind it to the salesman table
 m_xMasterForm.setPropertyValue("DataSourceName", m_aParameters.sDataSourceName);
 m_xMasterForm.setPropertyValue("CommandType", new Integer(CommandType.TABLE));
 m_xMasterForm.setPropertyValue("Command", "SALESMAN");

 // create the details form
 XIndexContainer xSalesForm = m_aDocument.createSubForm(m_xMasterForm, "Sales");
 XPropertySet xSalesFormProps = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xSalesForm);

 // bind it to the all those sales belonging to a variable salesmen
 xSalesFormProps.setPropertyValue("DataSourceName", m_aParameters.sDataSourceName);
 xSalesFormProps.setPropertyValue("CommandType", new Integer(CommandType.COMMAND));
 xSalesFormProps.setPropertyValue("Command",
 "SELECT * FROM SALES AS SALES WHERE SALES.SNR = :salesman");

 // the master-details connection
 String[] aMasterFields = new String[] {"SNR"}; // the field in the master form
 String[] aDetailFields = new String[] {"salesman"}; // the name in the detail form
 xSalesFormProps.setPropertyValue("MasterFields", aMasterFields);
 xSalesFormProps.setPropertyValue("DetailFields", aDetailFields);

The code snippet works on the following table structure:

890 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 195

The code is straigh forward, except setting up the connection between the two forms. The master
form is bound to SALESMEN, and the detail form is bound to a statement that selects all fields
from SALES, filtered for records where the foreign key, SALES.SNR, equals a parameter named
salesman.

As soon as the MasterFields and DetailFields properties are set, the two forms are connected.
Every time the cursor in the master form moves, the detail form reloads after filling the salesman
parameter with the actual value of the master forms SNR column.

Filtering and Sorting
Forms support quick and easy filtering and sorting like the underlying row sets. For this, the prop-
erties com.sun.star.sdb.RowSet:Filter, com.sun.star.sdb.RowSet:ApplyFilter and
com.sun.star.sdb.RowSet:Order area used. (Forms /SalesFilter.java)
 // set this as filter on the form
 String sCompleteFilter = "";
 if ((null != sOdbcDate) && (0 != sOdbcDate.length())) {
 sCompleteFilter = "SALEDATE >= ";
 sCompleteFilter += sOdbcDate;
 }
 m_xSalesForm.setPropertyValue("Filter", sCompleteFilter);
 m_xSalesForm.setPropertyValue("ApplyFilter", new Boolean(true));

 // and reload the form
 XLoadable xLoad = (XLoadable)UnoRuntime.queryInterface(XLoadable.class, m_xSalesForm);
 xLoad.reload();

In this fragment, a filter string is built first. The "SALEDATE >= {D '2002-12-02'}" is an example
for a filter string. In general, everything that appears after the WHERE clause of an SQL statement is
set as a Filter property value. The same holds true for the Order property value and an ORDER
BY clause.

Note the notation for the date in braces: This is the standard ODBC notation for date values, and it is the
safest method to supply OpenOffice.org with date values. It also works if you are using non-ODBC data
sources, as long as you do not switch on the Native SQL option. Refer
tocom.sun.star.sdbc.Statement:EscapeProcessing. OpenOffice.org understands and sometimes
returns other notations, for instance, in the user interface where that makes sense, but these are locale-
dependent, which means you have to know the current locale if you use them.

Then the ApplyFilter property is set to true. This is for safety, because the value of this property
is unknown when creating a new form. Everytime you have a form or row set, and you want to
change the filter, remember to set the ApplyFilter property at least once. Afterwards, reload()
is called.

In general, ApplyFilter allows the user of a row set to enable or disable the current filter quickly
without remembering it. To see what the effects of the current filter are, set ApplyFilter to false
and reload the form.

Parameters
Data Aware Forms are based on statements. As with other topics in this chapter, this is not form
specific, instead it is a functionality inherited from the underlying com.sun.star.sdb.RowSet.
Statements contain parameters where some values are not specified, and are not dependent on
actual values in the underlying tables. Instead they have to be filled each time the row set is
executed, that is, the form is loaded or reloaded.

A typical example for a statement containing a parameter is
SELECT * FROM SALES WHERE SALES.SNR = :salesman

Chapter 13 Forms 891

There is a named parameter salesman, which is filled before a row set based on a statement is
executed. The orthodox method to use is the com.sun.star.sdbc.XParameters interface,
exported by the row set.

However, forms allow another way. They export the
com.sun.star.form.XDatabaseParameterBroadcaster interface that allows your component to
add itself as a listener for an event which is triggered whenever the form needs parameter values.

In a form, filling parameters is a three-step procedure. Consider a form that needs three parame-
ters for execution.

1. The master-detail relationship is evaluated. If the form's parent is a
com.sun.star.form.component.DataForm, then the MasterFields and DetailFields prop -
erties are evaluated to fill in parameter values. For an example of how this relationship is
evaluated, refer to chapter 13.5.1 Forms - Data Awareness - Forms - Sub Forms.

2. If there are parameter values left, that is, not filled in, the calls to the
com.sun.star.sdbc.XParameters interface are examined. All values previously set through
this interface are filled in.

3. If there are still parameter values left, the
com.sun.star.form.XDatabaseParameterListeners are invoked. Any component can add
itself as a listener using the com.sun.star.form.XDatabaseParameterBroadcaster interface
implemented by the form.
The listeners then have the chance to fill in anything still missing.

Unfortunately, OpenOffice.org Basic scripts currently cannot follow the last step of this procedure
—there is a known implementation issue which prevents this.

13.5.2 Data Aware Controls
The second part of the Data Awareness capabilities of OpenOffice.org are data aware controls.
While a form is always associated with a complete result set, it represents this result set, a single
control is bound to one data column that is part of the form which is the control's parent.

As always, the relevant information is stored in the control model. The basic service for control
models which are data-aware is com.sun.star.form.DataAwareControlModel.

There are two connections between a control model and the column it is bound to:

DataField
This is the property that determines the name of the field to bind to. Upon loading the form, a
control model searches the data columns of the form for this name, and connects to it. An
explanation for "connects" is provided below.
Note that this property isa suggestion only. It tells the control model to connect to the data
column, but this connection may fail for various reasons, for example, no such column may
exist in the row set.
Even if this property is set to a non-empty string, this does not mean anything about the
control being connected.

BoundField
Once a control model has connected itself to a data column, the respective column object is also
remembered. This saves clients of a control model the effort to examine and handle the
DataField , they simply rely on BoundField.
Opposite to the DataField property, BoundField is reliable in that it is a valid column object if
and only if the control is properly connected.

892 OpenOffice.org 1.1 Developer's Guide • June 2003

The overall relationship for data awareness is as follows:

Control Models as Bound Components
You expect that the control displays the current data of the column it is tied to. Current data
means the data in the row that the com.sun.star.form.component.DataForm is currently located
on. Now, the control does not know about data-awareness, only the control model does, but we
already have a connection between the model and control: As described in the chapter about
model-view interaction, 13.2.3 Forms - Models and Views - Model-View Interaction, the control listens
for changes to the model properties, as well as updates them when a user interacts with the
control directly.

For instance, you know the Text property of a simple text input field,
com.sun.star.form.component.TextFieldthat is updated by the control when the user enters
text. When the property is updated through any other means, the control reacts appropriately and
adjusts the text it displays.

This mechanism is found in all controls. The only difference is the property used to determine the
contents to be displayed. For instance, numeric controls
com.sun.star.form.component.NumericField have a property Value representing the current
numerical value to be displayed.
Although the name differs, all control models have a dedicated content property.

Chapter 13 Forms 893

Illustration 196

This is where the data-awareness comes in. A data-aware control model bound to a data column
uses its content property to exchange data with this column. As soon as the column value changes,
the model forwards the new value to its content property, and notifies its listeners. One of these
listeners is the control that updates its display:

Committing Controls
The second direction of the data transfer is back from what the user enters into the control. The
text entered by a user is immediately forwarded to the value property of the control model. This
way, both the control and the control model are always consistent.

Next, the content property is transferred into the data column the control is bound to. As opposed
to the first step, this is not done automatically. Instead, this control is committed actively.

Committing is the process of transferring the current value of the control to the database column.
The interface used for this is com.sun.star.form.XBoundComponent that provides the method
commit. Note that the XBoundComponent is derived from
com.sun.star.form.XUpdateBroadcaster. This means that listeners are added to a component
to monitor and veto the committing of data.

The following diagram shows what happens when the user decides to save the current record
after changing a control:

894 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 197

Note that in the diagram, there is a controller instance involved. In general, this is any instance
capable of controlling the user-form interaction. In OpenOffice.org, for every document view and
form, there is an instance of the com.sun.star.form.FormController service, together with
some not-yet UNO-based code that takes on the role of a controller.

13.6 Common Tasks
This chapter is dedicated to problems that may arise when you are working with (or script) form
documents, and cannot be solved by OpenOffice.org's built-in methods, but have a solution in the
OpenOffice.org UNO API.

13.6.1 Initializing Bound Controls
All form controls specify a default value that is used when initially displaying the control, and
when it is reset. For instance, resetting (com.sun.star.form.XReset) happens when a form is
moved to the insert row, that allows data to be inserted as a new row into the underlying row set.

Now, you do not want a fixed default value for new records, but a dynamically generated one that
is dependent on the actual context at the moment the new record is entered.

Or, you want to have real null values for date fields. This is currently not possible, because the
com.sun.star.form.component.DateField service interprets a null default as an instruction to
use the current system date. Effectively, you cannot have date fields in forms which default to
null on new records, but you can get this by programming the API. (Forms /FormLayer.java)
public void handleReset(EventObject aEvent) throws com.sun.star.uno.RuntimeException {

Chapter 13 Forms 895

Illustration 198

 if (((Boolean)xFormProps.getPropertyValue("IsNew")).booleanValue()) {
 // the form is positioned on the insert row

 Object aModifiedFlag = xFormProps.getPropertyValue("IsModified");

 // get the columns of the form
 XColumnsSupplier xSuppCols = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, xFormProps);
 XNameAccess xCols = xSuppCols.getColumns();

 // and update the date column with a NULL value
 XColumnUpdate xDateColumn = (XColumnUpdate)UnoRuntime.queryInterface(
 XColumnUpdate.class, xCols.getByName("SALEDATE"));
 xDateColumn.updateNull();

 // then restore the flag
 xFormProps.setPropertyValue("IsModified", aModifiedFlag);
 }
}

The first decision is where to step in. We chose to add a reset-listener to the form, so that the form
is reset as soon as it has been positioned on the new record. The
com.sun.star.form.XReset:resetted() method is called after the positioning is done.

However, resets also occur for various reasons therefore check if the form is really positioned on
the insert row, indicated by the IsNew property being true.

Now besides retrieving and updating the data column with the desired value, null, there is
another obstacle. When the form is moved to the insert row, and some values are initialized, the
row should not be modified. This is because a modified row is saved in the database, and we only
initialized the new row with the defaults, the user did not enter data., We do not want to store the
row, therefore we save and restore the IsModified flag on the form while doing the update.

13.6.2 Automatic Key Generation
Another problem frequently encountered is the automatic generation of unique keys. There are
reasons for doing this on the client side, and missing support, for example, auto-increment fields
in your database backend, or you need this value before inserting the row. OpenOffice.org is
currently limited in re-fetching the server-side generated value after a record has been inserted.

Assume that you have a method called generateUniqueKey() to generate a unique key that could
be queried from a key generator on a database server, or in a single-user-environment by selecting
the maximum of the existing keys and incrementing it by 1. This fragment inserts the generated
value into the given column of a given form: (Forms /KeyGenerator.java)
public void insertUniqueKey(XPropertySet xForm, String sFieldName) throws com.sun.star.uno.Exception {
 // get the column object
 XColumnsSupplier xSuppCols = (XColumnsSupplier)UnoRuntime.queryInterface(
 XColumnsSupplier.class, xForm);
 XNameAccess xCols = xSuppCols.getColumns();
 XColumnUpdate xCol = (XColumnUpdate)UnoRuntime.queryInterface(
 XColumnUpdate.class, xCols.getByName(sFieldName));

 xCol.updateInt(generateUniqueKey(xForm, sFieldName));
}

A solution to determine when the insertion is to happen has been introduced in a previous
chapter, that is, we could fill in the value as soon as the form is positioned on the insert row, wait
for the user's input in the other fields, and save the record.

Another approach is to step in immediately before the record is inserted. For this, the
com.sun.star.sdb.XRowSetApproveBroadcaster is used. It notifies listeners when rows are
inserted, the listeners can veto this, and final changes can be made to the new record:
(Forms/KeyGenerator.java)
public boolean approveRowChange(RowChangeEvent aEvent) throws com.sun.star.uno.RuntimeException {
 if (RowChangeAction.INSERT == aEvent.Action) {
 // the affected form

896 OpenOffice.org 1.1 Developer's Guide • June 2003

 XPropertySet xFormProps = (XpropertySet)UnoRuntime.queryInterface(
 XpropertySet.class, aEvent.Source);
 // insert a new unique value
 insertUniqueKey(xFormProps, m_sFieldName);
 }
 return true;
}

13.6.3 Data Validation
OpenOffice.org's only offering for client-side data validation is that it automatically rejects null
values for fields where input is required.

Often you want to validate data as soon as it is written. You have two possibilities here:

• From the chapter 13.5.2 Forms - Data Awareness - Data Aware Controls - Committing Controls, you
can approve updates, and veto the changes a control wants to write into the data column it is
bound to.

• Additionally, you can step in later. You know how to use a
com.sun.star.sdb.XRowSetApproveListener for doing last-minute changes to a record that
is about to be inserted.
Additionally, you can use the listener to approve changes to the row set data. As the
com.sun.star.sdb.RowChangeAction is sent to the listeners, it distinguishes between
different kinds of data modification. You can implement listeners that act differently for inser-
tions and simple updates.

Note the important differences between both solutions. Using an
com.sun.star.form.XUpdateListener implies that the data operations are vetoed for a given
control. Your listener is invoked as soon as the respective control is committed, for instance, when
it loses the focus. This implies that changes done to the data column by other means than through
this control are not monitored.

The second alternative is using an com.sun.star.sdb.XRowSetApproveListener meaning you
veto changes immediately before they are sent to the database. Thus, it is irrelevant where they
have been made previously. In addition, error messages that are raised when the user actively
tries to save the record are considered less disturbing than error messages raised when the user
simply leaves a control.

The example below shows the handling for denying empty values for a given control:
(Forms /GridFieldValidator.java)
public boolean approveUpdate(EventObject aEvent) throws com.sun.star.uno.RuntimeException {
 boolean bApproved = true;

 // the control model which fired the event
 XPropertySet xSourceProps = UNO.queryPropertySet(aEvent.Source);

 String sNewText = (String)xSourceProps.getPropertyValue("Text");
 if (0 == sNewText.length()) {
 // say that the value is invalid
 showInvalidValueMessage();
 bApproved = false;

 // reset the control value
 // for this, we take the current value from the row set field the control
 // is bound to, and forward it to the control model
 XColumn xBoundColumn = UNO.queryColumn(xSourceProps.getPropertyValue("BoundField"));
 if (null != xBoundColumn) {
 xSourceProps.setPropertyValue("Text", xBoundColumn.getString());
 }
 }

 return bApproved;
}

Chapter 13 Forms 897

14 Universal Content Broker

14.1 Overview

14.1.1 Capabilities
The Universal Content Broker (UCB) is a key part of the OpenOffice.org architecture. In general, the
UCB provides a standard interface for generalized access to different data sources andfunctions
for querying, modifying, and creating data contents. The OpenOffice.org document types are all
handled by the UCB. In addition, it is used for help files, directory trees and resource links.

The advantage of delegating resource access to the UCB is, that document, folder and link
handling can always be the same from the developer's perspective.It does not matter if you are
storing in a file system, on an FTPWebDAV server, or in a document management system.

However, the UCB does not have to be used directly if you want to load and save OpenOffice.org
documents.The com.sun.star.frame.Desktop serviceprovides the necessary functions, hiding
the comparably low-level UCB calls . See 6.1.5 Office Development - OpenOffice.org Application Envi-
ronment - Handling Documents. The UCB allows you to administer files in a directory tree or read
your own document stream, regardless of where the directory tree or the stream is located.

14.1.2 Architecture
Conceptually, the UCB can be pictured as an object system that consists of a core and a set of
Universal Content Provider s (UCPs). The UCPs are designed to mask the differences between
access protocols, enabling developers to focus on the essentials of integrating resources through
the UCB interface, instead of the complexities of an underlying protocol. To this end, each UCP
implements an interface that facilitates access to a particular data source through a Uniform
Resource Identifier (URI). When a client requests a particular resource, it addresses the UCB that
calls a qualified UCP, based on the URI that is associated with the content.

As a rule, all data content is encapsulated in content objects. Each content object implements a
standard set of interfaces, that includes functions for querying the content type and a select set of
commands that can be run on the respective content, such as "open", "delete", and "move".
Whenever we refer to UCB commands, we put them in double quotes as in "getPropertyValues" to
make a distinction between UCB commands and methods in general, which are written as getProperty-
Values(). UCB commands are explained in the section 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands below.

899

Each content object also has a set of attributes that can be read and set by an application, that
include the title, the media type (MIME type), and different flags. The UCB API defines a set of
standard commands and properties. There is a set of mandatory properties and commands that
must be supported by any content implementation, as well as optional commands and properties
with predefined semantics. Illustration 199 shows the relationship between the UCB, UCPs and
UCB content objects.

When a client requests a particular content, it addresses the UCB and passes on the corresponding
URI. The UCB analyzes the URI and then calls the corresponding UCP which creates an object for
the requested resource.

For example, when an application requests a particular document, the URI of the document is
passed to the Universal Content Broker. The UCB analyzes the URI and delegates it to the appro-
priate UCP. The UCP creates a content object for the requested resource and returns it to the UCB,
which returns it to the application. The application now opens the content object or query, or set
property values by executing the appropriate command.

14.2 Services and Interfaces
Each UCB content implements the service com.sun.star.ucb.Content. The UCB content service
interfaces include:

• com.sun.star.ucb.XContent
• com.sun.star.beans.XPropertyContainer
• com.sun.star.container.XChild (optional)

900 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 199

• com.sun.star.ucb.XCommandProcessor
• com.sun.star.ucb.XCommandProcessor2 (optional)
• com.sun.star.ucb.XContentCreator (optional)

The interface com.sun.star.ucb.XContent provides access to a content's type and identifier. The
com.sun.star.ucb.XCommandProcessor executes commands at the content object, such as
opening a contentthat provides access to the content's data stream or its children, andsetting and
getting property values. The interface com.sun.star.beans.XPropertyContainer adds new
properties to a content or removes properties that were previously added using this interface. The
properties added are always made persistent.

If you change the set of properties by adding or removing properties, the cache of scripting languages, such
as OpenOffice.org Basic might not reflect these changes. Thus, use the get /set methods to access the proper-
ties in scripting langugages rather than relying on their automatic recognition of properties.

The com.sun.star.ucb.XContentCreator interface is for creating new resources, such as a new
folder in the local file system. Not all content implementation can create new resources, therefore
this interface is optional. The optional interface com.sun.star.container.XChild provides
access to the content object's parent content object. Not all data sources represented by content
implementations are organized hierarchically, therefore a parent cannot always be specified.

The interface com.sun.star.ucb.XCommandProcessor2 is the improved version of
com.sun.star.ucb.XCommandProcessor. It has been introduced to release command identifiers
retrieved through createCommandIdentifier() at the XCommandProcessor interface. To avoid resource
leaks, use XCommandProcessor2.

Some content commands defined by the UCB API are listed in the following table:

Selected Command Names for com.sun.star.ucb.XCommandProcessor
"getCommandInfo" Obtains an interface that queries information on commands supported by a

content.

"getPropertySetInfo" Obtains an interface that queries information on properties supported by a
content.

"getPropertyValues" Obtains property values from the content.

"setPropertyValues" Sets property values of the content.

"open" Gives access to the data stream of a document or to the children of a folder.

"delete" Destroys a resource.

"insert" Commits newly-created resources. Writes new data stream of existing docu-
ment resources.

"transfer" Copies or moves a content object.

Some interesting content properties defined by the UCB API:

Selected Properties of UCB Contents
ContentType Contains a unique(!), read- only type string for the content, for example, "appli-

cation /vnd.sun.star.hierarchy- link". This is not the Media-Type!

IsFolder Indicates whether a content can contain other contents.

IsDocument Indicates whether a content is a document.

Title Contains the title of an object, for example, the name of a file.

DateCreated Contains the date and time the object was created.

DateModified Contains the date and time the object was last modified.

MediaType Contains the media type (MIME type) of a content.

Chapter 14 Universal Content Broker 901

Selected Properties of UCB Contents
Size Contains the size, usually in bytes, of an object.

Every UCP implements the service com.sun.star.ucb.ContentProvider. The UCP core interface
is com.sun.star.ucb.XContentProvider. This interface facilitates the creation of content objects
based on a given content identifier.

A UCB implements the service com.sun.star.ucb.UniversalContentBroker. The UCB core
interfaces are com.sun.star.ucb.XContentProvider and
com.sun.star.ucb.XContentProviderManager. The com.sun.star.ucb.XContentProvider
interface implementation delegates requests to create content objects to the content provider regis-
tered for the supplied content identifier. The com.sun.star.ucb.XContentProviderManager
interface is used to query the UCPs registered with a given UCB, and to register and remove
UCPs.

A specification for the implementation for each of the UCPs, including URL schemes, content types,
supported commands and properties is located in C Appendix - Universal Content Providers.

14.3 Content Providers
The current implementation of the Universal Content Broker in a OpenOffice.org installation
supplies UCPs for the following data sources:

Data source Description URL Schema Service name
FILE Provides access to the

file system
"file" com.sun.star.ucb.FileContentProvider

WebDAV
and HTTP

 Provides access to
web-based file systems
and includes HTTP

"vnd.sun.star.webdav
" or "http"

com.sun.star.ucb.WebDAVContentProvider

FTP Provides access to file
transfer protocol
servers

"ftp" com.sun.star.ucb.fpx.ContentProvider

Hierarchy Virtual hierarchy of
folders and links

"vnd.sun.star.hier" com.sun.star.ucb.HierarchyContentProvider

ZIP and JAR
files

Packaged files "vnd.sun.star.pkg" com.sun.star.ucb.PackageContentProvider

Help files OpenOffice.org help
system

"vnd.sun.star.help" com.sun.star.help.XMLHelp

Appendix C Appendix - Universal Content Providers describes all theabove content providers in
more detail. The reference documentation for the commands and other features of these UCPs are
located in the SDK or the ucb project on ucb.openoffice.org. Additionally, the ucb project offers
information about other UCPs for OpenOffice.org, for example, a UCP for document management
systems.

14.4 Using the UCB API
This section explains how to use the API of the Universal Content Broker.

902 OpenOffice.org 1.1 Developer's Guide • June 2003

14.4.1 Instantiating the UCB
The following steps have to be performed before a process can use the UCB:

• Create and set the UNO service manager.

• Create an instance of the UNO service com.sun.star.ucb.UniversalContentBroker, passing
the keys identifying a predefined UCB configuration to createInstanceWithArguments().

There are several predefined UCB configurations. Each configuration contains data that describes
a set of UCPs. All UCPs contained in a configuration are registered at the UCB that is created
using this configuration. A UCB configuration is identified by two keys that are strings. The stan-
dard configuration is "Local" and "Office", which generally allows access to all UCPs available
in a local installation.
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.uno.Exception;
import com.sun.star.uno.XInterface;

boolean initUCB() {

 ///
 // Obtain Process Service Manager.
 ///

 XMultiServiceFactory xServiceFactory = ...

 ///
 // Create UCB. This needs to be done only once per process.
 ///

 XInterface xUCB;
 try {
 // Supply configuration to use for this UCB instance...
 String[] keys = new String[2];
 keys[0] = "Local";
 keys[0] = "Office";
 xUCB = xServiceFactory.createInstanceWithArguments(
 "com.sun.star.ucb.UniversalContentBroker", keys);
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xUCB == null)
 return false;

 return true;
}

For information about other configurations, refer to 14.5 Universal Content Broker - UCB Configura-
tion.

14.4.2 Accessing a UCB Content
Each UCB content can be identified using a URL that points to a folder or a document content in
the data source you want to work with. To create a content object for a given URL:

1. Obtain access to the UCB.

2. Let the UCB create a content identifier object for the requested URL using createConten-
tIdentifier() at the com.sun.star.ucb.XContentIdentifierFactory of the UCB.

3. Let the UCB create a content object for the content identifier using queryContent() at the
com.sun.star.ucb.XContentProvider interface of the UCB.

The UCB selects a UCP according to the URL contained in the identifier object and dispatches the
queryContent() call to it. The UCP creates the content implementation object and returns it to the
UCB, which passes it on to the caller.

Chapter 14 Universal Content Broker 903

Creating a UCB content from a given URL: (UCB/Helper.java)
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.Xinterface;
import com.sun.star.ucb.*;

{
 String aURL = ...

 ///
 // Obtain access to UCB...
 ///

 XInterface xUCB = ...

 // Obtain required UCB interfaces XContentIdentifierFactory and XContentProvider
 XContentIdentifierFactory xIdFactory = (XContentIdentifierFactory)UnoRuntime.queryInterface(
 XContentIdentifierFactory.class, xUCB);
 XContentProvider xProvider = (XContentProvider)UnoRuntime.queryInterface(
 XContentProvider.class, xUCB);
 ///
 // Obtain content object from UCB...
 ///

 // Create identifier object for given URL.
 XContentIdentifier xId = xIdFactory.createContentIdentifier(aURL);
 XContent xContent = xProvider.queryContent(xId);
}

14.4.3 Executing Content Commands
Each UCB content is able to execute commands. When the content object is created, commands are
executed using its com.sun.star.ucb.XCommandProcessor interface. The execute() method at
this interface expects a com.sun.star.ucb.Command, which is a struct containing the command
name, command arguments and a handle:

Members of struct com.sun.star.ucb.Command
Name string, contains the name of the command

Handle long, contains an implementation- specific handle for the command

Argument any, contains the argument of the command

Refer to appendix C Appendix - Universal Content Providers for a complete list of predefined
commands, , the description of the UNO service com.sun.star.ucb.Content and the UCP refer-
ence that comes with the SDK. For the latest information, visit ucb.openoffice.org.

Whenever we refer to UCB commands, we put them in double quotes as in "getPropertyValues" to
make a distinction between UCB commands and methods in general that are written getPropertyValues
().

If executing a command cannot proceed because of an error condition, the following occurs. If the
execute call was supplied with a com.sun.star.ucb.XCommandEnvironment that contains a
com.sun.star.task.XInteractionHandler, this interaction handler is used to resolve the
problem. If no interaction handler is supplied by passing null to the execute() method, or it
cannot resolve the problem, an exception describing the error condition is thrown.

The following method executeCommand() executes a command at a UCB content:
(UCB/Helper.java)
import com.sun.star.uno.UnoRuntime;
import com.sun.star.ucb.*;

Object executeCommand(XContent xContent, String aCommandName, Object aArgument)
 throws com.sun.star.ucb.CommandAbortedException, com.sun.star.uno.Exception {

 ///

904 OpenOffice.org 1.1 Developer's Guide • June 2003

 // Obtain command processor interface from given content.
 ///

 XCommandProcessor xCmdProcessor = (XCommandProcessor)UnoRuntime.queryInterface(
 XCommandProcessor.class, xContent);

 ///
 // Assemble command to execute.
 ///

 Command aCommand = new Command();
 aCommand.Name = aCommandName;
 aCommand.Handle = -1; // not available
 aCommand.Argument = aArgument;
 // Note: throws CommandAbortedException and Exception since
 // we pass null for the XCommandEnvironment parameter
 return xCmdProcessor.execute(aCommand, 0, null);
}

The method executeCommand() from the example above is used in the following examples whenever a
command is to be executed at a UCB content.

14.4.4 Obtaining Content Properties
A UCB content maintains a set of properties. It supports the command "getPropertyValues",
that obtains one or more property values from a content. This command takes a sequence of
com.sun.star.beans.Property and returns an implementation of the interface
com.sun.star.sdbc.XRowthat is similar to a row of a JDBC resultset. To obtain property values
from a UCB content:

1. Define a sequence of properties you want to obtain the values for.

2. Let the UCB content execute the command "getPropertyValues".

3. Obtain the property values from the returned row object.

The following example demonstrates the use of content properties. Note that the method
executeCommand() is used from the example above to execute the "getPropertyValues"
command that takes a command name and creates a com.sun.star.ucb.Command struct from it:
(UCB/PropertiesRetriever.java)
import com.sun.star.ucb.*;
import com.sun.star.sdbc.XRow;
import com.sun.star.beans.Property;

{
 XContent xContent = ...

 ///
 // Obtain value of the string property Title and the boolean property
 // IsFolder from xContent...
 ///

 // Define property sequence.

 Property[] aProps = new Property[2];
 Property prop1 = new Property();
 prop1.Name = "Title";
 prop1.Handle = -1; // n/a
 aProps[0] = prop1;
 Property prop2 = new Property();
 prop2.Name = "IsFolder";
 prop2.Handle = -1; // n/a
 aProps[1] = prop2;

 XRow xValues;
 try {
 // Execute command "getPropertyValues"
 // using helper method executeCommand (see 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 xValues = executeCommand(xContent, "getPropertyValues", aProps);
 }

Chapter 14 Universal Content Broker 905

 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }

 // Extract values from row object. Note that the
 // first column is 1, not 0.

 // Title: Obtain value of column 1 as string.
 String aTitle = xValues.getString(1));
 if (aTitle.length() == 0 && xValues.wasNull())
 ... error ...

 // IsFolder: Obtain value of column 2 as boolean.
 boolean bFolder = xValues.getBoolean(2);
 if (!bFolder && xValues.wasNull())
 ... error ...
}

The returned row for the content above has two columns Title and IsFolder, and could contain the
following data. The column values are retrieved using the getXXX methods of the
com.sun.star.sdbc.XRow interface. The command "getPropertyValues" always returns a
single row for contents.

Title IsFolder
"MyFolder" TRUE

14.4.5 Setting Content Properties
A UCB content maintains a set of properties. It supports the command "setPropertyValues",
that is used to set one or more property values of a content. This command takes a sequence of
com.sun.star.beans.PropertyValue and returns void. To set property values of a UCB content:

• Define a sequence of property values you want to set.

• Let the UCB content execute the command "setPropertyValues".

Note that the command is not aborted if one or more of the property values cannot be set, because
the requested property is not supported by the content or because it is read- only. Currently, there
is no other methodto check if a property value was set successfully other than to obtain the prop-
erty value after a set-operation. This may change when status information could be returned by
the command "setPropertyValues".

Setting property values of a UCB content: (UCB/PropertiesComposer.java)
import com.sun.star.ucb.*;
import com.sun.star.beans.PropertyValue;

{
 XContent xContent = ...
 String aNewTitle = "NewTitle";

 ///
 // Set value of the string property Title...
 ///

 // Define property value sequence.

 PropertyValue[] aProps = new PropertyValue[1];
 PropertyValue aProp = new PropertyValue();
 aProp.Name = "Title";
 aProp.Handle = -1; // n/a
 aProp.Value = aNewTitle;
 aProps[0] = aProp;

 try {
 // Execute command "setPropertyValues".

906 OpenOffice.org 1.1 Developer's Guide • June 2003

 // using helper method executeCommand (see 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands).
 executeCommand(xContent, "setPropertyValues", aProps);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

14.4.6 Folders

Accessing the Children of a Folder
A UCB content that is a folder, that is, the value of the required property IsFolder is true,
supports the command "open". This command takes an argument of type
com.sun.star.ucb.OpenCommandArgument2. The value returned is an implementation of the
service com.sun.star.ucb.DynamicResultSet. This DynamicResultSet holds the children of the
folder and is a result set that can notify registered listeners about changes. To retrieve data from it,
call getStaticResultSet() at its com.sun.star.ucb.XDynamicResultSet interface. The static
result set is a com.sun.star.sdbc.XResultSet that can be seen as a table, where each row
contains a child content of the folder. Use the appropriate methods of
com.sun.star.sdbc.XResultSet to navigate through the rows:

boolean first()
boolean last()
boolean next()
boolean previous()
boolean absolute([in] long row)
boolean relative([in] long rows)
void afterLast()
void beforeFirst()
boolean isBeforeFirst()
boolean isAfterLast()
boolean isFirst()
boolean isLast()
long getRow()

The child contents are accessed by travelling to the appropriate row and using the interface
com.sun.star.ucb.XContentAccess, which is implemented by the returned result set:

com::sun::star::ucb::XContent queryContent()
string queryContentIdentifierString()
com::sun::star::ucb::XContentIdentifier queryContentIdentifier()

You may supply a sequence of com.sun.star.beans.Property as part of the argument of the
"open" command. In this case, the resultset contains one column for each property value that is
requested. The property values are accessed by travelling to the appropriate row and calling
methods of the interface com.sun.star.sdbc.XRow. Refer to the documentation of
com.sun.star.ucb.OpenCommandArgument2 for more information about other parameters that
can be passed to the “open” command.

To access the children of a UCB content:

1. Fill the com.sun.star.ucb.OpenCommandArgument2 structure according to your requirements.

2. Let the UCB content execute the "open" command.

3. Access the children and the requested property values using the returned dynamic result set.

Accessing the children of a UCB folder content: (UCB/ChildrenRetriever.java)
import com.sun.star.uno.UnoRuntime;
import com.sun.star.ucb.*;

Chapter 14 Universal Content Broker 907

import com.sun.star.sdbc.XResultSet;
import com.sun.star.sdbc.XRow;

{
 XContent xContent = ...

 ///
 // Open a folder content, request property values for the string
 // property Title and the boolean property IsFolder...
 ///
 // Fill argument structure...

 OpenCommandArgument2 aArg = new OpenCommandArgument2();
 aArg.Mode = OpenMode.ALL; // FOLDER, DOCUMENTS -> simple filter
 aArg.Priority = 32768; // Ignored by most implementations

 // Fill info for the properties wanted.
 Property[] aProps = new Property[2];
 Property prop1 = new Property();
 prop1.Name = "Title";
 prop1.Handle = -1; // n/a
 aProps[0] = prop1;
 Property prop2 = new Property();
 prop2.Name = "IsFolder";
 prop2.Handle = -1; // n/a
 aProps[1] = prop2;

 aArg.Properties = aProps;
 XDynamicResultSet xSet;
 try {
 // Execute command "open".
 // using helper method executeCommand (see 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands.
 xSet = executeCommand(xContent, "open", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }

 XResultSet xResultSet = xSet.getStaticResultSet();
 ///
 // Iterate over children, access children and property values...
 ///

 try {
 // Move to begin.
 if (xResultSet.first()) {
 // obtain XContentAccess interface for child content access and XRow for properties
 XContentAccess xContentAccess = (XContentAccess)UnoRuntime.queryInterface(
 XContentAccess.class, xResultSet);
 XRow xRow = (XRow)UnoRuntime.queryInterface(XRow.class, xResultSet);
 do {
 // Obtain URL of child.
 String aId = xContentAccess.queryContentIdentifierString();
 // First column: Title (column numbers are 1-based!)
 String aTitle = xRow.getString(1);
 if (aTitle.length() == 0 && xRow.wasNull())
 ... error ...

 // Second column: IsFolder
 boolean bFolder = xRow.getBoolean(2);
 if (!bFolder && xRow.wasNull())
 ... error ...
 } while (xResultSet.next()) // next child
 }
 }
 catch (com.sun.star.ucb.ResultSetException e) {
 ... error ...
 }
}

908 OpenOffice.org 1.1 Developer's Guide • June 2003

14.4.7 Documents

Reading a Document Content
A UCB content that is a document, that is, the value of the required property IsDocument is true,
supportsthe command "open". The command takes an argument of type
com.sun.star.ucb.OpenCommandArgument2. Note that this command with the same argument
type is also used to access the children of a folder. As seen in the examples, the argument's Mode
member controls access to the children or the data stream, or both for contents that support both.
If you are interested in the data stream, ignore the command's return value, which will
presumably be a null value.

The caller must implement a data sink and supply this implementation as "open" command argu -
ments to get access to the data stream of a document. These data sinks are called back by the
implementation when the "open" command is executed. There are two different interfaces for
data sinks to choose from, com.sun.star.io.XActiveDataSink and
com.sun.star.io.XOutputStream.

• XActiveDataSink: If this type of data sink is supplied, the caller of the command is active. It
consists of the following methods:
void setInputStream([in] com::sun::star::io::XInputStream aStream)
com::sun::star::io::XInputStream getInputStream()

The implementation of the command supplies an implementation of the interface
com.sun.star.io.XInputStream to the given data sink using setInputStream() and return.
Once the execute-call has returned, the caller accesses the input stream calling getInputStream()
and read the data using that stream, through readBytes() or readSomeBytes().

• XOutputStream: If this type of data sink is supplied, the caller of the command is passive. The
data sink is called back through the following methods of XOutputStream:
void writeBytes([in] sequence< byte > aData)
void closeOutput()
void flush()

The implementation of the command writes all data to the output stream calling writeBytes()
and closes it through closeOutput() after all data was successfully written. Only then will the
open command return.

The type to use depends on the logic of the client application. If the application is designed so that
it passively processes the data supplied by an com.sun.star.io.XOutputStream using an output
stream as sink is advantageous, because many content providers implement this case efficiently
without buffering any data. If the application is designed so that it actively reads the data, use an
com.sun.star.io.XActiveDataSink, then any necessary buffering takes place in the implemen-
tation of the open command.

The following example shows a possible implementation of an
com.sun.star.io.XActiveDataSink and its usage with the "open" command:
(UCB/MyActiveDataSink.java)
import com.sun.star.io.XActiveDataSink;
import com.sun.star.io.XInputStream;

///
// XActiveDataSink interface implementation.
///

public class MyActiveDataSink implements XActiveDataSink {
 XInputStream m_aStream = null;

 public MyActiveDataSink() {
 super();

Chapter 14 Universal Content Broker 909

 }

 public void setInputStream(XInputStream aStream) {
 m_aStream = aStream;
 }

 public XInputStream getInputStream() {
 return m_aStream;
 }
};

Now this data sink implementation can be used with the "open" command. After opening the
document content, getInputStream() returns the input stream containing the document data.
The actual byte content is read using readSomeBytes() in the following fragment:
(UCB/DataStreamRetriever.java)
import com.sun.star.ucb.*;
import ...MyActiveDataSink;

{
 XContent xContent = ...

 ///
 // Read the document data stream of a document content using a
 // XActiveDataSink implementation as data sink....
 ///
 // Fill argument structure...

 OpenCommandArgument2 aArg = new OpenCommandArgument2;
 aArg.Mode = OpenMode.DOCUMENT;
 aArg.Priority = 32768; // Ignored by most implementations

 // Create data sink implementation object.
 XActiveDataSink xDataSink = new MyActiveDataSink;
 aArg.Sink = xDataSink;
 try {
 // Execute command "open". The implementation of the command will
 // supply an XInputStream implementation to the data sink,
 // using helper method executeCommand (see 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 executeCommand(xContent, "open", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }

 // Get input stream supplied by the open command implementation.
 XInputStream xData = xDataSink.getInputStream();
 if (xData == null)
 ... error ...

 ///
 // Read data from input stream...
 ///
 try {
 // Data buffer. Will be allocated by input stream implementation!
 byte[][] aBuffer = new byte[1][1];

 int nRead = xData.readSomeBytes(aBuffer, 65536);
 while (nRead > 0) {
 // Process data contained in buffer.
 ...

 nRead = xData.readSomeBytes(aBuffer, 65536);
 }

 // EOF.
 }
 catch (com.sun.star.io.NotConnectedException e) {
 ... error ...
 }
 catch (com.sun.star.io.BufferSizeExceededException e) {
 ... error ...
 }
 catch (com.sun.star.io.IOException e) {
 ... error ...
 }
}

910 OpenOffice.org 1.1 Developer's Guide • June 2003

Storing a Document Content
A UCB content that is a document, that is, the value of the required property IsDocument is true,
supports the command "insert". This command is used to overwrite the document's data stream.
The command requires an argument of type com.sun.star.ucb.InsertCommandArgument and
returns void. The caller supplies the implementation of an com.sun.star.io.XInputStream with
the command argument. This stream contains the data to be written. An additional flag indicating
if an existing content and its data should be overwritten is supplied with the command argument.
Implementations that are not able to detect if there are previous data may ignore this parameter
and will always write the new data.

Setting or storing the content data stream of a UCB document content is shown below:
(UCB/DataStreamComposer.java)
import com.sun.star.ucb.*;
import com.sun.star.io.XInputStream;

{
 XContent xContent = ...
 XInputStream xData = ... // The data to write.

 ///
 // Write the document data stream of a document content...
 ///

 // Fill argument structure...

 InsertCommandArgument aArg = new InsertCommandArgument();
 aArg.Data = xData;
 aArg.ReplaceExisting = true;
 try {
 // Execute command "insert".
 // using helper method executeCommand (see 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands).
 executeCommand(xContent, "insert", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

14.4.8 Managing Contents

Creating
A UCB content that implements the interface com.sun.star.ucb.XContentCreator acts as a
factory for new resources. For example, a file system folder can be a creator for other file system
folders and files.

A new content object created by the com.sun.star.ucb.XContentCreator implementation can be
considered as an empty hull for a content object of a special type. This new content object has to be
filled with some property values to become fully functional. For example, a file system folder
could require a name, represented by the property Title in the UCB. The interface
com.sun.star.ucb.XContentCreator offers ways to determine what contents can be created and
what properties need to be set. Information can be obtained on the general type, such as FOLDER,
DOCUMENT, or LINK, of the objects. After the required property values are set, the creation process
needs to be committed by using the command "insert". Note that this command is always
executed by the new content, not by the content creator, because the creator is not necessarily the
parent of the new content. The flag ReplaceExisting in the "insert" argument

Chapter 14 Universal Content Broker 911

com.sun.star.ucb.InsertCommandArgument usually is false, because the caller does not want
to destroy an already existing resource. The "insert" command implementation makes the new
content persistent in the appropriate storage medium.

To create a new resource:

1. Obtain the interface com.sun.star.ucb.XContentCreator from a suitable UCB content.

2. Call createNewContent() at the content creator. Supply information on the type of content to
create with the arguments. The argument expected is a com.sun.star.ucb.ContentInfo
struct.

3. Obtain and set the property values that are mandatory for the content just created.

4. Let the new content execute the command "insert" to complete the creation process.

Creating a new resource: (UCB/ResourceCreator.java)
import com.sun.star.uno.UnoRuntime;
import com.sun.star.ucb.*;
import com.sun.star.beans.PropertyValue;
import com.sun.star.io.XInputStream;

{
 XContent xContent = ...

 ///
 // Create a new file system file object...
 ///

 // Obtain content creator interface.
 XContentCreator xCreator = (XContentCreator)UnoRuntime.queryInterface(
 XContentCreator.class, xContent);

 // Note: The data for aInfo may have been obtained using
 // XContentCreator::queryCreatableContentsInfo().
 // A number of possible types is listed below

 ContentInfo aInfo = new ContentInfo();
 aInfo.Type = "application/vnd.sun.staroffice.fsys-file";
 aInfo.Attributes = 0;
 // Create new, empty content.
 XContent xNewContent = xCreator.createNewContent(aInfo);
 if (xNewContent == null)
 ... error ...

 ///
 // Set mandatory properties...
 ///

 // Obtain a name for the new file.
 String aFilename = ...

 // Define property value sequence.
 PropertyValue[] aProps = new PropertyValue[1];
 PropertyValue aProp = new PropertyValue;
 aProp.Name = "Title";
 aProp.Handle = -1; // n/a
 aProp.Value = aFilename;
 aProps[0] = aProp;
 try {
 // Execute command "setPropertyValues".
 // using helper method executeCommand (see 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 executeCommand(xNewContent, "setPropertyValues",aProps);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }

 ///
 // Write the new file to disk...
 ///

 // Obtain document data for the new file.

912 OpenOffice.org 1.1 Developer's Guide • June 2003

 XInputStream xData = ...

 // Fill argument structure...
 InsertCommandArgument aArg = new InsertCommandArgument();
 aArg.Data = xData;
 aArg.ReplaceExisting = false;
 try {
 // Execute command "insert".
 executeCommand(xNewContent, "insert", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

The appendix C Appendix - Universal Content Providers discusses the creation of contents for all
available UCPs. The table below shows a number of com.sun.star.ucb.ContentInfo types for
creatable contents. Additionally, you can ask the content creator for its creatable contents using
com.sun.star.ucb.XContentCreator:queryCreatableContentsInfo(). The UCB reference in
the SDK and on ucb.openoffice.org offers comprehensive information about creatable contents.

Data
source

Content Info Type Content Content Service that Creates the
Contents

FILE "application /vnd.sun.staroffice.fsys-
folder"

"application /vnd.sun.staroffice.fsys-file"

folder

document

com.sun.star.ucb.FileContent

WebDAV
and
HTTP

"application /vnd.sun.star.webdav-
collection"

"application /http- content"

folder

document

com.sun.star.ucb.WebDAVFolderConte
nt

FTP "application /vnd.sun.staroffice.ftp-
folder"

"application /vnd.sun.staroffice.ftp-file"

folder

document

com.sun.star.ucb.ChaosContent

Hier -
archy

"application /vnd.sun.star.hier- folder"

"application /vnd.sun.star.hier- link"

folder

Link

com.sun.star.ucb.HierarchyFolderConte
nt

ZIP and
JAR files

"application /vnd.sun.star.pkg- folder"

"application /vnd.sun.star.pkg- stream"

folder

document

com.sun.star.ucb.PackageFolderContent

Deleting
Executing the command "delete" on a UCB content destroys the resource it represents. This
command takes a boolean parameter. If it is set to true, the resource is immediately, destroyed
physically.

The command also destroys all existing sub-resources of the resource to be destroyed!

If false is passed to this command, the caller wants to delete the resource "logically". This means
that the resource is restored or physically destroyed later. A soft-deleted content needs to support
the command "undelete". This command brings it back to life. The implementation of the delete
command can ignore the parameter and may opt to always destroy the resource physically.

Currently we do not have a trash service that could be used by UCB clients to manage soft-deleted contents.

Chapter 14 Universal Content Broker 913

Deleting a resource: (UCB/ResourceRemover.java)
import com.sun.star.ucb.*;

{
 XContent xContent = ...

 ///
 // Destroy a resource physically...
 ///

 try {
 Boolean bDeletePhysically = new Boolean(true);
 // Execute command "delete".
 // using helper method executeCommand (see 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 executeCommand(xContent, "delete", bDeletePhysically);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

Copying, Moving and Linking
Copying, moving and creating links to a resource works differently from the other operations
available for UCB Contents. There are three UCB Contents involved in these operations, the source
object, target folder, and target object. There may even be two content Providers, for example, when
moving a file located on an FTP server to the local file system of a workstation. Each implementa-
tion of the com.sun.star.ucb.UniversalContentBroker service supports the
com.sun.star.ucb.XCommandProcessor interface. This command processor implements the
command "globalTransfer" that can be used to copy and move UCB Contents, and create links
to UCB Contents. The command takes an argument of type
com.sun.star.ucb.GlobalTransferCommandArgument. To copy, move or create a link to a
resource, execute the "globalTransfer" command at the UCB.

The reasons for the different handling are mainly technical. We did not want to force every single imple-
mentation of the transfer command of a UCB content to accept nearly all types of contents. Instead, we
wanted to have one single implementation that would be able to handle all types of contents.

Copying, moving and creating links to a resource are shown in the following example:
(UCB/ResourceManager.java)
import com.sun.star.ucb.*;
import com.sun.star.uno.UnoRuntime;
import com.sun.star.uno.XInterface;

{
 String aSourceURL = ... // URL of the source object
 String aTargetFolderURL = ... // URL of the target folder

 ///
 // Obtain access to UCB...
 ///
 XInterface xUCB = ...

 // Obtain XCommandProcessor interface from UCB...
 XCommandProcessor xProcessor = (XCommandProcessor)UnoRuntime.queryInterface(
 XCommandProcessor.class, xUCB);

 if (xProcessor == null)
 ... error ...
 ///
 // Copy a resource to another location...
 ///
 try {
 GlobalTransferCommandArgument aArg = new GlobalTransferCommandArgument();
 aArg.TransferCommandOperation = TransferCommandOperation_COPY;
 aArg.SourceURL = aSourceURL;

914 OpenOffice.org 1.1 Developer's Guide • June 2003

 aArg.TargetURL = aTargetFolderURL;
 // object keeps it current name
 aArg.NewTitle = "";
 // fail, if object with same name exists in target folder
 aArg.NameClash = NameClash.ERROR;

 // Let UCB execute the command "globalTransfer",
 // using helper method executeCommand (see 14.4.3 Universal Content Broker - Using the UCB API -
Executing Content Commands)
 executeCommand(xProcessor, "globalTransfer", aArg);
 }
 catch (com.sun.star.ucb.CommandAbortedException e) {
 ... error ...
 }
 catch (com.sun.star.uno.Exception e) {
 ... error ...
 }
}

UCB Configuration

This section describes how to configure the Universal Content Broker (UCB). Before a process uses
the UCB, it needs to configure the UCB. Configuring the UCB means registering a set of Universal
Content Providers (UCPs) at a content broker instance. Only UCPs known to the UCB are used to
provide content. Generally we provide two ways to configure a UCB:

• Create a default UCB with no UCPs registered and register all required UCPs manually.

• Define a UCB configuration and create a UCB that is automatically configured with the UCPs
given in that configuration.

14.4.9 UCP Registration Information
Before registering a content provider, the following information that is provided by the imple-
menter of the UCP is required. The Appendix C Appendix - Universal Content Providers provides
these for the currently available UCPs.

• The UNO service name to instantiate the UCP, for example,
"com.sun.star.ucb.FileContentProvider". Each UCP must be implemented and registered as a
UNO component. Refer to chapter 4 Writing UNO Components for more information on writing
and registering UNO components.

• An URL template used by the UCB to select the registered UCPs that best fit an incoming URL.
See com.sun.star.ucb.XContentIdentifier. This can be the name of an URL scheme, for
example, the file that selects the given UCP for all file URLs, or a limited regular expression,
such as "http://"[^/?#]*".com"([/?#].*)? That will select the given UCP for all http URLs
in the com domain. See the documentation of
com.sun.star.ucb.XContentProviderManager:registerContentProvider() for details
about these regular expressions.

• Additional arguments that may be needed by the UCP.

14.4.10 Unconfigured UCBs
A UCB is called unconfigured if it has no content providers, thus it is not able to provide any
contents. Each UCB implements the interface com.sun.star.ucb.XContentProviderManager.
This interface offers the functionality to register UCPs at runtime.

To create an unconfigured UCB and configure it manually:

Chapter 14 Universal Content Broker 915

1. Create an instance of the UNO service com.sun.star.ucb.UniversalContentBroker.

2. Register the appropriate UCPs using the com.sun.star.ucb.XContentProviderManager
interface of the UCB.

XContentProviderManager contains the following methods:
com::sun::star::ucb::XContentProvider registerContentProvider(

[in] com::sun::star::ucb::XContentProvider Provider,
[in] string Scheme,
[in] boolean ReplaceExisting)

oneway void deregisterContentProvider(
[in] com::sun::star::ucb::XContentProvider Provider,
[in] string Scheme)

sequence< com::sun::star::ucb::ContentProviderInfo > queryContentProviders()
com::sun::star::ucb::XContentProvider queryContentProvider([in] string URL)

The XContentProvider configures a UCB for content providers, obtains
com.sun.star.ucb.ContentProviderInfo structs describing the available providers, and the
provider that is currently registered for a specific URL schema. The following example uses
registerContentProvider() to configure an unconfigured UCB for a file content provider.

Unconfigured UCB:

import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.ucb.DuplicateProviderException;
import com.sun.star.ucb.XContentProvider;
import com.sun.star.ucb.XContentProviderManager;
import com.sun.star.uno.Exception;
import com.sun.star.uno.UnoRuntime;

boolean initUCB() {

 ///
 // Obtain Process Service Manager.
 ///

 XMultiServiceFactory xServiceFactory = ...

 ///
 // Create UCB. This needs to be done only once per process.
 ///

 XContentProviderManager xUCB;
 try {
 xUCB = (XContentProviderManager)UnoRuntime.queryInterface(
 XContentProviderManager.class, xServiceFactory.createInstance(
 "com.sun.star.ucb.UniversalContentBroker"));
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xUCB == null)
 return false;

 ///
 // Instanciate UCPs and register at UCB.
 ///

 XContentProvider xFileProvider;
 try {
 xFileProvider = (XContentProvider)UnoRuntime.queryInterface(
 XContentProvider.class, xServiceFactory.createInstance(
 "com.sun.star.ucb.FileContentProvider"));
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xFileProvider == null)
 return false;

 try {
 // Parameters: provider, URL scheme, boolean flag replaceExisting
 xUCB.registerContentProvider(xFileProvider, "file", new Boolean(false));
 }
 catch (DuplicateProviderException ex) {
 }

 // Create/register other UCPs...

 return true;

916 OpenOffice.org 1.1 Developer's Guide • June 2003

}

14.4.11 Preconfigured UCBs
A UCB is called preconfigured if it was given a UCB configuration at the time it was instantiated. A
UCB configuration contains a set of UCP registration information.

To create a preconfigured UCB:

1. Create an instance of the UNO service com.sun.star.ucb.UniversalContentBroker.

2. Pass the configuration as a parameters to the creation function. The UCB instance returned
offers all UCPs defined in the given configuration.

Preconfigured UCB:
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.uno.Exception;
import com.sun.star.uno.XInterface;

boolean initUCB() {
 ///
 // Obtain Process Service Manager.
 ///

 XMultiServiceFactory xServiceFactory = ...

 ///
 // Create UCB. This needs to be done only once per process.
 ///

 XInterface xUCB;
 try {
 // Supply configuration to use for this UCB instance...
 String[] keys = new String[2];
 keys[0] = "Local";
 keys[0] = "Office";
 xUCB = xServiceFactory.createInstanceWithArguments(
 "com.sun.star.ucb.UniversalContentBroker", keys);
 }
 catch (com.sun.star.uno.Exception e) {
 }

 if (xUCB == null)
 return false;

 return true;
}

A UCB configuration used by a preconfigured UCB describes a set of UCPs available in a configu-
ration. All UCPs contained in a configuration are registered at the UCB that is created using this
configuration. A UCB configuration is identified by two keys that are strings. The keys allow some
structuring in the configuration files), but they do not have a purpose. See the example file below.
The standard configuration is "Local" and "Office", that allows access to all UCPs. The XML
sample below shows how these keys are used to organize UCB configurations.

The predefined configurations for OpenOffice.org are defined in the file
<OfficePath>/share/config/data/org/openoffice/ucb/Configuration.xcd. This file must be adapted to add
configurations or edit existing configurations. The XCD file is used during the OpenOffice.org
build process to generate the appropriate XML file. This XML file is part of a OpenOffice.org
installation and is located in
<OfficePath>share/config/registry/instance/org/openoffice/ucb/Configuration.xml. The UCB tries to get
configuration data from this XML file.

UCB Configuration (org/openoffice/ucb/Configuration.xcd):
<!DOCTYPE schema:package SYSTEM "../schema/schema.description.dtd">
<schema:package package-id="org.openoffice.ucb.Configuration" xml:lang="en-US"
xmlns:schema="http://openoffice.org/2000/registry/schema/description"

Chapter 14 Universal Content Broker 917

xmlns:default="http://openoffice.org/2000/registry/schema/default"
xmlns:cfg="http://openoffice.org/2000/registry/instance">

<schema:templates template-id="org.openoffice.ucb.Configuration">

<!-- ContentProvider -->
<schema:group cfg:name="ContentProviderData">
<schema:value cfg:name="ServiceName" cfg:type="string">
</schema:value>
<schema:value cfg:name="URLTemplate" cfg:type="string">
</schema:value>
<schema:value cfg:name="Arguments" cfg:type="string">
</schema:value>
</schema:group>

<!-- ContentProvidersDataSecondaryKeys -->
<schema:group cfg:name="ContentProvidersDataSecondaryKeys">
<schema:set cfg:name="ProviderData"
 cfg:element-type="ContentProviderData"/>
</schema:group>

<!-- ContentProvidersDataPrimaryKeys -->
<schema:group cfg:name="ContentProvidersDataPrimaryKeys">
<schema:set cfg:name="SecondaryKeys"
 cfg:element-type="ContentProvidersDataSecondaryKeys"/>
</schema:group>
</schema:templates>

<schema:component cfg:writable="true"
component-id="org.openoffice.ucb.Configuration"
cfg:notified="true" cfg:localized="false">
<schema:set cfg:name="ContentProviders"
 cfg:element-type="ContentProvidersDataPrimaryKeys">
<default:group cfg:name="Local">
 <default:set cfg:name="SecondaryKeys"
 cfg:element-type="ContentProvidersDataSecondaryKeys">
 <default:group cfg:name="Office">
 <default:set cfg:name="ProviderData"
 cfg:element-type="ContentProviderData">

 <!-- Hierarchy UCP -->
 <default:group cfg:name="Provider1">
 <default:value cfg:name="ServiceName" cfg:type="string">
 <default:data>com.sun.star.ucb.HierarchyContentProvider</default:data>
 </default:value>
 <default:value cfg:name="URLTemplate" cfg:type="string">
 <default:data>vnd.sun.star.hier</default:data>
 </default:value>
 <default:value cfg:name="Arguments" cfg:type="string">
 <default:data/>
 </default:value>
 </default:group>

 <!-- File UCP -->
 <default:group cfg:name="Provider2">
 <default:value cfg:name="ServiceName" cfg:type="string">
 <default:data>com.sun.star.ucb.FileContentProvider</default:data>
 </default:value>
 <default:value cfg:name="URLTemplate" cfg:type="string">
 <default:data>file</default:data>
 </default:value>
 <default:value cfg:name="Arguments" cfg:type="string">
 <default:data/>
 </default:value>
 </default:group>

 <!-- Other UCPs go here -->

 </default:set>
 </default:group>
 </default:set>
</default:group>
</schema:set>
</schema:component>
</schema:package>

14.4.12 Content Provider Proxies
The UNO service implementing a UCP must be instantiated at the time the content provider is
registered at the UCB. This is done using com.sun.star.ucb.XContentProviderManager's

918 OpenOffice.org 1.1 Developer's Guide • June 2003

registerContentProvider() method. In some cases, this can consume resources, because instan-
tiating a UNO service means loading the libraries containing its code. As a convention, each UNO
component should reside in its own library.

Therefore, a special UNO service is offered that provides a generic proxy for a UCP. Its purpose is
to delay the loading of the real UCP code until it is needed. Generally, this does not happen before
the first createContentIdentifier()/ queryContent() calls are done at the proxy.

Instead of registering the real instantiated UCP at the UCB, a proxy is created for the UCP. The
UCP registration information is passed to the proxy. The proxy only uses this information to
instantiate the real UCP on demand. There is almost no performance overhead with this mecha-
nism.

When using preconfigured UCBs, the UCB implementation uses proxies instead of the real UCPs to avoid
wasting resources.

Chapter 14 Universal Content Broker 919

15 Configuration Management

15.1 Overview

15.1.1 Capabilities
The OpenOffice.org configuration management component provides a uniform interface to get
and set OpenOffice.org configuration data in an organized manner, independent of the physical
data store used for the data.

Currently, the configuration API can only be used to get and set existing configuration options.
You can not extend the configuration by new settings for your own purposes. For details, see 15.5
Configuration Management - Customizing Configuration Data.

15.1.2 Architecture
OpenOffice.org configuration data describes the state or environment of a UNO component or the
OpenOffice.org application. There are different kinds of configuration data:

• Static configuration: This is data that describes the configuration of the software and hardware
environment. This data is set by a setup tool and does not change at runtime. An example of
static configuration data is information about installed filters.

• Explicit settings: This is preference data that can be controlled by the user explicitly. There is a
dedicated UI to change these settings. An example explicit settings are the settings controlled
through the Tools – Options dialogs in OpenOffice.org.

• Implicit settings: This is status information that is also controlled by the user, but the user does
not change explicitly. The application tracks this state in the background, making it persistent
across application sessions. An example implicit settings are window positions and states, or a
list of the recently used documents.

This list is not comprehensive, but indicates the range of data characteristically stored by configu-
ration management.

The configuration management component organizes the configuration data in a hierarchical
structure. The hierarchical structure and the names and data types of entries in this database are
described by a schema. Only data that conforms to one of the installed schemas is stored in the
database.

921

The hierarchical database stores any hierarchical information that can be described as a configura-
tion schema, but it is optimized to work with the data needed for application configuration and
preferences. Small data items having a well-defined data type are supported efficiently, whereas
large, unspecific binary objects should not be stored in the configuration database. These objects
are stored in separate files and the configuration keeps the URLs of these files only.

Configuration schemas are provided by the authors of applications and components that use the
data. When a component is installed, the corresponding configuration schemas are installed into
the configuration management system.

Configuration data is stored in a backend data store. In OpenOffice.org, the standard backend
consists of XML files stored in a directory hierarchy. Support for more backends is planned for a
future release.

For a given schema, multiple layers of data may exist that are merged together at runtime. One or
more of these layers define default settings, possibly shared by several users. Additionally, there is
a layer specific to a single user and contains personal preferences overriding the shared settings.
In normal operations all changes to data affect only this user-specific layer.

Access to the merged configuration data for a user is managed by a
com.sun.star.configuration.ConfigurationProvider object to connect to a data source, fetch
and store data, and merge layers.

922 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 200: Configuration layers

This provider provides views on the configuration data. A view is a subset of the entire configura-
tion that can be navigated as an object hierarchy. The objects in this hierarchy represent nodes of
the configuration hierarchy to navigate to other nodes and access values of data items.

All configuration items have a fixed type and a name.

The type is prescribed by the schema. The following kinds of items are available:

• 'Properties' are data items that contain a single data value or an array of values from a limited
set of basic types.

• 'Groups' are structural nodesthat contain a collection of child items of various types. The
number and names of children, as well as their types, are fixed by the schema. Structural and
data items can be mixed within one group.

• 'Sets' are structural nodesthat serve as dynamic containers for a variable number of elements.
These elements must be all data or all structural items, and they must all be uniform. In the
first case, all values have the same basic type, and in the latter case, all the sub-trees have the
same structure. The schema contains templates for container elements, which are prototypes of
the element structure.

Properties hold the actual data. Group nodes form the structural skeleton defined in the schema.
Set nodes are used to dynamically add and remove configuration data within the confines of the
schema. Taken together, they can be used to build hierarchical structures of arbitrary complexity.

Each configuration item has a namethat uniquely identifies the item within its parent, that is, the
node in the hierarchical tree that immediately contains the item under consideration. Paths span-
ning multiple levels of the hierarchy are built similarly to UNIX file system paths. The separator
for individual name components in paths is a forward slash (' / '). Paths that begin with a slash are
considered 'absolute paths' and must completely specify the location of an item within the hier-
archy. Paths that start directly with a name are relative paths and describe the location of an item
within one of its ancestors in the hierarchy.

The top- level subdivisions of the configuration hierarchy are called configuration modules. Each
configuration module has a schema that describes the data items available within that module.
Modules are the unit of schema installation. The name of a configuration module must be globally
unique. The names of configuration modules have an internal hierarchical structure using a dot
('.') as a separator, similar to Java package names. The predefined configuration modules of
OpenOffice.org use package names from the super-package "org.openoffice.*".

The names of container elements are specified when data items are added to a container. Data
item names in the schema are limited to ASCII letters, digits and a few punctuation marks, but
there are no restrictions applied to the names of container elements. This requires special handling
when referring to a container element in a path. A path component addressing a container element
takes the form <template-pattern>['<escaped-name>']. Here <template-pattern> can be the
name of the template describing the element or an asterisk "*" to match any template. The
<escaped-name> is a representation of the name of the element where a few forbidden characters
are represented in an escaped form borrowed from XML. The quotes delimiting the <escaped-
name> may alternatively be double quote characters "". The following character escapes are used:

Character Escape
& &
" "
' '

In the table below, are some escaped forms for invented entries in the Set node /
org.openoffice.Office.TypeDetection/Filters for (fictitious) filters:

Chapter 15 Configuration Management 923

Filter Name Path Component
Plain Text Filter['Plain Text']
Q & A Book *["Q & A Book"]
Bob's Filter *['Bob's Filter']

The UIName value of the last example filter would have an absolute path of /
org.openoffice.Office.TypeDetection/Filters/Filter['Bob's Filter']/UIName.
In several places in the configuration management, API arguments are passed to a newly created
object instance as Sequence, for example, in the argument to
com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments. Such arguments
are type com.sun.star.beans.PropertyValue, and only the fields Name and Value need to be
filled.

In the future ,a transition to the more appropriate argument type com.sun.star.beans.NamedValue is
planned.

15.2 Object Model
The centralized entry point for configuration access is a
com.sun.star.configuration.ConfigurationProvider object. This object represents a connec-
tion to a single configuration data source providing access to configuration data for a single user.

The com.sun.star.configuration.AdministrationProvider service is an extended version of
this service that enables administrative access to shared configuration data.

The com.sun.star.configuration.ConfigurationProvider serves as a factory for configura -
tion views. A configuration view provides access to the structure and data of a subset of the
configuration database. This subset is accessible as a hierarchical object tree. When creating a
configuration view, parameters are provided that describe the subset of the data to retrieve. In the
simplest case, the only argument is an absolute configuration path that identifies a structural
configuration item. This parameter is given as an argument named "nodepath". The configuration
view then encompasses the sub-tree which is rooted in the indicated item.

A configuration view is not represented by a single object, but as an object hierarchy formed by all
the items that are part of the selected sub-tree. The object that comes closest to representing the
view as a whole is the root element of that tree. This object is the one returned by the factory
method of the com.sun.star.configuration.ConfigurationProvider. In addition to the
simple node-oriented interfaces, it also supports interfaces that apply to the view as a whole.

924 OpenOffice.org 1.1 Developer's Guide • June 2003

Within a configuration view, UNO objects with access interfaces are used to represent all struc-
tural items. Value items are not represented as objects, but retrieved as types, usually wrapped
inside an any.

The following types are supported for data items:

string Plain Text (Sequence of [printable] Unicode characters)
boolean Boolean value (true/false)
short 16-bit integer number
int 32-bit integer number
long 64-bit integer number
double Floating point number
binary Sequence of uninterpreted octets

Value items contain a single value, or a sequence or array of one of the basic types. The arrays
must be homogeneous, that is, mixed arrays are not supported. The configuration API treats array
types as atomic items, there is no built-in support for accessing or modifying individual array
elements.

Binary values should be used only for small chunks of data that cannot easily be stored elsewhere. For large
BLOBs it is recommended to store links, for example, as URLs, in the configuration.

For example, bitmaps for small icons might be stored in the configuration, whereas large images are stored
externally.

All of the structural objects implement the service
com.sun.star.configuration.ConfigurationAccess that specifies interfaces to navigate the
hierarchy and access values within the view. Different instances of this service support different
sets of interfaces. The interfaces that an object supports depends on its structural type, that is, is it
a group or a set, and context, that is, is it a group member, an element of a set or the root of the
view.

Chapter 15 Configuration Management 925

Illustration 201: Configuration object model overview

A configuration view can be read- only or updatable. This is determined by the access requested
when creating the view, but updatability may also be restricted by access rights specified in the
schema or data. The basic com.sun.star.configuration.ConfigurationAccess service speci-
fies read- only operations. If an object is part of an updatable view and is not marked read- only in
the schema or the data, it implements the extended service
com.sun.star.configuration.ConfigurationUpdateAccess. This service adds interfaces to
change values and modify set nodes.

These service names are also used to create the configuration views. To create a view for read
access, call com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments at the
com.sun.star.configuration.ConfigurationProvider to request a
com.sun.star.configuration.ConfigurationAccess. To obtain an updatable view, the service
com.sun.star.configuration.ConfigurationUpdateAccess must be requested.

The com.sun.star.configuration.AdministrationProvider supports the same service speci-
fiers, but creates views on shared layers of configuration data.

The object initially returned when creating a configuration view represents the root node of the
view. The choice of services and interfaces it supports depends on the type of configuration item it
represents. The root object has additional interfaces pertaining to the view as a whole. For
example, updates of configuration data within a view are combined into batches of related
changes, which exhibit transaction- like behavior. This functionality is controlled by the root object
of the view.

15.3 Configuration Data Sources
Creating a view to configuration data is a two-step process.

1. Connect to a data source by creating an instance of a
com.sun.star.configuration.ConfigurationProvider for user preferences or a
com.sun.star.configuration.AdministrationProvider for shared preferences.

2. Ask the provider to create an access object for a specific nodepath in the configuration database
using com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments(). The
access object can be a com.sun.star.configuration.ConfigurationAccess or a
com.sun.star.configuration.ConfigurationUpdateAccess.

15.3.1 Connecting to a Data Source
The first step to access the configuration database is to connect to a configuration data source.

To obtain a provider instance ask the global com.sun.star.lang.ServiceManager for a
com.sun.star.configuration.ConfigurationProvider. Typically the first lines of code to get
access to configuration data look similar to the following: (Config /ConfigExamples.java)
// get my global service manager
XMultiServiceFactory xServiceManager = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, this.getRemoteServiceManager(
 "uno:socket,host=localhost,port=8100;urp;StarOffice.ServiceManager"));

final String sProviderService = "com.sun.star.configuration.ConfigurationProvider";
// create the provider and remember it as a XMultiServiceFactory
XMultiServiceFactory xProvider = (XMultiServiceFactory)
 UnoRuntime.queryInterface(XMultiServiceFactory.class,
 xServiceManager.createInstance(sProviderService));

926 OpenOffice.org 1.1 Developer's Guide • June 2003

This code creates a default com.sun.star.configuration.ConfigurationProvider. The most
important interface a com.sun.star.configuration.ConfigurationProvider implements is
com.sun.star.lang.XMultiServiceFactory that is used to create further configuration objects.

The com.sun.star.configuration.ConfigurationProvider always operates in the user mode,
accessing data on behalf of the current user and directing updates to the user's personal layer.

For administrative access to manipulate the default layers the
com.sun.star.configuration.AdministrationProvider is used. When creating this service,
additional parameters can be used that select the layer for updates or that contain credentials used
to authorize administrative access. The backend that is used determines which default layers exist,
how they are addressed and how administrative access is authorized. The standard file-based
backend has a single shared layer only. The files for this layer are located in the share directory of
the OpenOffice.org installation. To gain administrative access to this layer, no additional parame-
ters are needed. An com.sun.star.configuration.AdministrationProvider for this backend
automatically tries to read and write this shared layer. Authorization is done by the operating
system based upon file access privileges. The current user requires write privileges in the shared
configuration directory if an AdministrationProvider is suppose to update configuration data.

A com.sun.star.configuration.AdministrationProvider is created in the same way as a
com.sun.star.configuration.ConfigurationProvider.
// get my global service manager
XMultiServiceFactory xServiceManager = getServiceManager();

// get the arguments to use
com.sun.star.beans.PropertyValue aReinitialize = new com.sun.star.beans.PropertyValue()
aReinitialize.Name = "reinitialize"
aReinitialize.Value = new Boolean(true);

Object[] aProviderArguments = new Object[1];
aProviderArguments[0] = aReinitialize;

final String sAdminService = "com.sun.star.configuration.AdministrationProvider";
// create the provider and remember it as a XMultiServiceFactory
XMultiServiceFactory xAdminProvider = (XMultiServiceFactory)
 UnoRuntime.queryInterface(XMultiServiceFactory.class,
 xServiceManager.createInstanceWithArguments(sAdminService,aProviderArguments));

As you see in the example above, the default
com.sun.star.configuration.AdministrationProvider supports a special parameter for reini-
tialization:

Parameter Name Type Default Comments
reinitialize boolean false Discard any cached informa-

tion from previous runs and
regenerate from scratch.

The current implementation maintains a set of cache files containing pre-parsed representations of
the configuration data. If the reinitialize parameter is true, these cache files will be recreated
from the XML data when the AdministrationProvider is created.

When establishing the connection, specify the parameters that select the backend to use and addi-
tional backend- specific parameters to select the data source. When there are no parameters given,
the standard configuration backend and data source of the OpenOffice.org installation is used.

The standard values for these parameters may be found in the configuration file configmgr(.ini |rc)
(.ini on Windows, rc on Unix) in the program directory of the OpenOffice.org installation.

The list of available backends and the parameters they support may change in a future release. Using these
parameters are normally not necessary and therefore are not recommended.

The following parameter is supported to select the type of backend to use:

Chapter 15 Configuration Management 927

Parameter Name Type Default Comments
servertype string "local" Other values are currently not supported in

OpenOffice.org.

For the "local" backend, the following parameters are used to select the location of data:

Parameter Name Type Default Comments
sourcepath string $(installurl) /share /config /registry The INI entry is named

CFG_BaseDataURL
updatepath string $(userurl) / user /config / registry The INI entry is named

CFG_UserDataURL

Arguments can be provided that determine the default behavior of views created through this
com.sun.star.configuration.ConfigurationProvider. The following parameters may be used
for this purpose:

Parameter Name Type Default Comments
locale string The user's locale.

lazywrite boolean true The INI entry is named
enable_async

After the connection is established, creating another
com.sun.star.configuration.ConfigurationProvider using the same parameters may return the
same object. The default configuration provider obtained when no arguments are given will always be the
same object. Be careful not to call com.sun.star.lang.XComponent:dispose() on a shared
com.sun.star.configuration.ConfigurationProvider.

15.3.2 Using a Data Source
After a configuration provider is obtained, call
com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments() to create a
view on the configuration data.

The following arguments can be specified when creating a view:

Parameter Name Type Default Comments
nodepath string - This parameter is required. It contains an abso-

lute path to the root node of the view.

locale string The user's locale

(or "*")

Using this parameter, specify the locale to be
used for selecting locale-dependent values. Use
the ISO code for a locale, for example, en-US for
U.S. English.

lazywrite boolean true
depth integer (unlimited) This parameter causes the view to be truncated

to a specified nesting depth.

nocache boolean false This parameter is deprecated.

928 OpenOffice.org 1.1 Developer's Guide • June 2003

If the special value "*" is uused for the locale parameter, values for all locales are retrieved.
In this case, a locale-dependent property appears as a set item. The items of the set are the values for the
different locales. They will have the ISO identifiers of the locales as names.

This mode is the default if you are using an
com.sun.star.configuration.AdministrationProvider.

It can be used if you want to assign values for different locales in a targeted manner. Usually this is logical in
an administration or installation context only.

To create a read- only view on the data, the service
com.sun.star.configuration.ConfigurationAccess is requested:
// Create a specified read-only configuration view
public Object createConfigurationView(String sPath) throws com.sun.star.uno.Exception {
 // get the provider to use
 XMultiServiceFactory xProvider = getProvider();

 // The service name: Need only read access:
 final String sReadOnlyView = "com.sun.star.configuration.ConfigurationAccess";
 // creation arguments: nodepath
 com.sun.star.beans.PropertyValue aPathArgument = new com.sun.star.beans.PropertyValue();
 aPathArgument.Name = "nodepath";
 aPathArgument.Value = sPath;

 Object[] aArguments = new Object[1];
 aArguments[0] = aPathArgument;

 // create the view
 Object xViewRoot = xProvider.createInstanceWithArguments(sReadOnlyView, aArguments);
 return xViewRoot;
}

To obtain updatable access, the service
com.sun.star.configuration.ConfigurationUpdateAccess is requested. In this case, there are
additional parameters available that control the caching behavior of the configuration manage-
ment component:
// Create a specified updatable configuration view
Object createUpdatableView(String sPath, boolean bAsync) throws com.sun.star.uno.Exception {
 // get the provider to use
 XMultiServiceFactory xProvider = getProvider();

 // The service name: Need update access:
 final String cUpdatableView = "com.sun.star.configuration.ConfigurationUpdateAccess";
 // creation arguments: nodepath
 com.sun.star.beans.PropertyValue aPathArgument = new com.sun.star.beans.PropertyValue();
 aPathArgument.Name = "nodepath";
 aPathArgument.Value = sPath;

 // creation arguments: commit mode - write-through or write-back
 com.sun.star.beans.PropertyValue aModeArgument = new com.sun.star.beans.PropertyValue();
 aModeArgument.Name = "lazywrite";
 aModeArgument.Value = new Boolean(bAsync);

 Object[] aArguments = new Object[2];
 aArguments[0] = aPathArgument;
 aArguments[1] = aModeArgument;

 // create the view
 Object xViewRoot = xProvider.createInstanceWithArguments(cUpdatableView, aArguments);
 return xViewRoot;
}

A com.sun.star.configuration.AdministrationProvider supports the same service speci-
fiers, but creates views on shared layers of configuration data. It supports additional parameters to
select the exact layer to work on or to specify authorization credentials. For the standard file-based
com.sun.star.configuration.AdministrationProvider, the parameters are not defined. For a
com.sun.star.configuration.AdministrationProvider, the default value for the locale
parameter is "*".

Chapter 15 Configuration Management 929

15.4 Accessing Configuration Data

15.4.1 Reading Configuration Data

The com.sun.star.configuration.ConfigurationAccess service is used to navigate through
the configuration hierarchy and reading values. It also provides information about a node and its
context.

The following example shows how to collect or display information about a part of the hierarchy.
For processing elements and values, our example uses its own callback Java interface IConfigu-
rationProcessor:
// Interface to processs information when browsing the configuration tree
public interface IConfigurationProcessor {
 // process a value item
 public abstract void processValueElement(String sPath_, Object aValue_);
 // process a structural item
 public abstract void processStructuralElement(String sPath_, XInterface xElement_);
};

Then, we define a recursive browser function:
// Internal method to browse a structural element recursively in preorder
public void browseElementRecursively(XInterface xElement, IConfigurationProcessor aProcessor)

throws com.sun.star.uno.Exception {
 // First process this as an element (preorder traversal)
 XHierarchicalName xElementPath = (XHierarchicalName) UnoRuntime.queryInterface(
 XHierarchicalName.class, xElement);

 String sPath = xElementPath.getHierarchicalName();
 //call configuration processor object

930 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 202: ConfigurationAccess services

 aProcessor.processStructuralElement(sPath, xElement);

 // now process this as a container of named elements
 XNameAccess xChildAccess =
 (XNameAccess) UnoRuntime.queryInterface(XNameAccess.class, xElement);

 // get a list of child elements
 String[] aElementNames = xChildAccess.getElementNames();

 // and process them one by one
 for (int i=0; i< aElementNames.length; ++i) {
 Object aChild = xChildAccess.getByName(aElementNames[i]);

 // is it a structural element (object) ...
 if (aChild instanceof XInterface) {
 // then get an interface
 XInterface xChildElement = (XInterface)aChild;

 // and continue processing child elements recursively
 browseElementRecursively(xChildElement, aProcessor);
 }
 // ... or is it a simple value
 else {
 // Build the path to it from the path of
 // the element and the name of the child
 String sChildPath;
 sChildPath = xElementPath.composeHierarchicalName(aElementNames[i]);

 // and process the value
 aProcessor.processValueElement(sChildPath, aChild);
 }
 }
}

Now a driver procedure is defined which uses our previously defined routine createConfigura-
tionView() to create a view, and then starts processing:
/** Method to browse the part rooted at sRootPath
 of the configuration that the Provider provides.

 All nodes will be processed by the IConfigurationProcessor passed.
*/
public void browseConfiguration(String sRootPath, IConfigurationProcessor aProcessor)

throws com.sun.star.uno.Exception {

 // create the root element
 XInterface xViewRoot = (XInterface)createConfigurationView(sRootPath);
 // now do the processing
 browseElementRecursively(xViewRoot, aProcessor);
 // we are done with the view - dispose it
 // This assumes that the processor
 // does not keep a reference to the elements in processStructuralElement

 ((XComponent) UnoRuntime.queryInterface(XComponent.class,xViewRoot)).dispose();
 xViewRoot = null;
}

Finally, as an example of how to put the code to use, the following is code to print the currently
registered file filters:
/** Method to browse the filter configuration.

 Information about installed filters will be printed.
*/
public void printRegisteredFilters() throws com.sun.star.uno.Exception {
 final String sProviderService = "com.sun.star.configuration.ConfigurationProvider";
 final String sFilterKey = "/org.openoffice.Office.TypeDetection/Filters";
 // browse the configuration, dumping filter information
 browseConfiguration(sFilterKey,
 new IConfigurationProcessor () { // anonymous implementation of our custom interface
 // prints Path and Value of properties
 public void processValueElement(String sPath_, Object aValue_) {
 System.out.println("\tValue: " + sPath_ + " = " + aValue_);
 }
 // prints the Filter entries
 public void processStructuralElement(String sPath_, XInterface xElement_) {
 // get template information, to detect instances of the 'Filter' template
 XTemplateInstance xInstance =
 (XTemplateInstance)UnoRuntime.queryInterface(XTemplateInstance .class,xElement_);

 // only select the Filter entries

Chapter 15 Configuration Management 931

 if (xInstance != null && xInstance.getTemplateName().endsWith("Filter")) {
 XNamed xNamed = (XNamed)UnoRuntime.queryInterface(XNamed.class,xElement_);
 System.out.println("Filter " + xNamed.getName() + " (" + sPath_ + ")");
 }
 }
 });
}

For access to sub-nodes, a com.sun.star.configuration.ConfigurationAccess supports
container interfaces com.sun.star.container.XNameAccess and
com.sun.star.container.XChild. These interfaces access the immediate child nodes in the hier-
archy , as well as com.sun.star.container.XHierarchicalNameAccess for direct access to items
that are nested deeply.

These interfaces are uniformly supported by all structural configuration items. Therefore, they are
utilized by code that browses a sub-tree of the configuration in a generic manner.

Parts of the hierarchy where the structure is known statically can also be viewed as representing a
complex object composed of properties, that are composed of sub-properties themselves. This
model is supported by the interface com.sun.star.beans.XPropertySet for child access and
com.sun.star.beans.XHierarchicalPropertySet for access to deeply nested properties within
such parts of the hierarchy. Due to the static nature of property sets, this model does not carry
over to set nodes that are dynamic in nature and do not support the associated interfaces.

For effective access to multiple properties, the corresponding
com.sun.star.beans.XMultiPropertySet and
com.sun.star.beans.XMultiHierarchicalPropertySet interfaces are supported.

In a read-only view, all properties are marked as
com.sun.star.beans.PropertyAttribute:READONLY in
com.sun.star.beans.XPropertySetInfo. Attempts to use
com.sun.star.beans.XPropertySet:setPropertyValue() to change the value of a property fail
accordingly.

Typically, these interfaces are used to access a known set of preferences. The following example
reads grid option settings from the OpenOffice.org Calc configuration into this structure:
class GridOptions
{
 public boolean visible;
 public int resolution_x;
 public int resolution_y;
 public int subdivision_x;
 public int subdivision_y;
};

These data may be read by a procedure such as the following. It demonstrates different
approaches to read data:
// This method reads information about grid settings
protected GridOptions readGridConfiguration() throws com.sun.star.uno.Exception {
 // The path to the root element
 final String cGridOptionsPath = "/org.openoffice.Office.Calc/Grid";
 // create the view
 Object xViewRoot = createConfigurationView(cGridOptionsPath);
 // the result structure
 GridOptions options = new GridOptions();

 // accessing a single nested value
 // the item /org.openoffice.Office.Calc/Grid/Option/VisibleGrid is a boolean data item
 XHierarchicalPropertySet xProperties =
 (XHierarchicalPropertySet)UnoRuntime.queryInterface(XHierarchicalPropertySet.class, xViewRoot);

 Object aVisible = xProperties.getHierarchicalPropertyValue("Option/VisibleGrid");
 options.visible = ((Boolean) aVisible).booleanValue();

 // accessing a nested object and its subproperties
 // the item /org.openoffice.Office.Calc/Grid/Subdivision has sub-properties XAxis and YAxis
 Object xSubdivision = xProperties.getHierarchicalPropertyValue("Subdivision");

932 OpenOffice.org 1.1 Developer's Guide • June 2003

 XMultiPropertySet xSubdivProperties = (XMultiPropertySet)UnoRuntime.queryInterface(
 XMultiPropertySet.class, xSubdivision);

 // String array containing property names of sub-properties
 String[] aElementNames = new String[2];

 aElementNames[0] = "XAxis";
 aElementNames[1] = "YAxis";

 // getPropertyVAlues() returns an array of any objects according to the input array aElementNames
 Object[] aElementValues = xSubdivProperties.getPropertyValues(aElementNames);

 options.subdivision_x = ((Integer) aElementValues[0]).intValue();
 options.subdivision_y = ((Integer) aElementValues[1]).intValue();

 // accessing deeply nested subproperties
 // the item /org.openoffice.Office.Calc/Grid/Resolution has sub-properties
 // XAxis/Metric and YAxis/Metric
 Object xResolution = xProperties.getHierarchicalPropertyValue("Resolution");

 XMultiHierarchicalPropertySet xResolutionProperties = (XMultiHierarchicalPropertySet)
 UnoRuntime.queryInterface(XMultiHierarchicalPropertySet.class, xResolution);

 aElementNames[0] = "XAxis/Metric";
 aElementNames[1] = "YAxis/Metric";

 aElementValues = xResolutionProperties.getHierarchicalPropertyValues(aElementNames);

 options.resolution_x = ((Integer) aElementValues[0]).intValue();
 options.resolution_y = ((Integer) aElementValues[1]).intValue();

 // all options have been retrieved - clean up and return
 // we are done with the view - dispose it

 ((XComponent)UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();

 return options;
}

A com.sun.star.configuration.ConfigurationAccess also supports the interfaces
com.sun.star.container.XNamed, com.sun.star.container.XHierarchicalName and
com.sun.star.beans.XPropertySetInfo to retrieve information about the node, as well as inter-
face com.sun.star.container.XChild to get the parent within the hierarchy. To monitor
changes to specific items, register listeners at the interfaces
com.sun.star.container.XContainer and com.sun.star.beans.XPropertySet.

The exact set of interfaces supported depends on the role of the node in the hierarchy. For
example, a set node does not support com.sun.star.beans.XPropertySet and related interfaces,
but it supports com.sun.star.configuration.XTemplateContainer to get information about
the template that specifies the schema of elements. The root object of a configuration view does not
support com.sun.star.container.XChild, but it supports
com.sun.star.util.XChangesNotifier to monitor all changes in the whole view.

15.4.2 Updating Configuration Data
A com.sun.star.configuration.ConfigurationUpdateAccess provides operations for
updating configuration data, by extendingthe interfaces supported by a
com.sun.star.configuration.ConfigurationAccess.

Chapter 15 Configuration Management 933

For com.sun.star.beans.XPropertySet and related interfaces, the semantics are extended to set
property values. Support for container interfaces is extended to set properties in group nodes, and
insert or remove elements in set nodes. Thus, a com.sun.star.configuration.GroupUpdate
supports interface com.sun.star.container.XNameReplace and a
com.sun.star.configuration.SetUpdate supports
com.sun.star.container.XNameContainer. Only complete trees having the appropriate struc-
ture are inserted for sets whose elements are complete structures as described by a template,. To
support this, the set object is used as a factory that can create structures of the appropriate type.
For this purpose, the set supports com.sun.star.lang.XSingleServiceFactory.

Updates done through a configuration view are only visible within that view, providing transac-
tional isolation. When a set of updates is ready, it must be committed explicitly to become visible
beyond this view. All pending updates are then sent to the configuration provider in one batch.
This batch update behavior is controlled through interfacecom.sun.star.util.XChangesBatch
that is implemented by the root element of an updatable configuration view.

934 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 203: ConfigurationUpdateAccess services

When a set of changes is committed to the provider it becomes visible to other views obtained from the same
provider as an atomic and consistent set of changes. Thus, in the local scope of a single
com.sun.star.configuration.ConfigurationProvider a high degree of transactional behavior is
achieved.

The configuration management component does not guarantee true transactional behavior. Committing the
changes to the com.sun.star.configuration.ConfigurationProvider does not ensure persistence
or durability of the changes. When the provider writes back the changes to the persistent data store, they
become durable. Generally, the com.sun.star.configuration.ConfigurationProvider may cache
and combine requests, so that updates are propagated to the data store at a later time.

If several sets of changes are combined before being saved, isolation and consistency may be weakened in
case of failure. As long as the backend does not fully support transactions, only parts of an update request
might be stored successfully, thus violating atomicity and consistency.

If failures occur while writing configuration data into the backend data store, the
com.sun.star.configuration.ConfigurationProvider resynchronizes with the data stored in the
backend. The listeners are notified of any differences as if they had been stored through another view. If an
application has more stringent error handling needs, the caching behavior can be adjusted by providing
arguments when creating the view.

In summary, , there are few overall guarantees regarding transactional integrity for the configuration data-
base, but locally, the configuration behaves as if the support is in place. Depending on the backend capabili-
ties, the com.sun.star.configuration.ConfigurationProvider tries to provide the best approxi-
mation to transactional integrity that can be achieved considering the capabilities of the backend without
compromising performance.

The following example demonstrates how the configuration interfaces are used to feed a user-
interface for preference changes. This shows the framework needed to update configuration
values, and demonstrates how listeners are used with configuration views. This example concen-
trates on properties in group nodes with a fixed structure. It uses the same OpenOffice.org Calc
grid settings as the previous example. It assumes that there is a class GridOptionsEditor that
drives a dialog to display and edit the configuration data:
// This method simulates editing configuration data using a GridEditor dialog class
public void editGridOptions() throws com.sun.star.uno.Exception {
 // The path to the root element
 final String cGridOptionsPath = "/org.openoffice.Office.Calc/Grid";

 // create a synchronous view for better error handling (lazywrite = false)
 Object xViewRoot = createUpdatableView(cGridOptionsPath, false);
 // the 'editor'
 GridOptionsEditor dialog = new GridOptionsEditor();

 // set up the initial values and register listeners
 // get a data access interface, to supply the view with a model
 XMultiHierarchicalPropertySet xProperties = (XMultiHierarchicalPropertySet)
 UnoRuntime.queryInterface(XMultiHierarchicalPropertySet.class, xViewRoot);
 dialog.setModel(xProperties);
 // get a listener object (probably an adapter) that notifies
 // the dialog of external changes to its model
 XChangesListener xListener = dialog.createChangesListener();
 XChangesNotifier xNotifier =
 (XChangesNotifier)UnoRuntime.queryInterface(XChangesNotifier.class, xViewRoot);
 xNotifier.addChangesListener(xListener);
 if (dialog.execute() == GridOptionsEditor.SAVE_SETTINGS) {
 // changes have been applied to the view here
 XChangesBatch xUpdateControl =
 (XChangesBatch) UnoRuntime.queryInterface(XChangesBatch.class,xViewRoot);

 try {
 xUpdateControl.commitChanges();
 }
 catch (Exception e) {
 dialog.informUserOfError(e);
 }

Chapter 15 Configuration Management 935

 }

 // all changes have been handled - clean up and return
 // listener is done now
 xNotifier.removeChangesListener(xListener);

 // we are done with the view - dispose it
 ((XComponent)UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();
}

In this example, the dialog controller uses the
com.sun.star.beans.XMultiHierarchicalPropertySet interface to read and change configura-
tion values. If the grid options are changed and committed in another view,
com.sun.star.util.XChangesListener:changesOccurred() is sent to the listener supplied by
the dialog which can then update its display accordingly.

Note that a synchronous com.sun.star.configuration.ConfigurationUpdateAccess was
created for this example (argument lazywrite==false). As the action here is driven by user inter-
action, synchronous committing is used to detect errors immediately.

Besides the values for the current user, there are also default values that are determined by
merging the schema with any default layers. It is possible to retrieve the default values for indi-
vidual properties, and to reset a property or a set node to their default states, thus backing out any
changes done for the current user. For this purpose, group nodes support the interfaces
com.sun.star.beans.XPropertyState and com.sun.star.beans.XMultiPropertyStates,
offering operations to query if a property assumes its default state or the default value, and to
reset an updatable property to its default state. The com.sun.star.beans.PropertyAttribute
structss available through com.sun.star.beans.XPropertySetInfo:getProperty() are used to
determine if a particular item or node supports this operation.

Individual set elements can not be reset because set nodes do not support
com.sun.star.beans.XPropertyState. Instead a com.sun.star.configuration.SetAccess
supports com.sun.star.beans.XPropertyWithStatethat resets the set as a whole.

The following is an example code using this feature to reset the OpenOffice.org Calc grid settings
used in the preceding examples to their default state:
/// This method resets the grid settings to their default values
protected void resetGridConfiguration() throws com.sun.star.uno.Exception {
 // The path to the root element
 final String cGridOptionsPath = "/org.openoffice.Office.Calc/Grid";

 // create the view
 Object xViewRoot = createUpdatableView(cGridOptionsPath);

 // ### resetting a single nested value ###
 XHierarchicalNameAccess xHierarchicalAccess =
 (XHierarchicalNameAccess)UnoRuntime.queryInterface(XHierarchicalNameAccess.class, xViewRoot);

 // get using absolute name
 Object xOptions = xHierarchicalAccess.getByHierarchicalName(cGridOptionsPath + "/Option");

 XPropertyState xOptionState =
 (XPropertyState)UnoRuntime.queryInterface(XPropertyState.class, xOptions);

 xOptionState.setPropertyToDefault("VisibleGrid");
 // ### resetting more deeply nested values ###
 Object xResolutionX = xHierarchicalAccess.getByHierarchicalName("Resolution/XAxis");
 Object xResolutionY = xHierarchicalAccess.getByHierarchicalName("Resolution/YAxis");

 XPropertyState xResolutionStateX =
 (XPropertyState)UnoRuntime.queryInterface(XPropertyState.class, xResolutionX);
 XPropertyState xResolutionStateY =
 (XPropertyState)UnoRuntime.queryInterface(XPropertyState.class, xResolutionY);

 xResolutionStateX.setPropertyToDefault("Metric");
 xResolutionStateY.setPropertyToDefault("Metric");
 // ### resetting multiple sibling values ###
 Object xSubdivision = xHierarchicalAccess.getByHierarchicalName("Subdivision");

 XMultiPropertyStates xSubdivisionStates =
 (XMultiPropertyStates)UnoRuntime.queryInterface(XMultiPropertyStates.class, xSubdivision);

936 OpenOffice.org 1.1 Developer's Guide • June 2003

 xSubdivisionStates.setAllPropertiesToDefault();
 // commit the changes
 XChangesBatch xUpdateControl =
 (XChangesBatch) UnoRuntime.queryInterface(XChangesBatch.class, xViewRoot);

 xUpdateControl.commitChanges();

 // we are done with the view - dispose it
 ((XComponent)UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();
}

Currently, group nodes do not support the attribute
com.sun.star.beans.PropertyAttribute:MAYBEDEFAULT set in the
com.sun.star.beans.Property structure available from
com.sun.star.beans.XPropertySetInfo. Attempts to use
com.sun.star.beans.XPropertyState:setPropertyToDefault to reset an entire group node fail.

Also, because the group nodes can not be reset, the com.sun.star.beans.XPropertyState:setProp-
ertyToDefault or com.sun.star.beans.XMultiPropertyStates:setAllPropertiesToDefault
cannot be used to reset all descendents of a node.

It is intended to lift this restriction in a future release. To avoid unexpected changes in behavior when this
change is introduced, you should apply com.sun.star.beans.XPropertyState:setPropertyToDe-
fault only to actual properties, such as value items, or set nodes. In particular, you should avoid
com.sun.star.beans.XMultiPropertyStates:setAllPropertiesToDefault() on group nodes.

A more comprehensive example is provided that shows how set elements are created and added,
and how it employs advanced techniques for reducing the amount of data that needs to be loaded.

This example uses the OpenOffice.org configuration module
org.openoffice.Office.DataAccess. This component has a set item DataSources that contains
group items described by the template DataSourceDescription. A data source description holds
information about the settings required to connect to a data source.

The template org.openoffice.Office.DataAccess/DataSourceDescription has the following
properties that describe the data source connection:

Name Type Comment
URL String Data source URL.

IsPasswordRequired Boolean Is a password needed to connect.

TableFilter String [] Filters tables for display.

TableTypeFilter String [] Filters tables for display.

User String User name to be used for connecting.

LoginTimeout int Default timeout for connection attempt.

SuppressVersionColumns Boolean Controls display of certain data.

DataSourceSettings set node Contains DataSourceSetting entriesthat contain
driver-specific settings.

Bookmarks set node Contains Bookmark entries that link to related
documents, for example, Forms.

It also contains the binary properties NumberFormatSettings and LayoutInformation that store
information for layout and display of the data source contents.It also contains the set items Tables
and Queries containing the layout information for the data access views.

The example shows a procedure that creates and saves basic settings for connecting to a new data
source. It uses an asynchronous com.sun.star.configuration.ConfigurationUpdateAccess.
Thus, when com.sun.star.util.XChangesBatch:commitChanges is called, the data becomes

Chapter 15 Configuration Management 937

visible at the com.sun.star.configuration.ConfigurationProvider, but is only stored in the
provider's cache. It is written to the data store at later when the cache is automatically flushed by
the com.sun.star.configuration.ConfigurationProvider. As this is done in the background
there is no exception when the write-back fails.

The recommended methodto configure a new data source is to use the
com.sun.star.sdb.DatabaseContext service as described in 12.2.1 Database Access - Data Sources in
OpenOffice.org API - DatabaseContext. This is a high-level service that ensures that all the settings required to
establish a connection are properly set.

Among the parameters of the routine is the name of the data source that must be chosen to
uniquely identify the data source from other parameters directly related to the above properties.
There also is a parameter to pass a list of entries for the DataSourceSettings set.

The resulting routine is: (Config /ConfigExamples.java)
// This method stores a data source for given connection data
void storeDataSource(
 String sDataSourceName,
 String sDataSourceURL,
 String sUser,
 boolean bNeedsPassword,
 int nTimeout,
 com.sun.star.beans.NamedValue [] aDriverSettings,
 String [] aTableFilter) throws com.sun.star.uno.Exception {

 // create the view and get the data source element in a
 // helper method createDataSourceDescription() (see below)
 Object xDataSource = createDataSourceDescription(getProvider(), sDataSourceName);
 // set the values
 XPropertySet xDataSourceProperties = (XPropertySet)UnoRuntime.queryInterface(
 XPropertySet.class, xDataSource);
 xDataSourceProperties.setPropertyValue("URL", sDataSourceURL);
 xDataSourceProperties.setPropertyValue("User", sUser);
 xDataSourceProperties.setPropertyValue("IsPasswordRequired", new Boolean(bNeedsPassword));
 xDataSourceProperties.setPropertyValue("LoginTimeout", new Integer(nTimeout));
 if (aTableFilter != null)
 xDataSourceProperties.setPropertyValue("TableFilter", aTableFilter);

 // ### store the driver-specific settings ###
 if (aDriverSettings != null) {
 Object xSettingsSet = xDataSourceProperties.getPropertyValue("DataSourceSettings");
 // helper for storing (see below)
 storeSettings(xSettingsSet, aDriverSettings);
 }

 // ### save the data and dispose the view ###
 // recover the view root (helper method)
 Object xViewRoot = getViewRoot(xDataSource);
 // commit the changes
 XChangesBatch xUpdateControl = (XChangesBatch) UnoRuntime.queryInterface(
 XChangesBatch.class, xViewRoot);

 xUpdateControl.commitChanges();

 // now clean up
 ((XComponent) UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();
}

Notice the function createDataSourceDescription in our example.It is called to get a DataSour-
ceDescription instance to access a pre-existing item, or create and insert a new item using the
passed name.

The function is optimized to reduce the view to as little data as necessary. To this end it employs
the depth parameter when creating the view.

938 OpenOffice.org 1.1 Developer's Guide • June 2003

The "depth" parameter for optimization purposes is used here for demonstration purposes only. Use of the
"depth" flag does not have a noticeable effect on performance with the current implementation of the
OpenOffice.org configuration management components. Actually, there are few cases where the use of this
parameter has any value.

This results in a view where descendents of the root are only included in the view up to the given
nesting depth. In this case, where depth = 1, only the immediate children are loaded. If the
requested item is found, the function gets a deeper view for only that item, otherwise it creates a
new instance. In the latter case, the item returned is not the root of the view.
(Config /ConfigExamples.java)
/** This method gets the DataSourceDescription for a data source.
 It either gets the existing entry or creates a new instance.

 The method attempts to keep the view used as small as possible. In particular there
 is no view created, that contains data for all data source that are registered.
*/
Object createDataSourceDescription(XMultiServiceFactory xProvider, String sDataSourceName)

throws com.sun.star.uno.Exception {
 // The service name: Need an update access:
 final String cUpdatableView = "com.sun.star.configuration.ConfigurationUpdateAccess";
 // The path to the DataSources set node
 final String cDataSourcesPath = "/org.openoffice.Office.DataAccess/DataSources";
 // creation arguments: nodepath
 com.sun.star.beans.PropertyValue aPathArgument = new com.sun.star.beans.PropertyValue();
 aPathArgument.Name = "nodepath";
 aPathArgument.Value = cDataSourcesPath ;

 // creation arguments: commit mode
 com.sun.star.beans.PropertyValue aModeArgument = new com.sun.star.beans.PropertyValue();
 aModeArgument.Name = "lazywrite";
 aModeArgument.Value = new Boolean(true);

 // creation arguments: depth
 com.sun.star.beans.PropertyValue aDepthArgument = new com.sun.star.beans.PropertyValue();
 aDepthArgument.Name = "depth";
 aDepthArgument.Value = new Integer(1);

 Object[] aArguments = new Object[3];
 aArguments[0] = aPathArgument;
 aArguments[1] = aModeArgument;
 aArguments[2] = aDepthArgument;

 // create the view: asynchronously updatable, with depth 1
 Object xViewRoot =
 xProvider.createInstanceWithArguments(cUpdatableView, aArguments);
 XNameAccess xSetOfDataSources = (XNameAccess) UnoRuntime.queryInterface(
 XNameAccess.class,xViewRoot);
 Object xDataSourceDescriptor = null; // the result
 if (xSetOfDataSources .hasByName(sDataSourceName)) {
 // the element is there, but it is loaded only with depth zero !
 try {
 // the view should point to the element directly, so we need to extend the path
 XHierarchicalName xComposePath = (XHierarchicalName) UnoRuntime.queryInterface(
 XHierarchicalName.class, xSetOfDataSources);

 String sElementPath = xComposePath.composeHierarchicalName(sDataSourceName);
 // use the name of the element now
 aPathArgument.Value = sElementPath;
 // create another view now (without depth limit)
 Object[] aDeepArguments = new Object[2];
 aDeepArguments[0] = aPathArgument;
 aDeepArguments[1] = aModeArgument;

 // create the view: asynchronously updatable, with unlimited depth
 xDataSourceDescriptor =
 xProvider.createInstanceWithArguments(cUpdatableView, aDeepArguments);
 if (xDataSourceDescriptor != null) // all went fine
 {
 // dispose the other view
 ((XComponent)UnoRuntime.queryInterface(XComponent.class, xViewRoot)).dispose();
 xViewRoot = null;
 }

Chapter 15 Configuration Management 939

 }
 catch (Exception e) {
 // something went wrong, we retry with a new element
 System.out.println("WARNING: An exception occurred while creating a view" +
 " for an existing data source: " + e);
 xDataSourceDescriptor = null;
 }
 }

 // do we have a result element yet ?
 if (xDataSourceDescriptor == null) {
 // get the container
 XNameContainer xSetUpdate = (XNameContainer)UnoRuntime.queryInterface(
 XNameContainer.class, xViewRoot);

 // create a new detached set element (instance of DataSourceDescription)
 XSingleServiceFactory xElementFactory = (XSingleServiceFactory)UnoRuntime.queryInterface(
 XSingleServiceFactory.class, xSetUpdate);

 // the new element is the result !
 xDataSourceDescriptor = xElementFactory.createInstance();
 // insert it - this also names the element
 xSetUpdate.insertByName(sDataSourceName , xDataSourceDescriptor);
 }

 return xDataSourceDescriptor ;
}

A method is required to recover the view root from an element object, because it is unknown if the
item is the root of the view or a descendant : (Config /ConfigExamples.java)
// This method get the view root node given an interface to any node in the view
public static Object getViewRoot(Object xElement) {
 Object xResult = xElement;

 // set the result to its parent until that would be null
 Object xParent;
 do {
 XChild xParentAccess =
 (XChild) UnoRuntime.queryInterface(XChild.class,xResult);

 if (xParentAccess != null)
 xParent = xParentAccess.getParent();
 else
 xParent = null;

 if (xParent != null)
 xResult = xParent;
 }
 while (xParent != null);

 return xResult;
}

Another function used is storeDataSource is storeSettings to store an array of
com.sun.star.beans.NamedValues in a set of DataSourceSetting items. A DataSourceSetting
contains a single property named Value tht is set to any of the basic types supported for configu-
ration values. This example demonstrates the two steps required to add a new item to a set node:
(Config /ConfigExamples.java)
/// this method stores a number of settings in a set node containing DataSourceSetting objects
void storeSettings(Object xSettingsSet, com.sun.star.beans.NamedValue [] aSettings)

throws com.sun.star.uno.Exception {

 if (aSettings == null)
 return;

 // get the settings set as a container
 XNameContainer xSettingsContainer =
 (XNameContainer) UnoRuntime.queryInterface(XNameContainer.class, xSettingsSet);
 // and get a factory interface for creating the entries
 XSingleServiceFactory xSettingsFactory =
 (XSingleServiceFactory) UnoRuntime.queryInterface(XSingleServiceFactory.class, xSettingsSet);
 // now insert the individual settings
 for (int i = 0; i < aSettings.length; ++i) {
 // create a DataSourceSetting object
 XPropertySet xSetting = (XPropertySet)
 UnoRuntime.queryInterface(XPropertySet.class, xSettingsFactory.createInstance());

940 OpenOffice.org 1.1 Developer's Guide • June 2003

 // can set the value before inserting
 xSetting.setPropertyValue("Value", aSettings[i].Value);
 // and now insert or replace as appropriate
 if (xSettingsContainer.hasByName(aSettings[i].Name))
 xSettingsContainer.replaceByName(aSettings[i].Name, xSetting);
 else
 xSettingsContainer.insertByName(aSettings[i].Name, xSetting);
 }
}

Besides adding a freshly created instance of a template, a set item can be removed from a set and
added to any other set supporting the same template for its elements, provided both sets are part
of the same view. You cannot move a set item between views, as this contradicts the transactional
isolation of views. The set item you removed in one view will still be in its old place in the other. If
a set item is moved between sets in one view and the changes are committed, the change appears
in another overlapping view as removal of the original item and insertion of a new element in the
target location, not as relocation of an identical element.

The methods com.sun.star.container.XNamed:setName() and
com.sun.star.container.XChild:setParent() are supported by a
com.sun.star.configuration.ConfigurationUpdateAccess only if it is a
com.sun.star.configuration.SetElement. They offer another way to move an item within a set or
from one set to another set.

In the current release of OpenOffice.org, these methods are not supported correctly. You can achieve the
same effect by using a sequence of remove item - insert item.

To rename an item: (Config /ConfigExamples.java)

/// Does the same as xNamedItem.setName(sNewName) should do
void renameSetItem(XNamed xNamedItem, String sNewName) throws com.sun.star.uno.Exception {
 XChild xChildItem = (XChild)
 UnoRuntime.queryInterface(XChild.class, xNamedItem);

 XNameContainer xParentSet = (XNameContainer)
 UnoRuntime.queryInterface(XNameContainer.class, xChildItem.getParent());

 String sOldName = xNamedItem.getName();
 // now rename the item
 xParentSet.removeByName(sOldName);
 xParentSet.insertByName(sNewName,xNamedItem);
}

To move an item to a different parent: (Config /ConfigExamples.java)

/// Does the same as xChildItem.setParent(xNewParent) should do
void moveSetItem(XChild xChildItem, XNameContainer xNewParent) throws com.sun.star.uno.Exception {
 XNamed xNamedItem = (XNamed)
 UnoRuntime.queryInterface(XNamed.class, xChildItem);

 XNameContainer xOldParent = (XNameContainer)
 UnoRuntime.queryInterface(XNameContainer.class, xChildItem.getParent());

 String sItemName = xNamedItem.getName();
 // now rename the item
 xOldParent.removeByName(sItemName);
 xNewParent.insertByName(sItemName,xChildItem);
}

15.5 Customizing Configuration Data
The configuration management API is a data manipulation API. There is no support for data defi-
nition functionality. You cannot programmatically inspect, modify or create a configuration
schema.

Chapter 15 Configuration Management 941

This release does not support adding configuration data for your own components by createing
and installing a new configuration data file into a backend manually. The file format used for the
current standard backend is not documented, and there is no documentation about the internal
organization of the standard file-based backend and proper deployment of selfmade configuration
data files. A migration to new, well-documented file formats that are still XML-based and to a
documented organization of the data files in the standard backend are being prepared. This
feature will become available in a future version of OpenOffice.org. For more information, visit
http://util.openoffice.org.

15.6 Adding a Backend Data Store
At present, the code to select and access a particular data store is hardcoded into the configuration
management component. We are working on providing a UNO-based interface to enable different
data stores in a flexible manner. This feature will become available in a future version of
OpenOffice.org. For more information, visit http://util.openoffice.org.

942 OpenOffice.org 1.1 Developer's Guide • June 2003

16 Office Bean

16.1 Introduction
This chapter describes the OfficeBean Java Bean component. It is assumed that the reader is
familiar with the Java Beans technology. Additional information about Java Beans can be found at
http://java.sun.com/beans.

With the OfficeBean, a developer can easily write Java applications, harnessing the power of
OpenOffice.org. It encapsulates a connection to a locally running OpenOffice.org process, and
hides the complexity of establishing and maintaining that connection from the developer.

It also allows embedding of OpenOffice.org documents within the Java environment. It provides
an interface the developer can use to obtain Java AWT windows into which the backend
OpenOffice.org process draws its visual representation. These windows are then plugged into the
UI hierarchy of the hosting Java application. The embedded document is controlled from the Java
environment, since the OfficeBean allows developers to access the complete OpenOffice.org API
from their Java environment giving them full control over the embedded document, its appear-
ance and behavior.

The OfficeBean consists of two parts. The officebean.jar implements a fundamental framework that
is able to connect to the office and display the application window of a local OpenOffice.org instal-
lation in a Swing frame. The other part has three example beans that take advantage of the
officebean.jar to implement Java beans to display the OpenOffice.org documents. The example
beans are the BasicOfficeBean, SimpleBean and OfficeWriter.

The BasicOfficeBean is a java.awt.Container that encapsulates office documents. It connects to
the office, loads documents, tracks their modified status and saves them.

The SimpleBean and OfficeWriter are derived from BasicOfficeBean. The SimpleBean is used
to toggle the menu bar. The OfficeWriter wraps a writer document, for example, by providing
its content as a string and as XText interface, and is an extension of Office that is based on the
BasicOfficeBean. The Office enhances BasicOfficeBean by handling streams, controlling tool-
bars and menu bar, publishing the global service manager, and returning the current selection.

The code snippet below shows how to use the OfficeBean API to display a OpenOffice.org docu-
ment in a Java environment using the example class SimpleBean. It creates a SimpleBean, applies
an OfficeConnection to it and adds the connected office bean to a frame. When it is added to a
frame, SimpleBean loads a OpenOffice.org document from a URL, such as private:factory/swriter:
public loadDocument(String url) {
 Frame f = new Frame();

 OfficeConnection officeConnection = new LocalOfficeConnection();
 SimpleBean simpleBean = new SimpleBean();

 try {
 simpleBean.setOfficeConnection(officeConnection);

943

 f.add(simpleBean, BorderLayout.CENTER);
 simpleBean.load(url);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

Illustration 204 shows the resulting OpenOffice.org document window embedded within a
java.awt.Frame.

16.2 Overview of the OfficeBean API
The OfficeBean API is exported in two Java interfaces, com.sun.star.beans.OfficeConnection
and com.sun.star.beans.OfficeWindow.

Note that these interfaces are Java interfaces in the com.sun.star.beans package, they are not UNO inter-
faces.

An implementation of com.sun.star.beans.OfficeConnection is provided in the class
com.sun.star.beans.LocalOfficeConnection. The class
com.sun.star.beans.LocalOfficeWindow implements com.sun.star.beans.OfficeWindow. The
relationship between the OfficeBean interfaces and their implementation classes is shown in the
illustration below.

944 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 204

The following sections describe the OfficeBean interfaces OfficeConnection and
OfficeWindow.Refer to the section "Using the OfficeBean" for an explanation of how the imple-
mentation classes are used.

16.2.1 OfficeConnection Interface
The com.sun.star.beans.OfficeConnection interface contains the methods used to configure,
initiate,and manage the connection to OpenOffice.org. These methods are:

public void setUnoUrl(String URL) throws java.net.MalformedURLException
public com.sun.star.uno.XComponentContext getComponentContext()
public OfficeWindow createOfficeWindow(Container container)
public void setContainerFactory(ContainerFactory containerFactory)

The client uses setUnoUrl() to specify to the OfficeBean how it connects to the OpenOffice.org
process. See the section “Configuring the OfficeBean” for a description of the syntax of the URL. A
java.net.MalformedURLException is thrown by the concrete implementation if the client passes
a badly formed URL as an argument.

The method getComponentContext() gets an object that implements the
com.sun.star.uno.XComponentContext interface from the OfficeBean. This object is then used to
obtain objects implementing the full OpenOffice.org API from the backend OpenOffice.org
process.

A call to createOfficeWindow() requests a new OfficeWindow from the OfficeConnection. The
client obtains the java.awt.Component from the OfficeWindow to plug into its UI. See the

Chapter 16 Office Bean 945

Illustration 205

getAWTComponent() method below on how to obtain the Component from the OfficeWindow. The
client provides java.awt.Container that indicates to the implementation what kind of Office-
Window it is to create.

The method setContainerFactory() specifies to the OfficeBean the factory object it uses to create
Java AWT windows to display popup windows in the Java environment. This factory object
implements the com.sun.star.beans.ContainerFactory interface. See below for a definition of
the ContainerFactory interface.

If the client does not implement its own ContainerFactory interface, the OfficeBean uses its own
default ContainerFactory creating instances of java.awt.Canvas.

16.2.2 OfficeWindow Interface
The com.sun.star.beans.OfficeWindow interface encapsulates the relationship between the
AWT window that the client plugs into its UI, and the com.sun.star.awt.XWindowPeer object
which the OpenOffice.org process uses to draw into the window. It provides two public methods:

public java.awt.Component getAWTComponent()
public com.sun.star.awt.XWindowPeer getUNOWindowPeer()

The client uses getAWTComponent() to obtain the Component window associated with an Office-
Window. This Component is then added to the clients UI hierarchy.

The method getUNOWindowPeer() obtains the UNO com.sun.star.awt.XWindowPeer object asso-
ciated with an OfficeWindow.

16.2.3 ContainerFactory Interface
The interface com.sun.star.beans.ContainerFactory defines a factory class the client imple-
ments if it needs to control how popup windows generated by the backend OpenOffice.org
process are presented within the Java environment. The factory has only one method:

public java.awt.Container createContainer()

It returns a java.awt.Container.

For more background on handling popup windows generated by OpenOffice.org, and possible threading
issues to consider, see 6.1.7 Office Development - OpenOffice.org Application Environment - Java Window Integra-
tion.

16.3 LocalOfficeConnection and LocalOfficeWindow
The class LocalOfficeConnection implements a connection to a locally running OpenOffice.org
process that is an implementation of the interface OfficeConnection. Its method createOffice-
Window() creates an instance of the class LocalOfficeWindow, that is an implementation of the
interface OfficeWindow.

Where LocalOfficeConnection keeps a single connection to the OpenOffice.org process, there
are multiple, shared LocalOfficeWindow instances for multiple beans. The LocalOfficeWindow
implements the embedding of the local OpenOffice.org document window into a
java.awt.Container.

946 OpenOffice.org 1.1 Developer's Guide • June 2003

16.4 Configuring the OfficeBean

The fundamental framework of the OfficeBean is contained in the officebean.jar archive file that
depends on a local library officebean.dll or libofficebean.so, depending on the platform. The interac-
tion between the backend OpenOffice.org process, officebean local library, OfficeBean and the
Java environment is shown in the illustration below.

The OfficeBean allows the developer to connect to and communicate with the OpenOffice.org
process through a named pipe. It also starts up a OpenOffice.org instance if it cannot connect to a
running office. This is implemented in the OfficeBean local library. The OfficeBean depends on
three configuration settings to make this work. It has to find the local library, needs the location of
the OpenOffice.org executable, and the bean and office must know the pipe name to use.

16.4.1 Default Configuration
The OfficeBean uses default values for all the configuration settings, if none are provided:

• Since OpenOffice.org 1.1 the officebean.jar is located in the <OfficePath>/program/classes direc-
tory.

• It looks for the local library (Windows: officebean.dll, Unix: libofficebean.so) relative to the
officebean.jar in the <OfficePath>/program directory. The local library depends on the following
shared libraries:

a) The library sal3 (Windows: sal3.dll, Unix: libsal3.so) is located in the <OfficePath>/program
folder. It maybe necessary to add the <OfficePath>/program folder to the PATH environment
variable if the bean cannot find sal3.

Chapter 16 Office Bean 947

Illustration 206

b) The library jawt.dll is needed in Windows. If the bean cannot find it, check the Java
Runtime Environment binaries (<JRE>/bin) in your PATH environment variable.

• It expects the OpenOffice.org installation in the default install location for the current platform.
The soffice executable is in the program folder of a standard installation.

• The pipe name is created using the value of the user.name Java property. The name of the pipe
is created by appending "_office" to the name of the currently logged on user, for example, if
the user.name is "JohnDoe", the name of the pipe is "JohnDoe_office".

Based on these default values, the OfficeBean tries to start the office in listening mode with the
-accept commandline option. The exact parameters used by the bean are:
WINDOWS
soffice.exe -bean -accept=pipe,name=<user.name>_Office;urp;StarOffice.NamingService
UNIX
soffice -bean "-accept=pipe,name=<user.name>_Office;urp;StarOffice.NamingService"

There is a limitation in the communication process with the OfficeBean and older versions of OpenOffice.org.
If a OpenOffice.org process is already running that was not started with the proper -accept=pipe option,
the OfficeBean does not connect to it. Since OpenOffice.org 1.1 this limitation is obsolete.

It opens a Writer document outside of the Java frame. The OpenOffice.org process has to be
started so that it opens a properly named pipe to enable OpenOffice.org to be displayed as an
embedded OfficeBean and top-level OpenOffice.org window. This is achieved by editing the file
<OfficePath>\user\config\registry \instance\org \openoffice\Setup.xml. Within the <Office/>
element, the developer adds an <ooSetupConnectionURL/> element with settings for a named
pipe. The following example shows a user-specific Setup.xml that configures a named pipe for a
user named JohnDoe:
<?xml version="1.0" encoding="UTF-8"?>
<Setup state="modified" cfg:package="org.openoffice"
 xmlns="http://openoffice.org/2000/registry/components/Setup"
 xmlns:cfg="http://openoffice.org/2000/registry/instance"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
 <Office>
 <ooSetupConnectionURL cfg:type="string">
 pipe,name=JohnDoe_Office;urp;StarOffice.NamingService
 </ooSetupConnectionURL>
 <Factories cfg:element-type="Factory">
 <Factory cfg:name="com.sun.star.text.TextDocument">
 <ooSetupFactoryWindowAttributes cfg:type="string">
 193,17,1231,1076;1;
 </ooSetupFactoryWindowAttributes>
 </Factory>
 </Factories>
 </Office>
</Setup>

With this user-specific Setup.xml file, the office opens a named pipe JohnDoe_Office whenever it
starts up. It does not matter if the user double clicks a document, runs the Quickstarter, or starts a
new, empty document from a OpenOffice.org template.

16.4.2 Customized Configuration
Besides these default values, the OfficeBean is configured to use other parameters. There are three
possibilities,using a UNO URL with path and pipe name parameters, setting Java system proper-
ties at runtime, or creating a Java property file in the user.home directory.

The first method that a developer uses to configure the OfficeBean is through the UNO URL
passed in the setUnoUrl() call. The syntax of the UNO URL is as follows:
 url := 'uno:localoffice'[','<params>]';urp;StarOffice.NamingService'
 params := <path>[','<pipe>]

948 OpenOffice.org 1.1 Developer's Guide • June 2003

 path := 'path='<pathv>
 pipe := 'pipe='<pipev>
 pathv := platform_specific_path_to_the_local_office_distribution
 pipev := local_office_connection_pipe_name

Here is an example of how to use setUnoUrl() in code:
 OfficeConnection officeConnection = new LocalOfficeConnection();
 officeConnection.setUnoUrl(
 “uno:localoffice,path=/home/user/staroffice6.0/program;urp;StarOffice.NamingService”);

In OpenOffice.org 1.1 the properties mechanism was removed and cannot be used any longer. The following
section about the OfficeBean properties and the officebean.properties file are only valid for older
OpenOffice.org versions. Since OpenOffice.org 1.1 the OfficeBean uses an implicit find mechanism over the
classpath for the office and the local OfficeBean library so that no properties file is necessary.

The second method that is used to configure the OfficeBean is using Java system properties. The
properties supported by the OfficeBean are:

Properties supported by the OfficeBean
com.sun.star.beans.path Specifies the path to the program directory of the OpenOffice.org instal-

lation.
com.sun.star.beans.libpath Specifies the directory the OfficeBean local library (Windows:

officebean.dll, Unix: libofficebean.so) is stored

The libpath property seems to be ignored, at least on Windows

These properties are set through a call to System.setProperty() before creating the OfficeCon-
nection, for example:
 System.setProperty("com.sun.star.beans.path", "/home/user/staroffice6.0/program");
 System.setProperty("com.sun.star.beans.libpath", "/home/user/lib");
 OfficeConnection officeConnection = new LocalOfficeConnection();

The properties are also set by creating a file .officebean.properties on Unix or officebean.properties with
no leading dot on Windows in the directory corresponding to the platform specific user.home
Java property, that is, the directory returned by System.getProperty("user.home").

In NetBeans, you can look up the home directory in the Detail tab of the Help - About dialog. Look for the
Home dir entry.

A possible officebean.properties file on a Windows machine may look like the following:
 com.sun.star.beans.path=D:\\StarOffice6.0\\program
 com.sun.star.beans.libpath=X:\\SDK\\windows\\bin

On Unix possible .officebean.properties could be:
 com.sun.star.beans.path=/home/user/staroffice6.0/program
 com.sun.star.beans.libpath=/home/user/lib

16.5 Using the OfficeBean
The officebean.jar Java archive file provided as part of the OpenOffice.org Software Development
Kit provides an implementation of the OfficeBean API that developers can use to develop applica-
tions embedding OpenOffice.org functionality. The implementation is provided in the previously
mentioned classes LocalOfficeConnection and LocalOfficeWindow.

As previously mentioned, the OfficeBean API and implementation is a low-level interface
providing the building blocks necessary for developing OfficeBeans. The examples directory of the
OpenOffice.org Software Development Kit contains examples of these beans that show how to use
these building blocks to build and embed an OfficeBean in a Java applet or application. To use the

Chapter 16 Office Bean 949

low-level API to communicate with the backend OpenOffice.org process, use the LocalOffice-
Connection and LocalOfficeWindow classes directly. Use or extend the beans in the examples to
avoid the complexity of using the low-level API.

Basic bean functionality is provided in the abstract class BasicOfficeBean that is subclassed to
create beans supporting OpenOffice.org document loading and storing from Java. The BasicOf-
ficeBean is a java.awt.Container, therefore subclasses of BasicOfficeBean are plugged
directly into a Java UI hierarchy.

Since the OfficeBean uses a native peer to render OpenOffice.org documents, Swing components, such as
drop- down menus or list boxes appear behind it, or r they are not displayed at all! To avoid this, exclusively
employ AWT components when using the OfficeBean.

For readability, the try or catch blocks have been removed from the examples below. The full source code of
the examples is found in the OfficeBean directory of the SDK Java examples in <SDK>/examples/Developers-
Guide/OfficeBean.

950 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 207

16.5.1 SimpleBean Example
The SimpleBean is a concrete subclass of BasicOfficeBean used on the component palette of
Java IDEs, such as NetBeans (http://www.netbeans.org).

Using SimpleBean
To use SimpleBean, build the SimpleBean example from <SDK>/examples/java/OfficeBean/Simple-
Bean.

Installing SimpleBean
Before building and installing the SimpleBean, install and configure the following tools.

Java Development Kit (JDK)
A JDK from version 1.3.1 is required to build SimpleBean.

OpenOffice.org Software Development Kit (SDK)
An installation of the OpenOffice.org Software Development Kit (SDK) is required in your
development environment. Refer to the SDK documentation for details on how to install the
SDK.

GNU make
The SDK depends on a GNU make version 3.79 or later found at www.gnu.org, and the local
windows executables are available from www.nextgeneration.dk or unxutils.sourceforge.net. Note
that on Windows the current Cygwin make is known to cause problems with the OpenOffice.org
SDK.

After setting up the SDK, start a commandline shell, change to the SDK folder and run the
setsdkenv script created by configure. This script creates a number of environment variables that are
required for the make process. Change to the SimpleBean directory and execute make. The make
utility runs the makefile in the current folder that creates a simplebean.jar in the platform- specific .
out folder of the SDK. The following steps are a possible method to install SimpleBean into the
NetBeans IDE.

• Copy simplebean.jar from <SDK>/<Platform>example.out and officebean.jar from <SDK>/classes to
<NetBeans>/beans.

• Run Netbeans. If you want, create a new NetBeans project using Project – Project Manager.

• Tell NetBeans where to look for officebean.jar and the Java UNO runtime archives, because the
SimpleBean needs these files , if we want to add SimpleBean to the component palette. Select
Tools – Options . Next, open the node IDE Configuration – System – FileSystems Settings
and right-click FileSystems Settings . From the context menu, choose New – Archive (JAR,
Zip) and select officebean.jar from <NetBeans>/beans. Use the same context menu entry to add all
jar files from <OfficePath>/program/classes. Close the Options window.

• Choose Tools – Install New JavaBean, navigate to simplebean.jar and press OK to import.
NetBeans prompts you to select the only available bean in the archive (SimpleBean) and asks
you to determine the palette category where SimpleBean should appear. Choose the category
Beans . An OfficeBean icon is displayed in the Beans category of the component palette, which
stands for SimpleBean.

Chapter 16 Office Bean 951

Putting SimpleBean to Work
The following example applet SimpleViewer demonstrates the usage of SimpleBean. It employs
an instance of SimpleBean to load a OpenOffice.org document.
(OfficeBean/SimpleBean /SimpleViewer.java)
public class SimpleViewer extends java.applet.Applet {
 private OfficeConnection localOfficeConnection;
 private SimpleBean simpleBean;

 public void init() {
 setLayout(new BorderLayout());

 // initialize the rest of the Java GUI including a button to create a blank document
 // the method createNewDocument will be called when it is clicked

 // create a SimpleBean and add it to our applet
 simpleBean = new SimpleBean();
 add(simpleBean, BorderLayout.CENTER);
 }

 // load a document
 public void createNewDocument(String url) {
 // if there is no connection to an Office process we need to connect to one
 if (localOfficeConnection == null)
 localofficeConnection = new LocalOfficeConnection();

 // tell the bean to use localOfficeConnection
 simpleBean.setOfficeConnection(localofficeConnection);
 // ask the bean to load the file in url
 simpleBean.load(url);
 }
}

In Netbeans, create a new java.awt.Frame, drop SimpleBean in, and edit the Frame constructor to
initialize SimpleBean.

• If a new project is started, create and mount a new local folder for your project files using the
context menu of the FileSystems node in the NetBeans Explorer window. Choose Mount –
Local Directory.

• Right click the new project folder and click New – GUI Forms – AWT Forms – Frame. This
template creates a new java.awt.Frame in your project. NetBeans prompts for a name. Enter
SimpleBean1. Click Finish to skip the remaining steps of the New Frame wizard.

• In the Netbeans Explorer, double-click the new frame SimpleBean1 that appears in your
project folder. The Form Editor window pops up and displays an empty frame. Select the tab
Beans on the component palette, click the OfficeBean icon and drag a rectangle in the middle of
the empty frame. This step adds the SimpleBean to the center of the BorderLayout.

NetBeans throws an exception if you add the current version of SimpleBean1 to a
java.awt.Panel instead of a java.awt.Frame.

• Right click SimpleBean1 in the Form Editor and choose Goto Source to display the constructor
of SimpleBean1. Enter the following code after the generated call to initComponents(). This
loads a blank document into the frame upon frame creation.
public class SimpleBean1 extends java.awt.Frame {

 /** Creates new form SimpleBean1 */

952 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 208

 public SimpleBean1() {
 initComponents();

 // create Connection
 com.sun.star.beans.OfficeConnection connection1 =
 new com.sun.star.beans.LocalOfficeConnection();
 // set up simpleBean1 with connection1
 simpleBean1.setOfficeConnection(connection1);
 // load blank document
 try {
 simpleBean1.load("private:factory/swriter");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 ...

}

• Click Debug – Start to test and debug SimpleBean1. You are now ready to set up an AWT
toolbar with buttons to load and create documents, as required.

SimpleBean Internals
 Let us look at how BasicOfficeBean loads a document to understand how a bean uses the Offi-
ceBean API. The BasicOfficeBean.load() method checks if an OfficeWindow has been created
and calls the BasicOfficeBean.openConnection() method to create one, if required:
public synchronized void load(String url) throws java.io.IOException {
 try {
 if (mWindow == null)

openConnection();
 // we consider the complete load() method later
 ...

The BasicOfficeBean.openConnection() uses the com.sun.star.beans.OfficeConnection
passed in the setOfficeConnection() call, that is, an instance of
com.sun.star.beans.LocalOfficeConnection, to create an OfficeWindow. An instance of the
com.sun.star.lang.XMultiServiceFactory interface is also obtained through the OfficeCon-
nection and stored in the BasicBean instance: (OfficeBean /BasicOfficeBean.java)
public synchronized void openConnection() throws com.sun.star.uno.Exception {
 if (mWindow != null)
 return;

 // Obtain the global MultiServiceFactory and store it in mServiceFactory
 XMultiComponentFactory compfactory;
 compfactory = mConnection.getComponentContext().getServiceManager();
 mServiceFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, compfactory);
 // Create the OfficeWindow
 mWindow = mConnection.createOfficeWindow(this);
 // Create the office document frame and initialize the bean
 initialize();
}

The BasicOfficeBean.initialize() is the last call in openConnection() that sets up the objects
necessary for document loading: An instance of com.sun.star.frame.Frame is initialized with
the UNO window peer, and the interfaces com.sun.star.lang.XMultiServiceFactory and
com.sun.star.document.XTypeDetection of a com.sun.star.frame.FrameLoaderFactory.
(OfficeBean/BasicOfficeBean.java)
private void initialize() {
 // Get XWindow interface of UNO window peer
 XWindow window = (XWindow)UnoRuntime.queryInterface(XWindow.class, mWindow.getUNOWindowPeer());

Chapter 16 Office Bean 953

 // instantiate UNO frame, store its XFrame interface in mFrame
 object = mServiceFactory.createInstance(“com.sun.star.frame.Frame");
 mFrame = (Xframe)UnoRuntime.queryInterface(XFrame.class, object);
 // configure the frame to use the UNO window peer
 mFrame.initialize(window);

 // instantiate frame loader factory
 object = mServiceFactory.createInstance("com.sun.star.frame.FrameLoaderFactory");
 // store its XMultiServiceFactory interface in mFrameLoaderFactory
 mFrameLoaderFactory = (XMultiServiceFactory)UnoRuntime.queryInterface(
 XMultiServiceFactory.class, object);
 // store its XTypeDetection interface in mTypeDetector
 mTypeDetector = (XTypeDetection)UnoRuntime.queryInterface(XTypeDetection.class, object);
}

The BasicOfficeBean.load() method then completes the loading of the document. Instead of
loadComponentFromURL(), a com.sun.star.frame.FrameLoader is employed that expects a
frame to load the document into. The following snippet shows the complete load() method: (Offi-
ceBean /BasicOfficeBean.java)
public synchronized void load(String url) throws java.io.IOException {
 try {
 if (mWindow == null)
 openConnection();

 // Make sure the URL contains something meaningful
 if (url.equals(""))
 url = getDefaultDocumentURL();

 // Find out the type of the document.
 String type = mTypeDetector.queryTypeByURL(url);
 // Get frame loader factory for document type
 Object object = mFrameLoaderFactory.createInstance(type);
 XSynchronousFrameLoader frameLoader;
 frameLoader = (XSynchronousFrameLoader)UnoRuntime.queryInterface(
 XSynchronousFrameLoader.class, object);
 // Create the document descriptor with two PropertyValue structs:
 // FileName = url and TypeName = type
 PropertyValue[] desc = new PropertyValue[2];
 desc[0] = new PropertyValue("FileName", 0, url, PropertyState.DIRECT_VALUE);
 desc[1] = new PropertyValue("TypeName", 0, type, PropertyState.DIRECT_VALUE);
 // Avoid Dialog 'Document changed' while reloading
 try {
 setModified(false);
 } catch (java.lang.IllegalStateException exp) {
 }

 // Load the document and store the URL
 if (frameLoader.load(desc, mFrame) == false) {
 throw new java.io.IOException("Can not load a document: \"" + url + "\"");
 }
 mDocumentURL = url;

 // Get document's XModifiable interface if any and store it
 if ((mFrame != null) && (mFrame.getController() != null)) {
 XModel model = mFrame.getController().getModel();
 mModifiable = (Xmodifiable)UnoRuntime.queryInterface(XModifiable.class, model);
 }
 else {
 mModifiable = null;
 }

 // Find top most parent and force it to validate.
 Container parent = this;
 while (parent.getParent() != null)
 parent = parent.getParent();
 ((Window)parent).validate();
 }
 catch (com.sun.star.uno.Exception exp) {
 throw new java.io.IOException(exp.getMessage());
 }
}

954 OpenOffice.org 1.1 Developer's Guide • June 2003

16.5.2 OfficeWriterBean Example
The DocViewer is a Java application that loads a new or opens an existing Writer document, and
prints the selected text into a text field. It updates the text field as the selected text changes. The
DocViewer depends on two bean classes to display and manipulate the document: Office and
OfficeWriter.

The Office and OfficeWriter are concrete classes that show how the BasicOfficeBean is
extended to allow the developer to manipulate an embedded document programmatically. The
Office shows how to add the ability to execute commands on the backend OpenOffice.org
process using the dispatch framework. Refer to chapter 6 Office Development). It uses instances of
the OfficeCommand class, also provided with the examples, to represent OpenOffice.org command
URLs that are applied to the document. The Office.setMenuBarVisible() is an example of how
to do this: (OfficeBean /OfficeWriterBean /Office.java)
public void setMenuBarVisible(boolean visible) {
 if (mMenuBarVisible != visible) {
 if (isDocumentLoaded() == true) {
 OfficeCommand command = new OfficeCommand(SID_TOGGLEMENUBAR);
 command.appendParameter("MenuBar", new Boolean(visible));
 command.execute(this);
 }
 mMenuBarVisible = visible;
 firePropertyChange("MenuBarVisible", new Boolean(mMenuBarVisible), new Boolean(visible));
 }
}

OfficeWriter extends Office further to allow the developer to get and set the contents of the
document, obtain the com.sun.star.text.XTextDocument interface for the document, get the
selected text in the document, and listen for changes to the document. The code below shows how
OfficeWriter is added to the DocViewer UI, and how DocViewer listens for changes to the docu-
ment loaded by OfficeWriter: (OfficeBean /OfficeWriterBean /DocViewer.java)
public class DocViewer {
 public void initUI() {
 Frame frame = new Frame();
 JTextField currentSelection = new JTextField();

 // set up the rest of the application UI

 mOfficeWriter = new OfficeWriter();
 mOfficeWriter.setOfficeConnection(new LocalOfficeConnection());
 mOfficeWriter.addSelectionChangeListener(new DocViewerChangeListener());
 frame.add(mOfficeWriter, BorderLayout.CENTER);
 }

The following shows the ChangeListener that DocViewer uses to listen for changes in the docu-
ment selection:(OfficeBean /OfficeWriterBean/DocViewer.java)
 class DocViewerChangeListener implements ChangeListener {
 public void stateChanged(ChangeEvent event)
 {
 String s = mOfficeWriter.getSelection();
 currentSelection.setText(s);
 }
 }

The examples above provide an overview of how the OfficeBean API is used to create Java beans
that can be used in Java applications and applets. BeanInfo classes are provided for the Simple-
Bean, Office and OfficeWriter for integrating within an IDE (Integrated Development Environ-
ment), such as the Bean Development Kit or Forte for Java. Developers can use the examples as a
guideline when using the OfficeBean API to write new beans, or use or extend the example beans.

Chapter 16 Office Bean 955

17 Accessibility
There are certain circumstances where OpenOffice.org applications can not be used with the usual
input and output devices, such as a mouse , keyboard , monitor and printer . This may be because
the user is sitting in a car and can only occasionally look at the screen and has no keyboard at all.
Maybe the user is disabled and can not see or hear or use traditional keyboards. Alternative input
and output devices are called assistive technology, or AT. Examples of AT are Braille terminals,
which are used mainly for display of single text lines where each character is represented by
raised or lowered dots and can be read by touching them with the finger tips, screen magnifiers,
which magnify the screen contents and optionally change color, and screen reader s, which use
speech synthesis to read displayed text or descriptions of objects out loud in a human language.

To make OpenOffice.org applications accessible to the disabled or to people in mobile environ-
ments, alternative input and output devices have to be supported. In order to support a wide
variety of ATs, the approach taken by Java and Gnome has been adopted: an API tailored to the
specific needs of AT and modeled closely after its Java counterpart is used as an interface between
the available data of the elements visible on screen and the AT, which transforms that data and
presents an alternative view of the screen contents.

17.1 Overview
As previously stated, the UNO Accessibility API, or UAA, is closely modeled after the Java Acces-
sibility API, and to some extent the Gnome Accessibility API. This section describes some differ-
ences with common UNO styles and standards.

The purpose of the accessibility API is to represent what is currently visible on screen. To be kept
up- to-date, users of the accessibility API are informed of any relevant changes of the screen
content by events. This focus on visual appearance is another point in which the accessibility API
differs from other parts of UNO, which are strictly model centered. The accessibility API provides
a tree structure or, to be more specific, a forest of accessibility objects that, as a whole, represent
the on-screen data.

The transition point from the UNO API to the accessibility API is windows, which both support
the com.sun.star.awt.XWindow and com.sun.star.accessibility.XAccessible interfaces. A
list of all top-level windows, from which you can get the roots of the associated accessibility trees,
can be retrieved from the toolkit through the com.sun.star.awt.XExtendedToolkit interface.

The com.sun.star.accessibility.XAccessible interface can be queried for the actual accessi-
bility object with its only function com.sun.star.accessibility.XAccessible:getAccessible
(). With this technique, the implementations of the accessibility interfaces can be kept apart from
that of the other UNO interfaces. The getAccessible() function returns a reference to an object
that implements the com.sun.star.accessibility.XAccessibleContext interface. This inter-
face is the center of the accessibility API. On the one hand it provides the functionality to traverse
the accessibility tree and on the other hand gives access to basic information that represents the

957

object that is being made accessible. These two aspects are described in more detail in the
following sections [ref:Accessibility Tree] and [ref:Content Information].

The accessibility API is as self-contained as possible. You should not need to use the UNO API
outside its accessibility API subset. However, there are some exceptions to this. The most impor-
tant one is the initial access to the root nodes of the accessibility tree over the toolkit.

17.2 Bridges
There are several ways that ATs can be realized. They differ in two important points. The first one
is how the AT represents the information it obtains from OpenOffice.org and presents it to the
user. The second difference is how ATs obtain this information in the first place.

In its simplest form, the communication between AT and OpenOffice.org involves only the acces-
sibility API and, where necessary, some additional features from other parts of the UNO API.
Existing ATs, however, do not know anything yet about the accessibility API. They use one of
several ways to access OpenOffice.org by using one or more bridges that translate between
different APIs:

• The UNO access bridge translates between the accessibility API and the Java Accessibility API.
Note that this is not the same as the Java version of the accessibility API.

• The Windows/Java access bridge translates between the Java and the C versions of the Java Acces-
sibility API.

• The Gnome access bridge translates between the accessibility API and the Gnome Accessibility
API.

In order to make OpenOffice.org accessible, it is necessary to support the accessibility API. The
characteristics of the bridges have to be taken into account as well.

Under Windows, OpenOffice.org itself has a switch that can turn on or off the accessibility
support. This switch can be reached through Tools – Options – Accessibility . Under Linux and
Solaris, an equivalent setting can be made in the Gnome environment. When accessibility is acti-
vated, on every launch OpenOffice.org will start its own Java VM, which in turn starts all regis-
tered AT tools. This will be explained in the next section.

17.3 Accessibility Tree
The screen content is presented to AT as a tree—or a forest, to be more specific—of accessibility
objects. Each displayed object that wants to be accessible has to support the
com.sun.star.accessibility.XAccessible interface. From this interface, you obtain the actual
accessibility object by calling the getAccessibleContext() function. The returned object has to at
least support the com.sun.star.accessibility.XAccessibleContext interface.

Accessibility objects are organized in one or more hierarchies, one for each top- level window. So
there is a tree for a single top- level window, and a forest when there is more than one top-level
window. Internal nodes of a tree are containers of other accessibility objects. A container can
represent window frames, toolbars, menus, group shapes, or shapes that contain text. Leaves
represent objects like menu entries without sub-menus, buttons, icons, shapes without text, or text
paragraphs.

You can move up and down within the tree of a given accessibility object. All functions for
obtaining an object's parent and children are part of the

958 OpenOffice.org 1.1 Developer's Guide • June 2003

com.sun.star.accessibility.XAccessibleContext interface. The ability to move up towards
the tree root is provided by the getAccessibleParent() function. Like all other accessibility
functions that return a reference to another accessibility object, it returns a reference to a
com.sun.star.accessibility.XAccessible object. Moving down the tree towards the leaves
requires two functions. The getAccessibleChildCount() function returns the number of chil-
dren. The getAccessibleChild() function allows you to access any child by specifying the
appropriate index.

Between the call to getAccessibleChildCount() and the final getAccessibleChild() call (when accessing all
children one after the other) the number of children may have changed. You can keep track of the number of
children by registering as listener and waiting for com.sun.star.accessibility.AccessibleEventId:CHILD
events. Additionally, you have to cope with com.sun.star.lang.IndexOutOfBoundsException exceptions that
denote bad indices.

When children are added or removed from an accessibility object, the indices of the new and
remaining children may change. You can use the getIndexInParent() function to get the current
indices.

17.4 Content Information
Content information of accessibility objects establishes the connection to the objects that are visible
on the screen. This information gives a detailed description of what is visible on the screen, the
size of the object, and its location on the screen. Access to the content information is provided by
several interfaces of the UNO accessibility API, which are described in the following sections.

The accessibility API allows you to divide the implementation of an accessible object into an acces-
sibility related and an accessibility unrelated part. This is done with the
com.sun.star.accessibility.XAccessible interface. The getAccessibleContext() method
returns an object that implements the other interfaces related to accessibility. This object may be
the same as the object that is made accessible, but it can be a different object as well. Once you
have the accessibility object, you can use the usual UNO type cast mechanisms to change from one
interface to another.

17.5 Listeners and Broadcasters
The com.sun.star.accessibility.XAccessibleEventBroadcaster and
com.sun.star.accessibility.XAccessibleEventListener interface combo lets you register
and unregister listeners. Events are represented by
com.sun.star.accessibility.AccessibleEventObject structure. The different event types are
listed and explained in the com.sun.star.accessibility.AccessibleEventId constants group.

Again, event types can be divided into two classes depending on whether they describe changes in
the structure of the accessibility tree or changes in the internal state or the visual appearance of an
accessible object. The first group consists of CHILD and INVALIDATE_CHILDREN. The first denotes a
newly inserted or a removed child. The second is used in cases where more than one child has
been inserted or removed and tells the listener to re-fetch a complete list of children.

The second group comprises all other event types. Typical members are VISIBLE_DATA_CHANGED
and STATE_CHANGED, which inform listeners that the visual appearance of an object has changed
(for example, to a different text color) or that one of its states has been switched on or off (for
example, when an object becomes focused or selected).

Chapter 17 Accessibility 959

The event types CONTROLLED_BY_RELATION_CHANGED, CONTROLLER_FOR_RELATION_CHANGED,
LABEL_FOR_RELATION_CHANGED, LABELED_BY_RELATION_CHANGED,
MEMBER_OF_RELATION_CHANGED, CONTENT_FLOWS_FROM_RELATION_CHANGED and
CONTENT_FLOWS_TO_RELATION_CHANGED may be thought of as constituting a third group. They
describe changes of the more virtual structure formed by relations between accessible objects in
different parts of an accessibility tree.

Events are sent after the respective change of an accessible object took place. This enables the
listener to retrieve up- to-date values that are sent with the event.

A problem arises when the number of children becomes very large, as with Calc tables where the number of
cells is 256·32000=8192000. Registering at every cell certainly is not an option. The solution to this problem is
the introduction of the com.sun.star.accessibility.AccessibleStateType:TRANSIENT state,
which tells an AT not to register but to expect
com.sun.star.accessibility.AccessibleEventId:ACTIVE_DESCENDANT_CHANGED events sent
from their parent. To prevent the AT from having to ask every child whether it is transient, the parent must
set the com.sun.star.accessibility.AccessibleStateType:MANAGES_DESCENDANTS state.

17.6 Implementing Accessible Objects

17.6.1 Implementation Rules
There are some rules to observe when implementing the UNO accessibility API that go beyond
simply following the specifications in the IDL files of the accessibility API's interfaces. These rules
have to do with what kind of data ATs expect from an application.

One such rule is that only objects that are visible on the screen are included into the accessibility
tree. If, for example, you have a text document with a large number of pages, usually only parts of
one or two pages are visible, and only accessibility objects for these parts should be part of the
accessibility hierarchy. Another closely related rule is that the bounding boxes of objects are
clipped to the visible area.

However, there are exceptions to these rules. For reasons of consistency with the behavior of Java
tables represented through the com.sun.star.accessibility.XAccessibleTable interface,
access is granted to all of their cells regardless of whether they are visible or not. Menus are
another example. The whole menu structure is represented, even when only the menu bar is
visible.

Another rule is that bounding boxes of accessibility objects as returned by
com.sun.star.accessibility.XAccessibleComponent:getBounds() must not overlap the
bounding boxes of their parents. This is crucial to enable ATs to find the accessibility object that
lies under a given screen coordinate, such as the mouse position. With properly nesting bounding
boxes, ATs can prune whole sub-trees from the search when the bounding box of the root object
does not contain the point.

17.6.2 Services
There are only two services in the accessibility API, which have to be supported by any accessible
object.

960 OpenOffice.org 1.1 Developer's Guide • June 2003

The com.sun.star.accessibility.Accessible service contains the
com.sun.star.accessibility.XAccessible interface and must be supported by every UNO
object that is accessible.

The com.sun.star.accessibility.AccessibleContext service contains the
com.sun.star.accessibility.XAccessibleContext interface and, optionally, the
com.sun.star.accessibility.XAccessibleEventBroadcaster interface. This service must be
supported by every accessible object that is returned by the
com.sun.star.accessibility.XAccessible:getAccessibleContext() function.

17.7 Using the Accessibility API
When you are writing your own ATs and want to use the UNO accessibility API directly, you
must first connect to OpenOffice.org. Connecting to OpenOffice.org is explained elsewhere in this
document. Once a connection is established, the toolkit with its
com.sun.star.awt.XExtendedToolkit interface can be used to retrieve a list of all currently open
top- level windows. From these, you can then get the accessible root nodes of the accessibility
object trees associated with the windows. When you register an
com.sun.star.awt.XTopWindowListener you will then be informed about new top-level
windows, as well as top- level windows that have disappeared.

With the top- level accessible objects at hand, you can use the Java version of the accessibility API
as it is described in detail in the following sections. To be informed about focus changes—so that,
for example, a screen reader can track the currently focused object and read it to the user—an AT
has to register all non- transient objects of an accessibility tree.

The general operation of a simple AT consists of the following steps:

1. Connect to OpenOffice.org.

2. Retrieve the currently visible top-level windows and register as top window listener to keep
the list up- to-date.

3. Traverse the trees by getting their root elements from each window. See the description of the
com.sun.star.accessibility.XAccessibleContext for a code example for this.

4. Register each accessible object as com.sun.star.accessibility:XAccessibleEventLis-
tener.

5. If called back with an com.sun.star.accessibility:AccessibleEventObject object, then
process two kinds of events:

• Events that denote a state change with either OldValue or NewValue containing the FOCUSED
constant indicate that the source object of this event got either focused or unfocused.

• When receiving events of type CHILD, register as listener at the object that is specified by the
event, as well as all of the object's children.

17.7.1 A Simple Screen Reader
To illustrate the use of the UNO accessibility API, we will describe how to implement a simple AT.
The simple screen reader, or SSR, will display some information about the currently focused
object. As you can see in Illustration 209, the SSR consists of three windows. The bottom window
logs all events that the SSR receives from any of the accessibility objects to which it is registered.

Chapter 17 Accessibility 961

The two upper windows display information about the currently focused object, which in this
screen shot is a shape in a presentation document. The left window displays the names of all the
ancestors of the focused object and the path from that object to the root object of the accessibility
tree. The left window also displays the focused object's description, its state, its location, and its
size on the screen. In this example, the focused object is named “Rectangle2”, which corresponds
to the red rectangular shape. Its parent is called “Drawing View” and the root of the tree has the
name of the document, which is “Untitled1”, followed by the product name and some debug
information.

The upper right window displays similar information graphically. The focused object is shown as
a green rectangle, while its ancestors are drawn as gray rectangles. You can see how the objects are
nested. This corresponds to the requirement that the bounding of child objects must not overlap
that of their parents. Note that the blue rectangular shape is not visible in this window, because it
is a sibling of the focused red rectangle, but does not lie on that object's path to the root of the root
object. Also note that some of the rectangles are off-center and smaller than they should be. This is
because the rectangles that represent accessible objects, which in turn represent part of the GUI,
are drawn with their screen location and size relative to the whole screen; the outermost rectangle
that is enclosed by the gray background represents the screen of which the screen shot shows only
a part.

The bottom window logs all the events that the SSR receives from the accessible objects it has
register as event listener at.

Features
The SSR was designed to be a simple program that illustrates how to use the UNO accessibility
API. However, we have not always chosen the most simple way to do something. There are there-
fore some features that may be useful in the “real” AT:

• The SSR has a background connection timer task that waits for a OpenOffice.org application to
start and then connects automatically to that application.

962 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 209: The simple screen reader shows information on the currently focused object in two
different views. A textual display on the top left shows its description, states and bounding box as well as the
names of its ancestors. The graphical view on the top right shows the bounding boxes of the object itself
(green) and its ancestors (gray). The bottom window logs all events sent by any of the accessibility objects.

• It uses independent threads to register as listener at a whole accessibility (sub-) tree of new top-
level application windows or newly created accessible objects. The same is true for removing
the listener from windows not visible anymore or accessible objects that are removed from
their tree.

• There are two different views that display information about the currently focused object. This
illustrates how information of a certain accessibility object is retrieved by using different inter-
faces of the accessibility API.

• A message area shows all received events regardless of whether they are necessary to keep
track of the currently focused object. With this, the SSR serves as simple event monitor as well.

Class Overview
The SSR is implemented with the following classes and interfaces:

SSR
This is the main class of the tool. It is responsible for setting up and managing the GUI

ConnectionTask
The connection task is a thread that waits in the background for a OpenOffice.org application
to start. As soon as there is one, it connects to it and initiates the registration at all of its acces-
sible objects.

RegistrationThread
Each object of this class creates one thread that adds or removes the event listener at all acces-
sible objects in one tree, with one tree per application window. This is done in separate threads
so that the normal operation of the tool is not blocked while registering to complex applications
with many objects.

EventListenerProxy
This is a singleton class. Its only instance is registered as listener at all accessible objects. It runs
in its own thread and delivers the received events eventually to the actual event handler. This
de-coupling between event reception and event handling is necessary to avoid deadlocks. Soon
this will become obsolete.

EventHandler
There is usually only one object of this class. It prints log messages for all the events it receives
and provides special handling some of events:

• Top window events denoting new or removed application windows are not accessibility
events in a strict sense. They have to be listened to, however, to add or remove the event
listener to the accessibility objects that correspond to these windows.

• State events that inform the listener of a set or reset FOCUSED state. This is the most impor-
tant event for the SSR in order to keep track of the currently focused object.

• Events that signal a change of the geometric property of the currently focused object trigger
a redisplay of the two windows that display that object. This ensures that you always see
the current position of the object.

TextualDisplay
This widget displays textual information about the focused object as described previously.

GraphicalDisplay
This widget displays graphical information about the focused object as described previously.

Chapter 17 Accessibility 963

IaccessibleObjectDisplay
This is the interface supported by the two display widgets. It defines how the event handler
tells the displays about focus and geometry changes. You can add other displays as well by
adding a widget that implements this interface to the event handler and to the GUI.

MessageArea
The message area at the bottom is a simple text widget that scrolls its content so that the last
line that contains the most recent message is always visible.

NameProvider
This is a useful helper class that converts numerical IDs into names, roles, events, or states.

Parts of some of these classes will be explained at later points in this text. Others, like the Connec-
tionTask class, are a mere technicality with respect to the accessibility API and will not be
detailed any further.

Putting the Accessibility Interfaces to Work
Once an accessible object has been obtained by a call to
com.sun.star.accessibility.XAccessible:getAccessibleContext(), you can switch
between the interfaces belonging to the accessibility API by using the usual UNO cast mecha-
nisms. There is, however, no way back to the object from which the accessible object has been
obtained through procedures provided by the accessibility API.

XAccessibleContext
com.sun.star.accessibility.XAccessibleContext is the central interface of the accessibility
API. In addition to the hierarchy information described previously, it provides access to some
important information. The functions getAccessibleRole(), getAccessibleName() and getAc-
cessibleDescription() return descriptions of the object in increasing detail:

Role
The role classifies all accessibility objects into a handful of different classes. Most roles are
taken from the Java accessibility API, such as PUSH_BUTTON, RADIO_BUTTON, SCROLL_BAR or
TEXT. Some have been defined for the accessibility API so that, in addition to GUI elements,
documents can be made accessible. These roles are DOCUMENT for document windows or views,
PARAGRAPHS for text sections, or SHAPE for graphical objects. Roles are described in the
com.sun.star.accessibility.AccessibleRole constants group.

Name
Names allow you to distinguish between objects with the same role. For example, the buttons
at the bottom of a dialog all have the role PUSH_BUTTON. Their names may be “OK”, “Cancel”
or “Help”. Where necessary, names are made unique with respect to the object's siblings.
Names for shapes can be “Rectangle 0”, “Ellipse 1”, “Rectangle 2”, or “Curve 3”.

Description
To further describe the purpose of accessibility objects, description strings are provided.
Descriptions of shapes can contain their style and some properties whose values differ from
that style. If you have changed the color of a rectangle to red, its description may look like
“Rectangle with style=default and color=red”.

Names and descriptions are strings localized according to the locale returned by getAccessible-
Locale().

964 OpenOffice.org 1.1 Developer's Guide • June 2003

Two functions of the interface have not been mentioned so far. The function getAccessibleRela-
tionSet() returns the set of relations defined for an accessibility object. Likewise getAccessi-
bleStateSet() returns a set of states that are active for an object.

The showParents() method from the TextualDisplay class of the SSR displays the path from a
given object to the root of the accessibility tree by printing each object's accessible name indented
relative to its father.
private String showParents (XAccessibleContext xContext) {

The method first obtains references to all the objects that belong to this path.
 Vector aPathToRoot = new Vector();
 while (xContext != null) {
 aPathToRoot.add (xContext);
 // Go up the hierarchy one level to the object's parent.
 try {
 XAccessible xParent = xContext.getAccessibleParent();
 if (xParent != null)
 xContext = xParent.getAccessibleContext();
 else
 xContext = null;
 }
 catch (Exception e) {
 System.err.println ("caught exception " + e + " while getting path to root");
 }
 }

This is done in two steps. First, a call to the getAccessibleParent() method to get the parent of
the object and thereby moving to the previous level in the accessibility tree. Second, from the
returned XAccessible reference, the accessible context is retrieved by calling getAccessibleCon-
text(). This is repeated until an object is reached that has no parent and getAccessibleParent
() returns null.

The path of the accessibility tree is now printed by appending text to the msTextContext member
variable, which later is displayed in a JtextArea widget. To cope with accessibility objects that
return an empty name, the role of these objects is used to represent them. Note how the indenta-
tion string is updated after every object by appending the msIndentation member.
 String sIndentation = new String ();
 for (int i=aPathToRoot.size()-1; i>=0; i--) {
 XAccessibleContext xParentContext = (XAccessibleContext)aPathToRoot.get(i);
 String sParentName = xParentContext.getAccessibleName();
 if (sParentName.length() == 0)
 sParentName = "<unnamed> / Role "
 + NameProvider.getRoleName(xParentContext.getAccessibleRole());
 msTextContent += sIndentation + sParentName + "\n";
 sIndentation += msIndentation;
 }

The indentation is returned so that further output can be properly aligned.
 return sIndentation;
}

Chapter 17 Accessibility 965

Illustration 210: Path in the SSR

XAccessibleComponent
The XAccessibleComponent interface gives access to geometric properties, such as size and posi-
tion on the screen. This interface should be implemented by every object that has a visible repre-
sentation, that is, by all objects that are not simple containers.

The coordinates used by the functions of this interface are returned and and are expected in pixel
values and not, as is elsewhere in the UDK, in internal coordinates (100th of mm). There are three
different origins to which coordinates may be specified:

• Relative to an object's bounding box. This is relative to the object itself. Used by the contains
() and getAccessibleAt() functions.

• Relative to an object's parent. Used by the getBounds() and getLocation() functions.

• Absolute or relative to the screen origin. Used by the getLocationOnScreen().

Because all three coordinate systems are based on pixel values, the getSize() function is inde-
pendent of the coordinate system.

The bounding rectangle that encloses the visual presentation of an object can be retrieved by
calling getBounds(). If you only need the location or the size, then call getLocation() or
getSize(). The function getLocationOnScreen() returns the absolute screen coordinates.

There or two functions that determine whether the bounding boxes of the object or one of its chil-
dren contain a given test point. The function contains() checks whether the test point lies within
the bounding box of the object. Children can be tested with getAccessibleAt(). When one of the
direct children contains the test point, a reference to this object is returned.

In addition to the geometrical functions, there are the two getForeground() and getBackground
() functions that describe an object's appearance. Keep in mind that an object does not necessarily
have a monochrome background color. There can be a hatching, gradient, or bitmap as well. The
returned background color in this case is an approximation.

The showComponentInfo() method of the TextualDisplay class takes as argument a reference to
the accessible object for which geometrical information is shown, as well as the indentation string
computed in the showParents() method.
private void showComponentInfo (XAccessibleContext xContext, String sIndentation) {

When given an XAccessibleContext reference, you must cast it to a XAccessibleComponent
reference in order to access geometrical information about an accessible object.
 XAccessibleComponent xComponent = (XAccessibleComponent)UnoRuntime.queryInterface(
 XAccessibleComponent.class, xContext);
 if (xComponent != null) {

966 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 211: Geometrical information in the SSR

If the cast was successful, then simply call the getLocationOnScreen() and getSize() methods
to obtain the object's bounding box in screen coordinates. IfgetBounds() is called instead, the
parent's screen coordinates must be added to obtain an absolute position.
 Point aLocation = xComponent.getLocationOnScreen();
 msTextContent += sIndentation + "Position : "
 + aLocation.X + ", " + aLocation.Y + "\n";

 Size aSize = xComponent.getSize();
 msTextContent += sIndentation + "Size : "
 + aSize.Width + ", " + aSize.Height + "\n";
 }
}

XAccessibleExtendedComponent
While the com.sun.star.accessibility.XAccessibleComponent interface should be imple-
mented by almost every accessible object, the support of the XAccessibleExtendedComponent
interface is optional. Its most important function, getFont() returns the font used to display text.

The getTitledBorderText() function returns the text that is displayed on an object's window
borders, which in the case of OpenOffice.org is only relevant for top-level windows.

The getToolTipText() function returns the tool tip text that is displayed when the mouse pointer
rests long enough over one point of the object.

XAccessibleText
The interface XAccessibleText handles read- only text. It serves three purposes: to obtain certain
parts of a text, to obtain the text's size and location on the screen, and to handle the caret position.
An accessibility object that implements this interface usually represents only a part of a larger text.
Typically, this is a single or a small number of paragraphs. You can use the relation types
com.sun.star.accessibility.AccessibleRelationType:CONTENT_FLOWS_FROM and
com.sun.star.accessibility.AccessibleRelationType:CONTENT_FLOWS_TO to explicitly
represent the text flow from one text part to another. Without these relations, the text flow has to
be determined from the structure of the accessibility tree alone.

Selection

Represented text may contain a selected text portion, which is typically displayed highlighted
(inverse). There are four functions to access and modify the selection. The selected text, as well as
its start and end index, can be accessed with the
com.sun.star.accessibility.XAccessibleText:getSelectedText(),
com.sun.star.accessibility.XAccessibleText:getSelectionStart() and
com.sun.star.accessibility.XAccessibleText:getSelectionEnd() functions respectively.
To modify the selection, call com.sun.star.accessibility.XAccessibleText:setSelection()
with the new start and end indices.

Text type

The functions com.sun.star.accessibility.XAccessibleText:getTextAtIndex(),
com.sun.star.accessibility.XAccessibleText:getTextBeforeIndex() and
com.sun.star.accessibility.XAccessibleText:getTextBehindIndex() return parts of the
text where the part or length of text returned is specified by the text type. Defined in the
com.sun.star.accessibility.AccessibleTextType constants collection, some of these text
types further explanation:

Chapter 17 Accessibility 967

LINE
The type LINE indicates all text on a single line as it is displayed on the screen. This may
include a hyphen at the line end. The hyphen is not actually part of the text, but is visible on
the screen. They are only included in text parts of type LINE.

CHARACTER, GLYPH
Glyph is used in this context to mean that everything between two adjacent cursor positions is
considered to be a glyph. In Thai, for example, you can stack up to four (Unicode) characters
upon each other. When moving with the cursor keys, those character groups are interpreted as
single glyphs, and the cursor can only be set in front or after such glyphs, but not inside.

WORD, SENTENCE, PARAGRAPH
The definition of words, sentences and paragraphs are implementation and locale dependent.

ATTRIBUTE_RUN
An attribute run is a sequence of characters of maximal length, where all characters have the
same attributes. For example the text “This is an example” consists of three attribute runs:
“This ”, “is an” and “ example”. The first and last one each have only a single attribute, italic
respectively bold. The second run has both attributes at the same time. Note that all three
spaces belong to one of the attribute runs.

There are other functions to access text. To retrieve the whole text represented by an object, use
getText(). Call getTextRange() to get only a part of text between and including two given
indices. A single character can be accessed with the getCharacter() function.

To copy a text range to the clipboard, call the copyText() function. See also the related cutText()
and pasteText() functions of the com.sun.star.accessibility.XAccessibleEditableText
interface.

Caret and Text Indices

The caret is often referred to as the cursor and is typically displayed as a vertical line. On the
screen, it is always placed between two adjacent glyphs, or at the beginning or the end of a text
line. When specifying its position in terms of character positions, the position of the character to its
right is used. Thus, the index 0 says that the caret is at the very beginning of the text. When the
caret is located behind the last character, then its position equals the text length, that is, the
number of characters of the text as returned by getCharacterCount().

When the caret changes its position, an event must be sent to all listeners so that the old and new
position can be indicated.

The caret position is returned by the getCaretPosition() function, and can be set by calling
setCaretPosition().

Other index-related functions are getCharacterAttributes(), which returns the attributes at the
specified index, getCharacterBounds(), which returns the bounding box of the character at the
specified index, and getIndexAtPoint(), which returns the index of the character at the specified
position.

XAccessibleEditableText
The XAccessibleEditableText interface extends the XAccessibleText interface by adding func-
tions that let you modify the text. The interface is therefore only implemented when the text repre-
sented by the implementing object is readable and writeable.

968 OpenOffice.org 1.1 Developer's Guide • June 2003

With the functions deleteText(), insertText() and replaceText(), you can delete, insert, and
replace text. The setText() function is a special case of replaceText() and replaces the whole
text at once.

The cutText() and pasteText() functions, together with copyText(), from the
com.sun.star.accessibility.XAccessibleText interface provide access to the clipboard.

Finally, the setAttributes() function is the counterpart of getCharacterAttributes() in the
com.sun.star.accessibility.XAccessibleText interface. With this function, you can replace
the existing attributes with the given set. To add one attribute, first use getCharacterAttributes
() to get the current set of attributes, add the attribute to that set, and finally call setAttributes
() to set the new set of attributes.

XAccessibleTable
The com.sun.star.accessibility.XAccessibleTable interface represents two-dimensional
tables of data. The Calc application is one example of its implementation. It grants access to indi-
vidual cells or groups of cells.

Global information about a table can be accessed with two functions: getAccessibleCaption()
returns the caption and getAccessibleSummary() returns a summary describing the content of a
table.

A table is organized in horizontal rows and vertical columns. The number of rows and columns—
and indirectly the number of cells—can be determined by calling the functions getAccessible-
RowCount() and getAccessibleColumnCount(). Here, in contrast to the general rule of only
giving access to visible objects, all cells are represented by a table. This exception is necessary to
stay consistent with Java tables.

information on rows and columns is returned by the getAccessibleRowDescription() and
getAccessibleColumnDescription() functions. Note that both functions return objects imple-
menting the com.sun.star.accessibility.XAccessibleTable interface themselves. The
headers of rows and columns can be retrieved by calling getAccessibleRowHeaders() and
getAccessibleColumnHeaders().

To obtain a reference to a certain cell specified by its row and column indices, use getAccessi-
bleCellAt(). A table cell may span multiple rows and columns. You can determine the number
of rows and columns that a cell spans with the getAccessibleRowExtentAt() and getAccessi-
bleColumnExtentAt() functions.

Selections in tables can have two different forms. You can have a multi-selection of rectangular
areas of single or multiple cells, or you can select whole rows and columns. The function isAc-
cessibleSelected() determines whether a single cell that spans a position specified by a row
and a column index is selected. To determine whether certain rows or columns are selected, use
the isAccessibleRowSelected() and isAcessibleColumnSelected() functions. Finally, the
functions getSelectedAccessibleRows() and getSelectedAccessibleColumns() each return a
sequence of indices of the currently selected row and columns.

There are three functions that can be used to switch between cell indices and row and column
indices. Cell indices are the same as the child indices used by the getAccessibleChildCount()
and getAccessibleChild() functions of the
com.sun.star.accessibility.XAccessibleContext interface. Row and column indices have
been used previously, and specify each cell by stating its row and column. The getAccessi-
bleIndex() function returns the corresponding cell index for a given row and column index. The
getAccessibleRow() and getAccessibleColumn() functions return the corresponding row and
column index, respectively, for a given cell index.

Chapter 17 Accessibility 969

XAccessibleEventBroadcaster
Most accessible objects need to broadcast events that describe changes of its internal state or visual
appearance—this can be done with the
com.sun.star.accessibility.XAccessibleEventBroadcasterinterface. If you want to be
informed of such changes, you can register a listener with the addEventListener() function, or
remove it with removeEventListener().

Be sure to cast an object reference to the XAccessibleEventBroadcaster interface before calling these
functions, because there are other broadcaster interfaces with functions of the same name.

The SSR registers the event listener in separate threads. The major work is done by a method
called traverseTree()that takes an accessible context and traverses the whole tree rooted in this
object.
public long traverseTree (XAccessibleContext xRoot) {

After casting the context reference to a reference of the XAccessibleEventBroadcaster interface,
it either adds or removes the listener maListener at the accessibility object.
 long nNodeCount = 0;
 if (xRoot != null) {
 // Register the root node.
 XAccessibleEventBroadcaster xBroadcaster =
 (XAccessibleEventBroadcaster) UnoRuntime.queryInterface (
 XAccessibleEventBroadcaster.class,
 xRoot);
 if (xBroadcaster != null) {
 if (mbRegister)
 xBroadcaster.addEventListener (maListener);
 else
 xBroadcaster.removeEventListener (maListener);
 nNodeCount += 1;
 }

Once the given object is handled, the traversing of the tree continues by calling this method recur-
sively for every child.
 try {
 int nChildCount = xRoot.getAccessibleChildCount();
 for (int i=0; i<nChildCount; i++) {
 XAccessible xChild = xRoot.getAccessibleChild (i);
 if (xChild != null)
 nNodeCount += traverseTree (xChild.getAccessibleContext());
 }
 }

Because the iteration over the direct children of the given accessible context may take a while,
there is the possibility that some of the children do not exist anymore. It is therefore important to
catch IndexOutOfBoundsException and DisposedException exceptions. Note that this is not a
perfect solution, because children that are added to the given object are not handled properly. A
better algorithm would listen to events of the new and removed children of the object to which it
was recently registered:
 catch (com.sun.star.lang.IndexOutOfBoundsException aException) {
 // The set of children has changed since our last call to
 // getAccesibleChildCount(). Don't try any further on this
 // sub-tree.
 }
 catch (com.sun.star.lang.DisposedException aException) {
 // The child has been destroyed since our last call to
 // getAccesibleChildCount(). That is OK. Don't try any
 // further on this sub-tree.
 }
 }
 return nNodeCount;
}

This method keeps track of how many objects it has added to the listener. This number is used in
the run() method to write an informative message.
public void run () {
 System.out.println ("starting registration");

970 OpenOffice.org 1.1 Developer's Guide • June 2003

 long nNodeCount = traverseTree (mxRoot);
 System.out.println ("ending registration");
 if (mbShowMessages) {
 if (!mbRegister)
 MessageArea.print ("un");
 MessageArea.println ("registered at " + nNodeCount
 + " objects in accessibility tree of " + mxRoot.getAccessibleName());
 }
}

XAccessibleEventListener
The interface com.sun.star.accessibility.XAccessibleEventListener is the counterpart to
the accessible event broadcaster, and is called for every change of any accessible object at which it
has been registered. The notifyEvent() function is called with an
com.sun.star.accessibility.AccessibleEventObject structure. That structure comprises
four fields: the EventId field, which is one of the
com.sun.star.accessibility.AccessibleEventId constants, describes the type of the event.
The object that sent the event is referenced from the Source field. The OldValue and NewValue
fields contain event type specific values that contain the changed value before and after the modi-
fication took place. The type of content that is expected in the OldValue and NewValue fields is
explained together with the AccessibleEventId event types.

The notifyEvent() method of the EventHandler class is not called directly from the accessibility
objects. There is an instance of the EventListenerProxy class in between. That class simply
forwards the events at the right time and is therefore not explained in more detail here.
public void notifyEvent (com.sun.star.accessibility.AccessibleEventObject aEvent) {

The one event type that is covered here is the CHILD event, which is sent when a new accessibility
object has been created, or an existing one has been removed.
 // Guard against disposed objects.
 try {
 switch (aEvent.EventId) {
 case AccessibleEventId.CHILD:
 handleChildEvent (
 objectToContext (aEvent.OldValue),
 objectToContext (aEvent.NewValue));
 break;

The handling of the rest of the event types is omitted here to keep this explanation simple.

Again, it is important to guard against the possibility of events arriving after the object they were
sent for has been destroyed. For this simple tool, it is sufficient to silently ignore the resulting
exception.
 }
 }
 catch (com.sun.star.lang.DisposedException e) {
 }
}

Before showing you the actual handling of child events, you can look at the objectToContext()
method that is used to convert the OldValue and NewValue fields of the event structure from UNO
Anys to XAccessibleContext references. It takes a weakness of the accessibility API IDL specifi-
cation into account: the type of the content of the Source field is not explicitly stated. As a result, it
contains references to both the XAccessible and the XAccessibleContext interfaces. To cope
with this, the conversion method first uses the com.sun.star.uno.AnyConverter class to retrieve
an XAccessible reference from the event source.
private XAccessibleContext objectToContext (Object aObject) {
 XAccessibleContext xContext = null;
 XAccessible xAccessible = null;
 try {
 xAccessible = (XAccessible)AnyConverter.toObject(
 new Type(XAccessible.class), aObject);
 }
 catch (com.sun.star.lang.IllegalArgumentException e) {
 }

Chapter 17 Accessibility 971

If that was successful, the accessible context from the object is returned.
 if (xAccessible != null)
 xContext = xAccessible.getAccessibleContext();

If retrieving an XAccessible reference from the event's source field failed, this is repeated directly
with the XAccessibleContext interface.
 else
 try {
 xContext = (XAccessibleContext)AnyConverter.toObject(
 new Type(XAccessibleContext.class), aObject);
 }
 catch (com.sun.star.lang.IllegalArgumentException e) {
 }
 return xContext;
}

Handling the child event itself is comparably simple: create a new RegistrationThread object
that adds (or removes) the listener to the object and all of its children.
private void handleChildEvent (XAccessibleContext aOldChild, XAccessibleContext aNewChild) {
 if (aOldChild != null)
 // Remove event listener from the child and all of its descendants.
 new RegistrationThread (maListenerProxy, aOldChild, false, false);
 else if (aNewChild != null)
 // Add event listener to the new child and all of its descendants.
 new RegistrationThread (maListenerProxy, aNewChild, true, false);
}

XAccessibleSelection
While the com.sun.star.accessibility.XAccessibleText and
com.sun.star.accessibility.XAccessibleTable interfaces already support selection of text
and table cells, respectively, there is a special interface for the general case. The XAccessibleSe-
lection interface manages a sub-set of an object's children that form the selection. The number of
selected children is returned by getSelectedAccessibleChildCount(), which, of course, is
smaller than or equal to the total number of children as returned by getAccessibleChildCount()
of the com.sun.star.accessibility.XAccessibleContext interface. The selected children can
be retrieved by calling the getSelectedAccessibleChild() function. Note that the same index
passed to getSelectedAccessibleChild() and to
com.sun.star.accessibility.XAccessibleContext:getAccessibleChild() will generally
return different objects.

The selection can be modified with various functions. The functions selectAllAccessible() and
clearAccessibleSelection() select or deselect, respectively, all of the children. To select or
deselect a single child, use selectAccessibleChild() or deselectSelectedAccessibleChild
(). Whether a child belongs to the selection can be determined by calling the isAccessi-
bleChildSelected() function.

Each child that belongs to the selection is expected to have the
com.sun.star.accessibility.AccessibleStateType:SELECTED state set. When the selection
changes, two kinds of events are expected to be broadcast. One for each child that is selected or
deselected that tells the listeners about the toggled SELECTED state, and one event from their
parent that informs the listeners of the modified selection as represented by the
com.sun.star.accessibility.XAccessibleSelection interface.

XAccessibleRelationSet
In addition to the parent- child relationship that defines the accessibility object tree, each accessible
object may have one or more relations to other accessible objects, independent of that hierarchy.
The types of possible relations are defined and explained in the
com.sun.star.accessibility.AccessibleRelationType set of constants.

972 OpenOffice.org 1.1 Developer's Guide • June 2003

One example is the com.sun.star.accessibility.AccessibleRelationType:LABEL_FOR and
com.sun.star.accessibility.AccessibleRelationType:LABELED_BY pair of relations that is
used to express the case where one object is the label for a one or more controls of the GUI. The
label and its controls may be spatially adjacent to make their relationship clear to the sighted user.
But in the accessibility object tree, they may belong to different sub-trees. With a set of relations,
these objects can be linked together.

Each relation is an com.sun.star.accessibility.AccessibleRelation structure that contains
the relation type and a set of references to its target objects. In the previous example, there would
be one com.sun.star.accessibility.AccessibleRelationType:LABEL_FOR relation for the
label with all its controls in the target set and one
com.sun.star.accessibility.AccessibleRelationType:LABELED_BY relation from each
control to the label.

For each relation type there may be one relation belonging to a relation set as represented by the
com.sun.star.accessibility.XAccessibleRelationSet interface. Therefore, the number of
relations that is returned by getRelationCount() can not be greater than the number of relation
types. Relations can be accessed either by calling the
com.sun.star.accessibility.AccessibleRelation:getRelation() function with an index, or by calling
the com.sun.star.accessibility.AccessibleRelation:RelationType() function with a rela-
tion type. Note that there are no fixed mappings from relation types to indices. You can test
whether a relation set contains a relation of a given type by using the
com.sun.star.accessibility.AccessibleRelation:containsRelation() function.

The relation set returned by com.sun.star.accessibility.XAccessibleContext:getAccessibleRelationSet() returns
a copy of the relation set of an accessible object. Modifying that copy does not change the relation set of the
object.

XAccessibleStateSet
An accessible object can be in one or more states, which are available through the interface
com.sun.star.accessibility.XAccessibleStateSet. An object that is currently focused will
have the FOCUSED state set. One that belongs to the selection of its parent has the SELECTED state
set. Independent of the current focus and selection, such an object would also have the states
FOCUSABLE and SELECTABLE set to indicate that it may be focused and may be selected. All states
are described in the com.sun.star.accessibility.AccessibleStateType constants collection.

Call the com.sun.star.accessibility.XAccessibleStateSet:isEmpty() function to query
whether a state set has no state set at all. To query a state set for one or more states, use the
com.sun.star.accessibility.XAccessibleStateSet:contains() and
com.sun.star.accessibility.XAccessibleStateSet:containsAll() functions respectively. A
sequence containing all the set states is returned by the
com.sun.star.accessibility.XAccessibleStateSet:getStates() function.

The state set returned by com.sun.star.accessibility.XAccessibleContext:getAccessi-
bleStateSet() returns a copy of the state set of an accessible object. Modifying that copy does not change
the states of the object. Therefore, modifying a state set is not useful and consequently no modifying func-
tions are supported by the com.sun.star.accessibility.XAccessibleStateSet interface. States are
set or reset indirectly by using the standard UNO interfaces or the GUI.

Chapter 17 Accessibility 973

The showStates() method of the TextualDisplay class of the SSR first obtains a state set object
from the given accessible context and prints a list of all the states contained therein by using the
getStates() method to convert the state set into an array of state IDs. It then iterates over all IDs
and uses the NameProvider class to convert the numerical IDs into human readable strings.
private void showStates (XAccessibleContext xContext, String sIndentation) {
 // Get the state set object...
 XAccessibleStateSet xStateSet = xContext.getAccessibleStateSet();
 // ...and retrieve an array of numerical IDs.
 short aStates[] = xStateSet.getStates();

 // Iterate over the array and print the names of the states.
 msTextContent += sIndentation + "States : ";
 for (int i=0; i<aStates.length; i++) {
 if (i > 0)
 msTextContent += ", ";
 msTextContent += NameProvider.getStateName(aStates[i]);
 }
 msTextContent += "\n";
}

XAccessibleValue
In a typical GUI, there are many controls whose characteristic feature can be represented by a
single numerical value. Examples are spin boxes, scales and sliders, or combo boxes that contain
only numbers, such as the font size. These objects should support the XAccessibleValue inter -
face.

The current value can be read and set with the getCurrentValue() and setCurrentValue()
functions. The valid range of values is returned by the getMaximumValue() and getMinimumValue
() functions.

XAccessibleImage
The main purpose of the XAccessibleImage interface is to be an indicator that an object repre-
sents an image or a bitmap . The functions of this interface do not add functionality that is not
already present in the com.sun.star.accessibility.XAccessibleContext interface.

The getAccessibleImageDescription() function returns a localized description of the image.
The functions getAccessibleImageHeight() and getAccessibleImageWidth() return the size
of the image in pixels.

XAccessibleAction
With the XAccessibleAction interface, an accessible object can provide access to actions that can
be performed on the object. These actions may or may not correspond to actions that are already
available over the GUI.

974 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 212: List of states in the SSR

The number of available actions is returned by getAccessibleActionCount(). To execute an
action call doAccessibleAction() with the index of the desired action. The description of an
action is returned by the getAccessibleActionDescription().

The getAccessibleKeyBinding() function tells you what key bindings exist for a certain action.
See the description of the com.sun.star.accessibility.XAccessibleKeyBinding interface
below.

XAccessibleKeyBinding
The purpose of the XAccessibleKeyBinding interface is to represent an arbitrary set of key
strokes . When a key binding is associated with an action (see the description of the interface
above) then each of its key strokes executes that action. A key stroke itself consists of one or more
keys to be pressed. See com.sun.star.awt.KeyStroke for details.

XAccessibleHypertext
The interface com.sun.star.accessibility.XAccessibleHypertext is derived from
com.sun.star.accessibility.XAccessibleText. This interface represents text that contains
hyperlinks. Those hyperlinks are represented by
com.sun.star.accessibility.XAccessibleHyperlink objects, which are described next.

To iterate over all hyperlinks in a text, use getLinkCount() to determine the number of links. The
getLink() function returns the com.sun.star.accessibility.XAccessibleHyperlink object
for a specific index. If you want to know whether there is a link at a certain text position, use the
getLinkIndex() function to obtain the corresponding object. When the returned reference is
empty then there is no hyperlink at that position.

XAccessibleHyperlink
Hyperlinks contained in a hypertext document are modeled by the XAccessibleHyperlink inter -
face. In its simplest form, a hyperlink corresponds to an HTML link. However, there may be more
complex hyperlinks where there is more than one action assigned to a single hyperlink. An
example of this is HTML image maps. To give access to the actions, the interface is derived from
the com.sun.star.accessibility.XAccessibleAction interface. In addition to the information
provided by the com.sun.star.accessibility.XAccessibleAction interface, you can request
an action's anchor and object. A typical return value of the getAccessibleActionAnchor() func-
tion for HTML links would be the text between the <a href...> and tags. Likewise, the
com.sun.star.accessibility.XAccessibleHyperlink:getAccessibleActionObject() func-
tion returns a HTML link's URL.

A hyperlink specifies its text relative to the enclosing hypertext by providing a start- and end
index through the getStartIndex() and getEndIndex() functions. You can ask a link about the
validity of the referenced target by calling its isValid() function. Note that this state is volatile
and may change without notice.

Chapter 17 Accessibility 975

Appendix A: OpenOffice.org API-Design-
Guidelines

The following rules apply to all external programming interface specifications for OpenOffice. The
API consists of the following stereotypes or design elements:

Structures
Structures are used to specify simple composed data elements.
(Structures only consist of data, not methods.)

Exceptions
Exceptions are used for error handling.
(Exceptions can be thrown or transported using an any.)

Interfaces
Interfaces are used to specify a single aspect in behavior.
(Interfaces only consist of methods, not data.)

Services
Services are used to specify abstract objects.
(Services specify properties and the interaction of the supported interfaces.)

Typedefs
Typedefs are used to define basic types for specific purposes.
(This stereotype should be used carefully.)

A.1 General Design Rules
These rules describe basic concepts used in OpenOffice.org API design. They are mandatory for all
OpenOffice.org contributions. They are recommended good practice for development of third-
party software.

A.1.1 Universality
It is preferable to design and use universal interfaces instead of specialized ones. Interface reuse
should prevail. Whenever a new interface is about to be created, consider the possibility of similar
requirements in other application areas and design the interface in a general manner.

977

A.1.2 Orthogonality
The functionality of interfaces should extend each other. Avoid redundancy , but if it leads to a
major simplification for application programmers, proceed. In general, functionality that can be
acquired from basic interfaces should not be added directly. If necessary, create an extra service
which provides the functionality and works on external data.

A.1.3 Inheritance
All interfaces are derived from com.sun.star.uno.XInterface. Other superclasses are only
allowed if the following terms are true:

• the derived interface is a direct extension of the superclass

• the superclass is necessary in every case for the interface and inheritance if it is logical for the
application programmer

• the superclass is the only possible superclass due to this definition

A.1.4 Uniformity
All identifiers have to follow uniform rules for semantics, lexical names, and order of arguments.
Programmers and developers who are familiar with any portion of the API can work with any
other part intuitively.

A.1.5 Correct English
Whoever designs API elements is responsible for the correct spelling and meaning of the applied
English terms, especially for lexical names of interfaces, methods, structures and exceptions, as
well as members of structures and exceptions. If not absolutely certain, use Merriam -Webster's
Dictionary (http: / / www.m -w.com). We use U.S. spelling.

Mixed capitalization or underscores (the latter only for lexical constants and enumeration values)
are used to separate words within single identifiers. Apply the word separation appropriately.
English generally does not have compound words, unlike, for example, German.

A.2 Definition of API Elements
In this chapter, several API elements are defined, and how they are used and the rules that apply.

A.2.1 Attributes
Attributes are used to access data members of objects through an interface.

978 OpenOffice.org 1.1 Developer's Guide • June 2003

Naming
Attributes are defined in interfaces as get and optional set methods. Although UNOIDL knows
attributes for compatibility reasons, this feature is not used. The attribute identifier begins with a
capital letter. The mixed upper and lower case method is used to separate single words. Only
letters and numbers are allowed with no underscores, for example, getParent() and setParent
().

Usage
Attributes are used to express structural relationships, with and without lifetime coupling. For
scripting languages, the attributes are accessed as properties.

A.2.2 Methods
Methods are functions defined within an interface. Technically, an interface only consists of
methods. There is a syntax for attributes, but these map to methods.

Naming
Method identifiers begin with a verb in lowercase, for example, close, and continue with initial
caps, that is, the first letter of each word is capitalized with no underscores. For example,
getFormat().

Method names consisting of a verb without any additional terms can only be used if they refer to
the object as a whole, and do not operate on parts of the object specified with arguments of this
method. This makes names semantically more precise, and we avoid the risk of two method
names of two different interfaces at the same object folding into each other causing problems with
scripting languages.

Special attention should be given to uniformity within semantically related interfaces. This means,
if a method is named destroyRecord(), an insert method should be called insertRecord().

If a method refers to a part of the object and an argument specifies this part, the type or role of the
part is appended to the verbal part of the method,for example, removeFrame([in] XFrame
xFrame). If the name of the part or its position is specified as an argument, ByName or ByIndex
is additionally appended, for example, removeFrameByName([in] string aName) or remove-
FrameByIndex([in] long nIndex).

The following method prefixes have special meanings:

get
To return non-boolean values or interfaces of other objects that have a lasting relationship with
the object the associated interface belongs to, similar to being an attribute. This prefix is gener-
ated automatically for readable attributes. Multiple calls to the same method at the same object
with the same arguments, without modifying the object in between, returns the same value or
interface.

set
To set values or interfaces of other objects that get into a lasting relationship with the object the
associated interface belongs to, similar to becoming attribute values. This prefix is generated
automatically for writable attributes.

Chapter 17 Accessibility 979

query
This prefix is used to return values, including interfaces that have to be calculated at runtime
or do not have the character of being a structural part of the object which belongs to the associ-
ated interface. Multiple calls, even without modifying the object in between, do not necessarily
return the same value and interface; but this can be specified in the specific methods.

is/has
Usage is similar to get, and is used for boolean values.

create
This prefix is used for factory methods. Factory methods create and return new instances of
objects. In many cases, the same or a related interface has an insert or add method.

insert
This prefix inserts new sub objects into an object when the insertion position is specified.

add
This prefix inserts new sub objects into an object when the insertion position is not specified by
any argument of the method.

append
This prefix inserts new sub objects into an object when the new sub object gets appended at the
end of the collection of sub objects.

remove
This prefix removes sub objects from a container. Use destroy if the removal implies the
explicit destruction of the sub object. If the sub object is given as an argument, use it's type or
role additionally, for example, removeFrame() if the argument is a Frame. If the position index
or name of the sub object to remove is given, use a name similar to removeFrameByName(). For
generic interfaces, use removeByName() without the type name or role, which are unknown in
that case.

destroy
This prefix removes sub objects from a container and explicitly destroys them in this process.
Use destroy as a verbal prefix. For more details, see the description of remove.

clear
This prefix clears contents of an object as a whole, the verb itself, or certain parts of the object,
such as add a specifying name giving something like clearDelegates().

dispose
This prefix initiates a broadcast message to related objects to clear references to the object.
Normally, this verb is only used in XComponent.

approve
This prefix is used for the approval notification in listener interfaces of prohibited events.

Usage
Non-structural attributes are represented by the property concept, and not by get and set methods,
or attributes of interfaces.

Consider possible implementations if there are several possible interfaces where you could put a
method. For example, a file cannot destroy itself, but the container directory could.

Do not use const as an attribute for methods, because future versions of UNOIDL will not
support this feature.

980 OpenOffice.org 1.1 Developer's Guide • June 2003

A.2.3 Interfaces
Interfaces are collections of methods belonging to a single aspect of behavior. Methods do not
have data or implementation.

Once an interface gets into an official release of the API, it may no longer be changed. This means
that no methods or attributes can be added, removed or modified, not even arguments of
methods. This rule covers syntax, as well as semantics.

Interfaces are identified by their name.

Naming
Identifiers of interfaces begin with the prefix 'X' followed by the name itself in initial caps, capital-
izing the first letter after the 'X', for example, XFrameListener. Avoid abbreviations.

We apply the prefix 'X', because interfaces have to be treated differently than pointers in C/C++
and also in normal interfaces in Java. It is also likely that the main interface of a service should get
the same name as the service that can cause confusion or ambiguity in documentation.

It is a bad design if the name or abbreviation of a specific component appears within the name of
an interface, for example, XSfxFrame or XVclComponent.

Usage
Interfaces represent stable aspects of design objects. A single interface only contains methods that
belong to one aspect of object behavior, never collections of arbitrary methods. Both aspects of
usage, client and server, should be considered in design. Keep the role of the object in mind. If
some methods of your new interface are only used in one role and others in another role, your
design is probably flawed.

A.2.4 Properties
Properties are descriptive attributes of an objects that can be queried and changed at runtime
using the XPropertySet interface.

Naming
In non-scripting languages, such as Java or C/C++, property identifiers are simply strings. These
identifiers always begin with an uppercase letter and use initial caps , for example, Background-
Color. Avoid abbreviations.

Usage
Properties are used for non-structural attributes of an object. For structural attributes (composi-
tion) use get and set methods in an interface instead.

Chapter 17 Accessibility 981

A.2.5 Events
Events are notifications that you can register as listeners. This concept is actually expressed by
registration or unregistration methods for the broadcaster, listener interfaces for the listener and
event structures for the event.

Naming
If an object broadcasts a certain event, it offers a pair of methods like addEventNameListener()
and removeEventNameListener(). This scheme conforms to the naming scheme of JavaBeans and
does not mean that the implementation keeps track of a separate list for each event.

The event methods of the listener interface use the past tense form of the verb that specifies the
event, usually in combination with the subject to which it applies, for example, mouseDragged().
For events which are notified before the event actually happens, the method begins with notify,
for example, notifyTermination(). Event methods for prohibited events start with the prefix
approve, for example, approveTermination().

Usage
Use events if other, previously unknown objects have to be notified about status changes in your
object.

Normally, the methods add...Listener() and remove...Listener() have a single argument.
The type of argument is an interface derived from com.sun.star.lang.XEventListener.

The event is a struct derived from com.sun.star.lang.EventObject, therefore this struct
contains the source of the event.

A.2.6 Services
Services are collections of related interfaces and properties. They specify the behavior of imple-
mentation objects at an abstract level by specifying the relationship and interaction between these
interfaces and properties. Like interfaces, services are strictly abstract.

Naming
Service identifiers begin with an uppercase letter and are put in initial caps , for example,
com.sun.star.text.TextDocument). Avoid abbreviations.

Usage
Services are used by a factory to create objects which fulfill certain requirements. Not all services
are able to be instantiated by a factory, but they are used for documentation of properties or inter-
face compositions. In a service, you can specify in detail what methods expect as arguments or
what they return.

982 OpenOffice.org 1.1 Developer's Guide • June 2003

A.2.7 Exceptions
Exceptions are special classes which describe exceptional states.

Naming
Exception identifiers begin with a capital uppercase letter, and are put in initial caps and always
end with Exception, (for example, com.sun.star.lang.IllegalArgumentException. Avoid
abbreviations.

Usage
The OpenOffice.org API uses exceptions as the general error handling concept. However, the API
should be designed that it is possible to avoid exceptions in typical error situations, such as
opening non-existent files.

A.2.8 Enums
Enums are non-arbitrary sets of identifying values. If an interface uses an enum type, all imple-
mentations have to implement all specified enum values. It is possible to specify exceptions at the
interface. Extending enums is not allowed, because this would cause incompatibilities.

Naming
Enum types begin with an uppercase letter and are put in initial caps. Avoid abbreviations. If
there is a possible name-conflict with structs using the same name, add Type or Style to the enum
identifier.

Enum values are completely capitalized in uppercase and words are separated by underscores. Do
not use a variant of the enum type name as a prefix for the values, because some language bind-
ings will do that automatically.
enum FooBarType
{
 NONE,
 READ,
 WRITE,
 USER_DEFINED = 255
};

struct FooBar
{
 FooBarType Type;
 string FileName
};

Three typical endings of special enum values are _NONE, _ALL and _USER_DEFINED.

Usage
If by general fact an enum represents the most common values within an open set, add a value for
USER_DEFINED and specify the actual meaning by a string in the same object or argument list
where the enum is used. In this case, offer a method that returns a sequence of all possible values
of this string.

Chapter 17 Accessibility 983

A.2.9 Typedefs
Typedefs specify new names for existing types.

Naming
Typedefs begin with an uppercase letter and are put in initial caps. Avoid abbreviations.

Usage
Do not use typedefs in the OpenOffice.org API.

A.2.10 Structs
Structs are static collections of multiple values that belong to a single aspect and could be consid-
ered as a single, complex value.

Naming
Structs begin with an uppercase letter and are put in initial caps. Avoid abbreviations.

If the actual name for the struct does not sound correct, do not add Attributes, Properties or
the suffixes suggested for enums. These two words refer to different concepts within the
OpenOffice.org API. Instead, use words like Format or Descriptor.

Usage
Use structs as data containers. Data other than interfaces are always copied by value. This is an
efficiency gain, especially in distributed systems.

Structs with just a single member are wrong by definition.

A.2.11 Parameter
Parameters are names for arguments of methods.

Naming
Argument identifiers begin with a special lowercase letter as a prefix and put in initial caps later,
for example, nItemCount.

Use the following prefixes:

• 'x' for interfaces

• 'b' for boolean values

• 'n' for integer numbers

984 OpenOffice.org 1.1 Developer's Guide • June 2003

• 'f' for floating point numbers

• 'a' for all other types. These are represented as classes in programming languages.

Usage
The order of parameters is defined by the following rule: Where, What, How. Within these groups,
order by importance. For example, insertContent(USHORT nPos, XContent xContent,and
boolean bAllowMultiInsert.

A.3 Special Cases

Error Handling (Exceptions /Error- Codes)
Runtime errors caused by the wrong usage of interfaces or do not happen regularly, raise excep-
tions. Runtime errors that happen regularly without a programming mistake, such as the non-exis-
tence of a file for a file opening method, should be handled by using error codes as return values.

Collection Interfaces
Collection-Services usually support one or multiple X...Access-Interfaces and sometimes add
access methods specialized to the content type. For example,
XInterface XIndexAccess::getElementByIndex(unsigned short)

becomes
XField XFields::getFieldByIndex(unsigned short).

Postfix Document for Document- like Components
Components, whose instances are called a document, get the postfix Document to their name, for
example, service com.sun.star.text.TextDocument.

Postfixes Start /End vs. Begin/End
The postfixes ...Start / ...End are to be preferred over ...Begin /...End.

A.4 Abbreviations
Avoid abbreviations in identifiers of interfaces, services, enums, structs, exceptions and constant
groups, as well as identifiers of constants and enum values. Use the following open list of abbre-
viations if your identifier is longer than 20 characters. Remain consistent in parallel constructions,
such as addSomething() or removeSomething().

• Abs: Absolute

• Back: Background

Chapter 17 Accessibility 985

• Char: Character

• Doc: Document

• Ext: Extended, Extension

• Desc: Description, Descriptor

• Ref: Reference

• Hori: Horizontal

• Orient: Orientation

• Para: Paragraph

• Var: Variable

• Rel: Relative

• Vert: Vertical

A.5 Source Files and Types
For each type, create a separate IDL file with the same base name and the extension .idl.

986 OpenOffice.org 1.1 Developer's Guide • June 2003

Appendix B: IDL Documentation Guidelines

B.1 Introduction
The reference manual of the OpenOffice.org API is automatically generated by the tool autodoc
from the idl files that specify all types used in the OpenOffice.org API. These files are part of the
SDK. This appendix discusses how documentation comments in the idl files are used to create
correct online documentation for the OpenOffice.org API.

B.1.1 Process
The autodoc tool evaluates the UNOIDL elements and special JavaDoc-like documentation
comments of these files, but not the C++/Java- Style comments. For each element that is docu-
mented, the preceding comment is used. Put the comment within /** */ for multiple- line docu -
mentation, or put behind / / / for single-line documentation.

Do not put multiple documentation comments! Only the last will be evaluated for each element and appear
in the output.

/// This documentation will be lost.
/// And this documentation will be lost too.
/// Only this line will appear in the output!

Most XHTML tags can be used within the documentation, that is, only tags that occur between the
<body>...</body> tags. Additionally, other XML tags are supported and JavaDoc style @-tags
can be used. These are introduced later.

It is good practice and thus recommended to build a local version of newly written IDL documen-
tation and browse the files with an HTML client to check if all your layouts appear correctly.

B.1.2 File Assembly
Each individual idl file only contains a single type, that is, a single interface, service, struct, enum,
constants group or exception. Nested types are not allowed for OpenOffice.orgs local API., even
though they are supported by UNOIDL.

987

B.1.3 Readable & Editable Structure
The idl files have to be structured for easy reading and re-editing. Indentation or line-breaks are
generated automatically in the output of autodoc , but the simple ASCII layout of the documenta-
tion comments has to be structured for readability of the idl files. Due to HTML interpretation, the
line-breaks do not appear in the output, except in <pre>...</pre> and similar areas.

The idl files should not contain any #ifdef or #if directives than those mentioned in this document
because they are read by the OpenOffice.org community and others. Do not introduce task force
or version dependent elements, use CVS branches instead.

Avoid leading asterisks within documentation blocks. Misplaced asterisks must be removed when
reformatting is necessary, thus time consuming.

Do not use leading asterisks as shown here:

/* does something special.
 *
 * This is just an example for what you must NOT do: Using leading asterisks.
 */

B.1.4 Contents
The idl files should not contain implementation specific information. Always consider idl files as
part of the SDK delivery, so that they are visible to customers.

B.2 File structure
This chapter provides information about the parts of each idl file, such as the header, body and
footer, the character set to be used and the general layout to be applied.

B.2.1 General

Length of Lines
Lines in the idl files should not be longer than 78 characters, and documentation comment lines
should not be longer than 75 characters. The preferable length of lines is upto 70 characters. This
makes it readable in any ASCII editor and allows slight changes, that is, due to English proof-
reading without the need of reformatting.

Character Set and Special Characters
Only 7-bit ASCII characters are used in UNOIDL, even in the documentation comments. If other
characters are necessary, the XHTML representation is to be used. See
http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent for a list of the encodings.

988 OpenOffice.org 1.1 Developer's Guide • June 2003

Completeness of Sentences
In general, build grammatically complete sentences. One exception is the first sentence of an
elements documentation, it may begin with a lowercase letter, in which case the described element
itself is the implied subject.

Indentation
The indentation of sub-elements and for others is four spaces for each level of indentation.

Delimiters
Each major element has to be delimited by a 75 to 78-character long line from the other major
elements. This line consists of “/ / ” followed by equal signs to match the regular expression
"^ / *=*$". Place it immediately in the line above the documentation comment that it belongs to.

Major elements are typedef, exception, struct, constants, enum, interface and service.

The sub elements can be delimited by a 75 to 78-character long line matched by the regular expres-
sion
"^ \(\)* / *- *$" from the other minor elements and the major element. This is a line consisting of
a multiple of four spaces, followed by “ / / ” and dashes. Place it immediately in the line above the
documentation comment that it belongs to. Minor elements are structure and exception fields,
methods and properties. Interfaces and services supported by services as single constants are to be
grouped by delimiters.

Examples for major and minor elements are given below.

B.2.2 File-Header
For legal reasons, the header has to be exactly as shown in the following snippet. Exceptions of
this rule are the dynamic parts within "$...$" and the list of contributors at the end.
/***
 *
 * $RCSfile: IDLDocumentationGuide.xml,v $
 *
 * $Revision: 1.11 $
 *
 * last change: $Author: jsc $ $Date: 2003/05/26 09:39:19 $
 *
 * The Contents of this file are made available subject to the terms of
 * either of the following licenses
 *
 * - GNU Lesser General Public License Version 2.1
 * - Sun Industry Standards Source License Version 1.1
 *
 * Sun Microsystems Inc., October, 2000
 *
 *
 * GNU Lesser General Public License Version 2.1
 * ===
 * Copyright 2000 by Sun Microsystems, Inc.
 * 901 San Antonio Road, Palo Alto, CA 94303, USA
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License version 2.1, as published by the Free Software Foundation.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *

Chapter 17 Accessibility 989

 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 *
 *
 * Sun Industry Standards Source License Version 1.1
 * ===
 * The contents of this file are subject to the Sun Industry Standards
 * Source License Version 1.1 (the "License"); You may not use this file
 * except in compliance with the License. You may obtain a copy of the
 * License at http://www.openoffice.org/license.html.
 *
 * Software provided under this License is provided on an "AS IS" basis,
 * WITHOUT WARRUNTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
 * WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
 * MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
 * See the License for the specific provisions governing your rights and
 * obligations concerning the Software.
 *
 * The Initial Developer of the Original Code is: Sun Microsystems, Inc..
 *
 * Copyright: 2002 by Sun Microsystems, Inc.
 *
 * All Rights Reserved.
 *
 * Contributor(s): _______________________________________
 *
 *
 **/

The filename in "$RCSfile: IDLDocumentationGuide.xml,v $" is replaced automatically by the
version control system, as well as "$Revision: 1.11 $", "$Author: jsc $" and "$Date: 2003/05 /26
09:39:19 $". Contributors add their names to the list at the end.

The copyright date has to be adapted to the actual last year of work on the file.

The #ifdef and #define identifiers consist of two underscores "__", the module specification, each
nested module separated by a single underscore "_" and the name of the file separated with a
single underscore "_" as shown above and trailing two underscores "__".

B.2.3 File-Footer
The files do not have a footer with VCS fields. The history can only be viewed from CVS directly.
This is to avoid endless expanding log lists.

B.3 Element Documentation

B.3.1 General Element Documentation
Each element consists of three parts:

1. a summary paragraph with XHTML/XML markups

2. the main description with XHTML/XML markups

3. extra parts formed by @-tags

990 OpenOffice.org 1.1 Developer's Guide • June 2003

Summary Paragraph
The first part ending with an XHTML paragraph tag, that is, <p>, <dl>, , etc.) or "@..."
tag, is used as the summary in indexes.

In contrast to JavaDoc, the first sentence is not used for the summary, but the first paragraph.

The first sentence begins with a lowercase letter if the name of the described element is the
implied noun. In this case, the sentence must be logical when reading it with that name. Some-
times an auxiliary verb. in the most cases "is", has to be inserted.

Main Description
Between the summary paragraph and the "@..." tag there should be a clear and complete descrip-
tion about the declared element. This part must be delimited from the summary paragraph with
an XHTML paragraph tag, including "<dl>" and "", that are starting a new paragraph.

@-Tagged Part
Put the @ tags at the end of each element's documentation. The tags are dependent on the kind of
element described. Each of the @-tag ends when the elements documentation ends or the next @-
tag begins.

The @author tag is superfluous, because the author is logged by the version control system. They
are only used for OpenOffice.org contributions if declarations are taken from other projects, such
as Java.

The @version tag, known from JavaDoc, is not valid, because there cannot be more than one
version of any UNOIDL element, due to compatibility.

On the same line behind the @-tag, only a single structural element is allowed. The parameter
name is @param without the type and any attributes, the qualified exception is @throws , the
qualified type is @see, and the programming language is @example. The @returns is by itself on
the same line.

Do not put normal text behind an @-tag on the same line:

/** ...

 @param nPos put nothing else but the argument name here!
 it is correct to put your documentation for the parameter here.

 @throws com::sun::star::beans::UnknownPropertyException nothing else here!
 when <var>aName</var> is not a known property.
*/

B.3.2 Example for a Major Element Documentation
Each major element gets a header similar to the example shown below for an interface:
//===
/** controls lifetime of the object. Always needs a specified object owner.

 <p>Logical "Object" in this case means that the interfaces
 actually can be supported by internal (i.e. aggregated) physical
 objects. </p>

 @see com::sun::star::uno::XInterface

Chapter 17 Accessibility 991

 for further information.
*/
interface XComponent: XInterface
{

B.3.3 Example for a Minor Element Documentation
Each minor element gets a header similar to the example shown below for a method:
 //--
 /** adds an event listener to the object.

 <p>The broadcaster fires the disposing method of this listener if
 the <method>XComponent::dispose()</method> method is called. </p>

 @param xListener
 refers the the listener interface to be added.

 @returns
 <TRUE/> if the element is added, <FALSE/> otherwise.

 @see removeEventListener
 */
 boolean addEventListener([in]XEventListener xListener);

B.4 Markups and Tags

B.4.1 Special Markups
These markup tags are evaluated by the XSL processor that generates a layout version of the docu-
mentation, that is, into HTML or XHTML. These tags have to be well formed andin pairs with
exactly the same upper and lowercase, as well.

To accentuate identifiers in the generated documentation and generate hyperlinks automatically
when building the cross-reference table and checking consistency, all identifiers have to be
marked up. Additionally, it is important for proofreading, because a single-word method name
cannot be distinguished by a verb. Identifiers have to be excluded from re-editing by the proof-
reading editor.

The following markups are used:

<atom>
This markup is used for identifiers of atomar types, such as long, short, and string. If a sequence
or array of the type is referred to, add the attribute dim with the number of bracket-pairs repre-
senting the number of dimensions.

Example:
<atom>long</atom>

For an example of sequences, see <type>.

992 OpenOffice.org 1.1 Developer's Guide • June 2003

<type>
This markup is used for identifiers of interfaces, services, typedefs, structs, exceptions, enums and
constants-groups. If a sequence or array of the type is referred to, add the attribute dim with the
number of bracket-pairs representing the number of dimensions.

Example:
<type scope="com::sun::star::uno">XInterface</type>
<type dim="[][]">PropertyValue</type>

<member>
This markup substitutes the deprecated method, field and property markups, and is used for
fields of structs and exceptions, properties in service specifications and methods of interfaces.

Example:
<member scope="com::sun::star::uno">XInterface::queryInterface()</member>

<const>
This markup is used for symbolic constant identifiers of constant groups and enums.

Example:
<const scope="...">ParagraphAdjust::LEFT</const>

<TRUE/>, <FALSE/>
These markups represent the atomic constant for the boolean values TRUE and FALSE.

Example:
@returns
<TRUE/> if the number is valid, otherwise <FALSE/>.

<NULL/>
This markup represents the atomic constant for a NULL value.

<void />
This markup represents the atomic type void. This is identical to <atom>void</atom>.

<code>
This markup is used for inline code.

Example:

Use <code>queryInterface(NULL)</code> for:
<listing>
This markup is used for multiple line code examples.
Example:

Chapter 17 Accessibility 993

@example StarBASIC
<listing>
aCmp = StarDesktop.loadComponentFromURL(...)
if (isnull(aCmp))
....
endif
</listing>

B.4.2 Special Documentation Tags
This group of special tags are analogous to JavaDoc. Only what has previously been mentioned in
this guideline can appear in the line behind these tags. The pertaining text is put into the line
following . Each text belonging to a tag ends with the beginning of the next special tag ("@") or
with the end of the documentation comment.

@author Name of the Author
This tag is only used if an element is adapted from an externally defined element, that is, a Java
class or interface. In this case, the original author and the in-house author at Sun Microsystems is
mentioned.

Example:
@author John Doe

@see qualifiedIdentifier
This tag is used for extra cross references to other UNOIDL-specified elements. Some are auto-
matically generated, such as all methods using this element as a parameter or return value, and
services implementing an interface or include another service. If there is no other method that
should be mentioned or an interface with a similar functionality, it should be referenced by this
@see statement.

 A @see-line can be followed by further documentation.

Example:
@see com::sun::star::uno::XInterface::queryInterface
 For this interface you have always access to ...

Do not use markups on the identifier on the same line behind the @see-tag!

/** ...

 @see <type>these markups are wrong</type
*/

@param ParameterName
This tag describes the formal parameters of a method. It is followed by the exact name of the
parameter in the method specification. The parameter by itself may be the implicit subject of the
following sentence, if it begins with a lowercase letter.

Examples:
@param xListener
 contains the listener interface to be added.
@param aEvent
 Any combination of ... can be used in this parameter.

994 OpenOffice.org 1.1 Developer's Guide • June 2003

@return /@returns
This tag starts the description of the return value of a method. The description is in the line
folloiwng. If it begins with a lowercase letter, the method is the implied subject and "returns" is
the implied verb. See the following example:

@returns
 an interface of an object which supports
 the <type>Foo</type> service.

@throws qualifiedException
This tag starts the description of an exception thrown by a method in a particular case. The excep-
tion type is stated behind in the same line and must be fully qualified, if it is not in the same
module. The description is in the line following. If it begins with a lowercase letter, the method is
the implied subject and "throws" is the implied verb.

Example:
@throws com::sun::star::uno::lang::InvalidArgumentException
 if the specified number is not a specified ID.

@version VersionNumber
This was originally used to set a version number for the element. This tag is deprecated and
should not be used.

B.4.3 Useful XHTML Tags
Only a few XHTML tags are required for writing the documentation in idl files. The most impor-
tant ones are listed in this section.

Paragraph: <p> ... </p>
This tag marks a normal paragraph. Consider that line breaks and empty lines in the idl file do not
cause a line break or a paragraph break in the layout version. Explicit paragraph break markups,
are necessary.

Do not use
 or CR/LF for marking paragraphs. CR and LF are ignored, except within <pre>...</pre>
and <listing>...</listing> areas. The
 tag is only for rare cases of explicit linebreaks.

/** does this and that.

 This sentence should start with a "<p>". If not,
 it still belongs to the previous paragraph!

 This still belongs to the first paragraph.

 As this sentence is as well!
*/

Consider using < for < and > for >, as shown in the example above.

Chapter 17 Accessibility 995

Line Break:

This tag marks up a line break within the same paragraph. Consider line breaks and empty lines
in the idl file do not cause a line break or a paragraph break when presented by the HTML
browser. Explicit paragraph break markups are necessary.

Unordered List:
These tags mark the beginning and end of an unordered list, as list items.

Example:

 the first item
 the second item
 the third item

results in a list similar to:

• the first item

• the second item

• the third item

Ordered List:
These tags mark the beginning and end of an ordered list, as list items.

Example:

 the first item
 the second item
 the third item

results in a list similar to:

1.the first item

2.the second item

3.the third item

Definition List: <dl><dt> ... </dt><dd> ... </dd>... </dl>
These tags mark the beginning and end of a definition list, the definition tags and the definition
data.

Example:
<dl>
 <dt>the first item</dt>
 <dd>asfd asdf asdf asdf asdf</dd>

 <dt>the second item</dt>
 <dd>asfd asdf asdf asdf asdf</dd>

 <dt>the third item</dt>
 <dd>asfd asdf asdf asdf asdf</dd>
</dl>

results in a list similar to:

996 OpenOffice.org 1.1 Developer's Guide • June 2003

the first item

 asfd asdf asdf asdf asdf

the second item

 asfd asdf asdf asdf asdf

the third item

 asfd asdf asdf asdf asdf

Table: <table><tr><td>...</td>...< / tr>...< / table>
Defines a table with rows (tr) and columns (td).

Strong Emphasis: ...
These tags present a piece of text that is emphasized. In most cases this is bold, but the HTML-
client defines what it actually is.

Slight Emphasis: ...
These tags present a piece of text emphasized slightly. In most cases this is italic, but the HTML-
client defines what it actually is .

Anchor: ...
These tags specify a link to external documentation. The first "..." specifies the URL.

Chapter 17 Accessibility 997

Appendix C: Universal Content Providers

C.1 The Hierarchy Content Provider

C.1.1 Preface
The Hierarchy Content Provider (HCP) implements a content provider for the Universal Content
Broker (UCB). It provides access to a persistent, customizable hierarchy of contents.

C.1.2 HCP Contents
The HCP provides three different types of contents: link, folder and root folder.

1. An HCP link is a content that "points" to another UCB content. It is always contained in an
HCP Folder. An HCP Link has no children.

2. An HCP folder is a container for other HCP Folders and HCP Links.

3. There is at least one instance of an HCP root folder at a time. All other HCP contents are chil-
dren of this folder. The HCP root folder contains HCP folders and links. It has the URL
vnd.sun.star.hier:/.

999

C.1.3 Creation of New HCP Content
HCP folders and the HCP root folder implement the interface
com.sun.star.ucb.XContentCreator. HCP links and HCP folders support the command
"insert" allowing all the HCP folders, as well as the HCP root folder to create new HCP folders
and HCP links. To create a new child of an HCP folder:

1. The parent folder creates a new content by calling its createNewContent() method. The
content type for new folders is "application /vnd.sun.star.hier- folder". To create a new link, use
the type string "application /vnd.sun.star.hier- link".

2. Set a title at the new folder or link. The new child executes the "setPropertyValues"
command that sets the property Title to a non-empty value. For a link, set the property
TargetURL to a non-empty value.

3. The new child, not the parent executes the command "insert". This commits the creation
process.

C.1.4 URL Scheme for HCP Contents
Each HCP content has an identifier corresponding to the following scheme:

vnd.sun.star.hier:/<path>

where <path> is a hierarchical path of the form

name>/<name>/.../<name>

where <name> is an encoded string according to the URL conventions.

Examples:

vnd.sun.star.hier:/ (The URL of the HCP Root Folder)

vnd.sun.star.hier:/Bookmarks/Sun%20Microssystems%20Home%20Page

1000 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 213

vnd.sun.star.hier:/Workplace/Printers

C.1.5 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Link application /
vnd.sun.star.hier- link

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title
TargetURL

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete

XTypeProvider
XServiceInfo
XComponent
XContent
XCommandProcessor
XPropertiesChan-
geNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfoChan-
geNotifier
XChild

Folder application /
vnd.sun.star.hier- folder

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
transfer 1

same as HCP Link, plus
XContentCreator

Root
Folder

application /
vnd.sun.star.hier- folder

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
open
transfer

same as HCP Link, plus
XContentCreator

1 The "transfer" command only transfers HCP-contents to HCP folders. It does not handle contents with a URL scheme
other then the HCP-URL-scheme.

C.2 The File Content Provider

C.2.1 Preface
The File Content Provider (FCP), a content provider for the Universal Content Broker (UCB),
provides access to the local file system by providing file content objects that represent a directory
or a file in the local file system. The FCP is able to restrict access to the file system to a number of
directories shown to the client under configurable aliases.

C.2.2 File Contents
The FCP provides content representing a directory or file in the local file system.

1. A directory contains other directories or files.

Chapter 17 Accessibility 1001

2. A file is a container for document data or content. The FCP can not determine the MediaType
property of a file content.

C.2.3 Creation of New File Contents
A content representing directories implements the interface
com.sun.star.ucb.XContentCreator. A file content object supports the command "insert". To
create a new directory or file in a directory:

1. The parent directory creates a new content by calling its createNewContent() method. The
content type for new folders is "application /vnd.sun.staroffice.fsys-folder". To create a new
file, use the type string "application /vnd.sun.staroffice.fsys-file". A new file content object is
the retun value.

2. Set a title at the new file content object. The new child executes a "setPropertyValues"
command that sets the property Title to a non-empty value.

3. The new file content object, not the parent, executes the command "insert". This creates the
corresponding physical file or directory. For files, supply the implementation of an
com.sun.star.io.XInputStream with the command's parameters that provide access to the
stream data.

C.2.4 URL Schemes for File Contents

The file URL Scheme
Each file content has an identifier corresponding to the following scheme:

file:///<path>

where <path> is a hierarchical path of the form

<name1>/<name>/.../<name>.

The first part of <path> (<name1>) is not required to denote a physically existing directory, but
may be remapped to such a directory. If this is done, the FCP refuses file access for any URL
whose <name1>-part is not an element of a predefined list of alias names.

The vnd.sun.star.wfs URL Scheme
In the Sun ONE Webtop, the server-side file system is addressed with vnd.sun.star.wfs URLs. The
wfs stands for Webtop File System. The file URL scheme is reserved for a potential client-side file
system.

The vnd.sun.star.wfs URL scheme is completely hidden from the FCP, that is, the server side FCP
internally works with file URLs, like any other FCP: There is a Remote Access Content Provider
(RAP) between the UCB and the FCP. The RAP, among other things, can route requests to another

1002 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 214

UCP and rewrite URLs. This feature is used so that the client of the UCB works with
vnd.sun.star.wfs URLs and the FCP remains unmodified and works with file URLs, with a RAP in
between that maps between those two URL schemes.

Except for the different scheme name, the syntax of the vnd.sun.star.wfs URL scheme is exactly
the same as the file URL scheme.

C.2.5 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

File application /
vnd.sun.staroffice.fsys-file

[readonly] ContentType
DateCreated
DateModified
[readonly] IsDocument
[readonly] IsFolder
Size
Title
IsReadOnly

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
transfer

XServiceInfo
XComponent
XContent
XCommandProcessor
XPropertiesChan-
geNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfoChan-
geNotifier
XChild
XContentCreator

Direc-
tory

application /
vnd.sun.staroffice.fsys-folder

[readonly] ContentType
DateCreated
DateModified
[readonly] IsDocument
[readonly] IsFolder
Size
Title
IsReadOnly

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open

XServiceInfo
XComponent
XContent
XCommandProcessor
XPropertiesChan-
geNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfoChan-
geNotifier
XChild

C.3 The FTP Content Provider

C.3.1 Preface
The FTP content provider implements a content provider for the Universal Content Broker (UCB).
It provides access to the contents, folders and documents, made available by FTP servers.

C.3.2 FTP Contents
The FTP Content Provider provides three different types of contents: accounts, folders and docu-
ments.

1. An FTP account is a content that represents an account for an FTP server. An account is
uniquely determined by a combination of a user name and the host name of the FTP server.

Chapter 17 Accessibility 1003

Anonymous FTP accounts have the string "anonymous" as a user name. An FTP account also
represents the base directory, that is, the directory that is selected when the user logs in to the
FTP server, and behaves like an FTP folder.

2. An FTP folder is a content that represents a directory on an FTP server. An FTP folder never
has a content stream, but it can have FTP folders and FTP documents as children.

3. An FTP document is a content that represents a single file on an FTP server. An FTP document
always has a content stream and never has children.

C.3.3 Creation of New FTP Content
FTP accounts and FTP folders implement the interface com.sun.star.ucb.XContentCreator.
FTP folders and FTP documents support the command "insert"allowing all the FTP accounts
and FTP folders to create new FTP folders and FTP documents. To create a new child of an FTP
account or FTP folder:

1. The folder creates a new content by calling its createNewContent() method. The content type
for new folders is "application /vnd.sun.staroffice.ftp- folder". To create a new document, use
the type string "application /vnd.sun.staroffice.ftp- file".

2. Set a title at the new folder or document. The new child executes a "setPropertyValues"
command that sets the property Title to a non-empty value.

3. The new child, not the parent, executes the command "insert". This commits the creation
process. For documents, supply an com.sun.star.io.XInputStream, whose contents are
transferred to the FTP server with the command's parameters.

FTP accounts cannot be created the way new FTP folders or FTP documents are created. When
you call the FTP content provider's queryContent() method with the URL of an FTP account, a
content object representing that account, user name and host combination, is automatically
created. The same as the URL of an already existing FTP folder or FTP document.

C.3.4 URL Scheme for FTP Contents
Each FTP content has an identifier corresponding to the following scheme
(see also RFCs 1738, 2234, 2396, and 2732):

1004 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 215

ftp-URL ::= "ftp://" login *("/" segment)
login ::= [user [":" password] "@"] hostport
user ::= *(escaped / unreserved / "$" / "&" / "+" / "," / ";" / "=")
password ::= *(escaped / unreserved / "$" / "&" / "+" / "," / ";" / "=")
hostport ::= host [":" port]
host ::= incomplete-hostname / hostname / IPv4address
incomplete-hostname ::= *(domainlabel ".") domainlabel
hostname ::= *(domainlabel ".") toplabel ["."]
domainlabel ::= alphanum [*(alphanum / "-") alphanum]
toplabel ::= ALPHA [*(alphanum / "-") alphanum]
IPv4address ::= 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
port ::= *DIGIT
segment ::= *pchar
pchar ::= escaped / unreserved / "$" / "&" / "+" / "," / ":" / "=" / "@"
escaped ::= "%" HEXDIG HEXDIG
unreserved ::= alphanum / mark
alphanum ::= ALPHA / DIGIT
mark ::= "!" / "'" / "(" / ")" / "*" / "-" / "." / "_" / "~"

FTP accounts have a login part, optionally followed by a single slash, and no segments. FTP
folders have a login part followed by one or more nonempty segments that must be followed by a
slash. FTP documents have a login part followed by one or more nonempty segments that must not
be followed by a slash, that is, the FTP content provider uses a potential final slash of a URL to distin-
guish between folders and documents. Note that this is subject to change in future versions of the
provider.

Examples:

ftp://me@ftp.host
The account of user "me" on the FTP server "ftp.host".

ftp://ftp.host/pub/doc1.txt
A document on an anonymous FTP account.

ftp://me:secret@ftp.host/secret-documents/
A folder within the account of user "me" with the password specified directly in the URL. Not
recommended.

C.3.5 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Accoun
t

application /
vnd.sun.staroffice.ftp-box

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title
UserName
Password
FTPAccount 1

ServerName
ServerBase2

[readonly] DateCreated
[readonly] DateModified
[readonly] FolderCount
[readonly] DocumentCount

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
open
transfer 3

XTypeProvider
XServiceInfo
XComponent
XContent
XCommandProcessor
XPropertiesChan-
geNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfoChan-
geNotifier
XContentCreator

Folder application /
vnd.sun.staroffice.ftp-folder

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title
[readonly] DateCreated
[readonly] DateModified
[readonly] FolderCount
[readonly] DocumentCount

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
transfer

same as FTP Account
plus
XChild

Chapter 17 Accessibility 1005

UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Docu-
ment

application /
vnd.sun.staroffice.ftp-file

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
Title
[readonly] DateCreated
[readonly] DateModified
[readonly] IsReadOnly
[readonly] Size
MediaType

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open

same as FTP Folder minus
XContentCreator

1 The property FTPAccount is similar to Password. Some FTP servers not only require authentication through a pass-
word, but also through a second token called an "account ".

2 The property ServerBase is used to override the default directory associated with an FTP account.
3 The "transfer" command only transfers contents within one FTP Account. It cannot transfer contents between

different FTP accounts or between the FTP content provider and another content provider.

C.4 The WebDAV Content Provider

C.4.1 Preface
The WebDAV Content Provider (DCP) implements a content provider for the Universal Content
Broker (UCB). An overview is provided at URLs http://www.webdav.org and
http://www.fileangel.org/docs/DAV_2min.html. It provides access to WebDAV and standard HTTP
servers. The DCP communicates with the server by using the WebDAV protocol that is an exten-
sion to the HTTP protocol, or by using the plain HTTP protocol if the server is not WebDAV-
enabled.

C.4.2 DCP Contents
The DCP provides two types of content: a folder or document that corresponds to a collection or
non-collection, of nodes and leafs, in WebDAV, respectively.

1. A DCP folder is a container for other DCP Folders or Documents.

2. A DCP document is a container for document data or content. The data or content can be any
type. A WebDAV server, like an HTTP server, does not mandate what type of data or content is
contained within Documents. The type of data or content is defined by the MediaType property
which is different from the content type returned from the getContentType() method. The
MediaType property is mapped to the equivalent WebDAV property and the WebDAV server
calculates the value.

1006 OpenOffice.org 1.1 Developer's Guide • June 2003

C.4.3 Creation of New DCP Contents
DCP folders implement the interface com.sun.star.ucb.XContentCreator. DCP documents and
DCP folders support the command "insert". To create a new child of a DCP folder:

1. The parent folder creates a new content by calling its createNewContent() method. The
content type for new folders is "application /vnd.sun.star.webdav- collection". To create a new
document, use the type string "application /http- content".

2. Set a title for the new folder or document. The new child executes a "setPropertyValues"
command that sets the property Title to a non-empty value.

3. The new child, not the parent, executes the command "insert". This commits the creation
process and makes the newly-created content on the WebDAV server persistent.

C.4.4 Authentication
DAV resources that require authentication are accessed using the interaction handler mechanism
of the UCB. The DAV content calls an interaction handler supplied by the client to let it handle an
authentication request. The implementation of the interaction handler collects the user name or
password from a location, for example, a login dialog, and supplies this data as an interaction
response.

C.4.5 Property Handling
In addition to the mandatory UCB properties, the DCP supports reading and writing all DAV live
and dead properties. Some DAV live properties are mapped in addition to the UCB properties and
conversely, that is, DAV:creationdate is mapped to DateCreated. Adding and removing dead
properties is also supported by the implementation of the XPropertyContainer interface of a DCP
content.

Property Values:

Chapter 17 Accessibility 1007

Illustration 216

The DCP cannot determine the semantics of unknown properties, thus the values of such proper-
ties will always be presented as plain text, as they were returned from the server.

Namespaces:

The following namespaces are known to the DCP:

• DAV:

• http://apache.org/dav/props/

Properties with these namespaces are addressed using a UCB property name which is the concate-
nation of namespace and name, that is, DAV:getcontentlength.

Dead properties with namespaces that are not well-known to the DCP are addressed using a
special UCB property name string, that contains both the namespace and the property name. A
special property name string must be similar to the following:
<prop:the_propname xmlns:prop="the_namespace">

The DCP internally applies the namespace http://ucb.openoffice.org/dav/props/ to all UCB property
names that:

• are not predefined by the UCB API.
• do not start with a well-known namespace.
• do not use the special property name string to encode namespace and name.

For example, a client does an addProperty(.... "MyAdditionalProperty" ...). The
resulting DAV property has the name MyAdditionalProperty, its namespace is
http://ucb.openoffice.org/dav/props/. However, the DCP client never sees that namespace, but the
client can always use the simple name MyAdditionalProperty.

DAV / UCB Property Mapping:

DAV:creationdate DateCreated

DAV:getlastmodified DateModified

DAV:getcontenttype MediaType

DAV:getcontentlength Size

DAV:resourcetype (used to set IsFolder, IsDocument, ContentType)

C.4.6 URL Scheme for DCP Contents
Each DCP content has an identifier corresponding to the following scheme:

vnd.sun.star.webdav://host:port/<path>

where <path> is a hierarchical path of the form

<name>/<name>/.../<name>

where <name> is an encoded string according to the URL conventions.

It is also possible to use standard HTTP URLs. The implementation determines if the requested
resource is DAV enabled.

Examples:

vnd.sun.star.webdav://localhost/davhome/
vnd.sun.star.webdav://davserver.com/Documents/report.sdw
http://davserver.com/Documents/report.sdw

1008 OpenOffice.org 1.1 Developer's Guide • June 2003

Note that the WebDAV URL namespace model is the same as the HTTP URL namespace model.

C.4.7 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Docu-
ment

application /
http-content

[readonly] ContentType
[readonly] DateCreated
[readonly] DateModified
[readonly] IsDocument
[readonly] IsFolder
[readonly] MediaType
[readonly] Size
'Title'

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open

XTypeProvider
XServiceInfo
XComponent
XContent
XCommandProcessor
XPropertiesChan-
geNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfoChan-
geNotifier
XChild

Folder application /
vnd.sun.star.webdav- collec-
tion

[readonly] ContentType
[readonly] DateCreated
[readonly] DateModified
[readonly] IsDocument
[readonly] IsFolder
[readonly] MediaType
[readonly] Size
Title

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
"transfer

same as DCP Folder, plus
XContentCreator

C.5 The Package Content Provider

C.5.1 Preface
The Package Content Provider (PCP) implements a content provider for the Universal Content
Broker (UCB). It provides access to the content of ZIP and JAR archive files. It maybe extended to
support other packages, such as OLE storages, in the future.

C.5.2 PCP Contents
The PCP provides two different types of contents: stream and folder.

1. A PCP stream is a content that represents a file inside a package. It is always contained in a
PCP folder. A PCP stream has no children.

2. A PCP folder is a container for other PCP folders and PCP streams.

Chapter 17 Accessibility 1009

C.5.3 Creation of New PCP Contents
PCP folders implement the interface com.sun.star.ucb.XContentCreator. PCP streams and
PCP folders support the command "insert", therefore all PCP folders can create new PCP
folders and PCP streams. To create a new child of a PCP folder:

1. The parent folder creates a new content by calling its createNewContent() method. The
content type for new folders is "application /vnd.sun.star.pkg- folder". To create a new stream,
use the type string "application /vnd.sun.star.pkg- stream".

2. Set a title for the new folder or stream. The new child executes a "setPropertyValues"
command that sets the property Title to a non-empty value.

3. The new child, not the parent, executes the command "insert". This commits the creation
process. For streams, supply the implementation of an com.sun.star.io.XInputStream with
the command parameters that provide access to the stream data.

Another convenient method to create streams is to assemble the URL for the new content where
the last part of the path becomes the title of the new stream and obtain a Content object for that
URL from the UCB. Then, let the content execute the command "insert". The command fails if
you set the command parameter "ReplaceExisting" to false and there is already a stream with the
title given by the content's URL.

C.5.4 URL Scheme for PCP Contents
Each PCP content has an identifier corresponding to the following scheme:
package-URL ::= "vnd.sun.star.pkg://" orig-URL [abs-path]
abs-path ::= "/" path-segments
path-segments ::= segment * ("/" segment)
segment ::= pchar
pchar ::= unreserved | escaped | ":" | "@" | "&" | "=" | "+" | "$" | ","
unreserved ::= alphanum | mark
mark ::= "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"
escaped ::= "%" hex hex
orig-URL 1 ::= * (unreserved | escaped | "$" | "," | ";" | ":" | "@" | "&" | "&" | "=" | "+")

Examples:

1010 OpenOffice.org 1.1 Developer's Guide • June 2003

Illustration 217

vnd.sun.star.pkg://file:%2F%2F%2Fe:%2Fmy.xsw/
The root folder of the package located at file:///e:/my.xsw.

vnd.sun.star.pkg://file:%2F%2F%2Fe:%2Fmy.xsw/Content
The folder or stream named "Content" that is contained in the root folder of the package
located at file:///e:/my.xsw .

vnd.sun.star.pkg://file:%2F%2F%2Fe:%2Fmy.xsw/Content%20A
The folder or stream named "Content A" that is contained in the root folder of the package
located at file:///e:/my.xsw .

C.5.5 Commands and Properties
UCB Type (returned by
XContent::getContentType)

Properties Commands Interfaces

Stream application /
vnd.sun.star.pkg- stream

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
MediaType
[readonly] Size
Title
Compressed 1

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open

XTypeProvider
XServiceInfo
XComponent
XContent
XCommandProcessor
XPropertiesChan-
geNotifier
XPropertyContainer
XPropertySetInfo-
ChangeNotifier
XCommandInfoChan-
geNotifier
XChild

Folder application /
vnd.sun.star.pkg- folder

[readonly] ContentType
[readonly] IsDocument
[readonly] IsFolder
MediaType
[readonly] Size
Title

getCommandInfo
getPropertySetInfo
getPropertyValues
setPropertyValues
insert
delete
open
transfer 2

flush 3

same as PCP Stream, plus
XContentCreator

1 The property Compressed is introduced by package streams to explicitly state if you want a stream to be compressed or
not. The default value of this property is determined according to the value suggested by the underlying packager imple-
mentation.

2 The "transfer" command only transfers PCP folders or streams to other PCP folders. It does not handle contents with a
URL scheme other then the PCP-URL scheme.

3 'flush' is a command introduced by the PCP Folder. It takes a void argument and returns void. This command is used to
write unsaved changes to the underlying package file. Note that in the current implementation, PCP contents never flush
automatically! Operations which require a flush to become persistent are: "setPropertyValues(Title | Medi-
aType)", "delete", "insert".

C.6 The Help Content Provider

C.6.1 Preface
Currently, the Help Content Provider has the following responsibilities:

Chapter 17 Accessibility 1011

1. It is the interface to a search engine that allows a full-text search, including searching specific
scopes, such as headers. The range of accessible scopes depends on the indexing process and is
currently not changeable after setup.

2. It delivers a keyword index to its clients.

3. The actual helpcontent has media type "text /html," with some images of type "image /gif"
embedded. The content is generated from packed xml files that have to be transformed
according to a xsl-transformation to produce the resulting XHTML. There is a cascading style
sheet used for formatting the XHTML files of media type "text /css".

4. (It provides its clients the modules for which help is available.

C.6.2 Help Content Provider Contents
The responsibilities mentioned above are fulfilled by providing different kinds of content objects
to the client, namely:

• a root content giving general information about the installed help files

• a module content serving as the interface to all search functionality

• picture and XHTML Contents providing the actual content of the transformed help files and
pictures

These contents are described below.

C.6.3 URL Scheme for Help Contents
Each Help content has an identifier corresponding to the following scheme:
URL ::= scheme delimiter path? query? anchor?
scheme ::= "vnd.sun.star.help"
delimiter ::= "://" | ":/"
path ::= module ("/" id)?
query ::= "?" key-value-list?
keyvaluelist ::= keyvalue ("&" keyvalue)?
keyvalue ::= key "=" value
anchor ::= "#" anchor-name

Currently, to have a fault- tolerant system, some enveloping set of this is allowed, but without
carrying more information.

Examples:

vnd.sun.star.help://?System=WIN&Language=de

vnd.sun.star.help://swriter?System=WIN&Language=de&Query=text&HitCount=120&Scope=Heading

vnd.sun.star.help://portal/4711?System=UNIX&Language=en_US&HelpPrefix=http%3A%2F%
2Fportal%2Fportal

Some information must be given in every URL, namely the value of the keys
"System" /"Language."

"System" may be one of "UNIX," "WIN," "OS2" and "MAC". This key parameterizes the XSL
transformation applied to the help filesand their content changes according to this parameter, and
is mandatory only for helpcontents delivering XHTML-files. This may change in the future.

1012 OpenOffice.org 1.1 Developer's Guide • June 2003

"Language" is coded as ISO639 language code, optionally followed by "-" and ISO3166 country
code. Only the language code part of "Language" is used and directly determines the directory,
which is relative to the installation path where the help files are found.

In the following, the term "help-directory" is used to determine the directory named "help" in the
office/portal installation. The term "help- installation-directory" is used to denote the particular
language- dependent subdirectory of the help-directory that contains the actual help files as a
packed jar file, the index, the config files and some other items not directly used by the help
content provider.

C.6.4 Properties and Commands
Every creatable content can execute the following commands. It isnot constrained to a particular
URL-scheme:

com::sun::star::ucb::XCommandInfo getCommandInfo()
com::sun::star::beans::XPropertySetInfo getPropertySetInfo()
com::sun::star::sdbc::XRow getPropertyValues([in] sequence< com::sun::star::beans::Property >)
void setPropertyValues([in] sequence< com::sun::star::beans::PropertyValue >)

These commands repeat the information given in the following. The available properties and
commands are explained by the following URL examples:

Root Content
vnd.sun.star.help://?System=WIN&Language=de

Properties:

Name Type value
'Title' string "root"

'IsFolder' boolean true

'IsDocument' boolean true

'ContentType' string "application /vnd.sun.star.help"

'MediaType' string "text /css"

Commands:

Return Type Name Argument Type
XDynamicResultSet open 1 OpenCommandArgument2

1 Return value of this command contains the modules available in the particular installation for the requested language.
The modules are currently determined by looking for the files in the help- installation-directory matching "*.db", with the
exception of the file "picture.db".

Generally, a module corresponds to a particular application, namely, if the writer application is
installed, there should be a module "vnd.sun.star.help: / / swriter" and so forth.

The written XOutputStream or the set XInputStream (set at XActiveDataSink) makes the
cascading style sheet available, which is used to format the XHTML files. Physically, the stream
contains the content of the file custom.css in the help-directory of the office or portal installation.

Only the key "Language" is used. Any other key may be set, but is ignored.

Chapter 17 Accessibility 1013

Module Content
vnd.sun.star.help://swriter?System=WIN&Language=de&Query=text&HitCount=120&Scope=
Heading

Properties:

Name Type value
Title string determined from config file in help- instal-

lation-directory

IsFolder boolean true

IsDocument boolean false

ContentType string "application /vnd.sun.star.help"

KeyWordList sequence< string > (See below)

KeyWordRef sequence< sequence < string > > (See below)

KeyWordAnchorForRef sequence< sequence < string > > (See below)

KeyWordTitleForRef sequence< sequence < string > > (See below)

SearchScopes sequence< string > (See below)

The help files contain specially marked keywords. The alphabetically sorted list of keywords is
contained in the property KeywordList.

For example, you are looking for keyword KeywordList[i], where i is an integer. The help
module in which this keyword should be found is determined by the module part of the content
URL, "swriter" in our example. Now KeywordRef[i] contains a list of document ids, where the
document belonging to that id contains the keyword string "docid = KeywordRef[i][j]".

The location in the XHTML document where this particular keyword refers to is marked by an
HTML anchor element:

Here the anchor is given by the string "anchor = KeywordAnchorForRef[i][j]".

For our example, the URL of the j document in the swriter module containing the keyword
Keyword[i] is determined as vnd.sun.star.help://swriter/docid?System=WIN&Language=de#anchor.
The keys "HitCount", "Query" and "Scope" have no value with regards to the keywords.

The title of the resulting document is determined directly without having to instantiate the content
by the value of "KeywordTitleForRef[i][j]".

The module contents are also the interface to the search engine. A number of additional keys in
the URL are necessary, namely the keys:

• HitCount
• Query
• Scope

The value of Scope should be one of the strings given by the property SearchScopes, currently
"Heading" or "FullText". Leaving the key undefined defaults to a full-text search, Setting it to
"Heading" means to search in only the document titles.

There may be any number of Query key definitions in the URL. Many Query keys determine a
query search, first for documents containing all the values, then searching for those containing
only subsets of all the values. The requested number of results is determined by the value of the
key HitCount. The actual returned number may be smaller. The interface to the results returned

1014 OpenOffice.org 1.1 Developer's Guide • June 2003

by the search engine is given by an com.sun.star.ucb.XDynamicResultSet, which is the return
value of the command "open":

Return Type Name Argument Type
XDynamicResultSet open OpenCommandArgument2

XHTML Content or Picture Content
vnd.sun.star.help://portal/4711?System=UNIX&Language=en_US&HelpPrefix=http%3A%2F%
2Fportal%2Fportal%2F

Properties:

Name Type value
Title string determined from database

IsFolder boolean false

IsDocument boolean true

ContentType string "application /vnd.sun.star.help"

MediaType 1 string "text /html" or "image /gif"

1 The MediaType "image /gif" corresponds to a URL which contains a module part "picture", as opposed to "portal" in the
example.

Commands:

Return
Type

Name Argument Type

void "open "1 OpenCommandArgument2

1 Returns the transformed XHTML-content, or the gif-content of a PictureContent.

There is one special document for every module, namely those named start (replace 4711 by start
in our example). It identifies the main help page for every module.
There is an additional key named HelpPrefix. If set, every link in a generated document pointing
to another help-document, either XHTML or image document, is first encoded and then prefixed
by the URL-decoded form of the value of this key. This key is only used by Sun One Webtop.

Chapter 17 Accessibility 1015

Appendix D: UNOIDL Syntax Specification

The following listing comprises the language specification for UNOIDL in pseudo BNF notation .

(1) <idl_specification> := <definition>+

(2) <definition> := <type_decl> ";"
 | <module_decl> ";"
 | <constant_decl> ";"
 | <exception_decl> ";"
 | <constants_decl> ";"
 | <service_decl> ";"
 | <singleton_decl> ";"

(3) <type_decl> := <interface_decl>
 | < constr_type_spec >
 | "typedef" <type_spec> <declarator> {"," <declarator> }*

(4) <interface_decl> := <interface_decl>
 | <forward_decl>

(5) <forward_decl> := "interface" <identifier>

(6) <interface_decl> := <interface_header> "{" <interface_body> "}"

(7) <interface_header> := "interface" <identifier> [<interface_inheritance>]

(8) <interface_inheritance> := ":" <interface_name>

(9) <interface_name> := <scoped_name>

(10)<scoped_name> := <identifier>
 | "::" <scoped_name>
 | <scoped_name> "::" <identifier>

(11)<interface_body> := <export>+

(12)<export> := <attribute_decl> ";"
 | <operation_decl> ";"

(13)<operation_decl> := [<operation_head>] <type_spec> <identifier> "(" <operation_parameters>* ")"
 [<operation_exceptions>]

(14)<operation_head> := "[" "oneway" "]"

(15)<operation_parameters> := <parameter_decl> { "," <parameter_decl> }*

(16)<parameter_decl> := "[" <parameter_direction> "]" <type_spec> <identifier>

(17)<parameter_direction> := "IN" | "OUT" | "INOUT"

(18)<operation_exceptions> := raises "(" <exception_name> { "," <exception_name> }* ")"

(19)<exception_name> := <scoped_name> // of a valid exception declaration

(20)<attribute_decl> := <attribute_head> <type_spec> <declarator> { "," <declarator> }*

(21)<attribute_head> := "[" ["readonly" ","] "attribute" "]"
 | "[" "attribute" ["," "readonly"] "]"

(22)<declarator> := <identifier>
 | <array_declarator>

(23)<array_declarator> := <identifier> <array_size>+

(24)<array_size> := "[" <positive_int> "]"

1017

(25)<positive_int> := <const_expr>

(26)<type_spec> := <simple_type_spec>
 | constr_type_spec>

(27)<simple_type_spec> := <base_type_spec>
 | <template_type_spec>
 | <scoped_name>

(28)<base_type_spec> := <integer_type>
 | <floating_point_type>
 | <char_type>
 | <byte_type>
 | <boolean_type>
 | <string_type>
 | <any_type>
 | <type_type>

(29)<template_type> := <sequence_type>
 | <array_type>

(30)<sequence_type> := "sequence" "<" <type_spec> ">"

(31)<array_type> := <type_spec> <array_size>+

(32)<floating_point_type> := "float"
 | "double"

(33)<integer_type> := <signed_int>
 | <unsinged_int>

(34)<signed_int> := "short"
 | "long"
 | "hyper"

(35)<unsigned_int> := "unsigned" "short"
 | "unsigned" "long"
 | "unsigned" "hyper"

(36)<char_type> := "char"

(37)<type_type> := "type"

(38)<string_type> := "string"

(39)<byte_type> := "byte"

(40)<any_type> := "any"

(41)<boolean_type> := "boolean"

(42)<constr_type_spec> := <struct_decl>
 | <enum_decl>

| <union_decl>

(43)<struct_decl> := "struct" <identifier> [<struct_inheritance>] "{" <member>+ "}"

(44)<struct_inheritance> := ":" <scoped_name>

(45)<member> := <type_spec> <declarator> { "," <declarator> }* ";"

(46)<enum_decl> := enum <identifier> "{" <enumerator> { "," <enumerator> }* "}"

(47)<enumerator> := <identifier> ["=" <positive_int>]

(48)<union_decl> := "union" <identifier> "switch" "(" <switch_type_spec> ")"
 "{" <switch_body> "}"

(49)<switch_type_spec> := <integer_type>
 | <enum_type>
 | <scoped_name>

(50)<switch_body> := <case>+

(51)<case> := <case_label> <element_spec> ";"

(52)<case_label> := "case" <const_expr> ":"
 | "default" ":";

(53)<element_spec> := <type_spec> <declarator>

(54)<exception_decl> := "exception" <identifier> [<exception_inheritance>] "{" <member>* "}"

(55)<exception_inheritance> := ":" <scoped_name>

(56)<module_decl> := "module" <identifier> "{" <definition>+ "}"

1018 OpenOffice.org 1.1 Developer's Guide • June 2003

(57)<constant_decl> := "const" <const_type> <identifier> "=" <const_expr>

(58)<const_type> := <integer_type>
 | <char_type>
 | <boolean_type>
 | <floating_point_type>
 | <string_type>
 | <scoped_name>

(59)<const_expr> := <or_expr>

(60)<or_expr> := <xor_expr>
 | <or_expr> "|" <xor_expr>

(61)<xor_expr> := <and_expr>
 | <xor_expr> "^" <and_expr>

(62)<and_expr> := <shift_expr>
 | <and_expr> "&" <shift_expr>

(63)<shift_expr> := <add_Expr>
 | <shift_expr ">>" <add_expr>
 | <shift_expr "<<" <add_expr>

(64)<add_expr> := <mult_expr>
 | <add_expr> "+" <mult_expr>
 | <add_expr> "-" <mult_expr>

(65)<mult_expr> := <unary_expr>
 | <mult_expr> "*" <unary_expr>
 | <mult_expr> "/" <unary_expr>
 | <mult_expr> "%" <unary_expr>

(66)<unary_expr> := <unary_operator><primary_expr>
 | <primary_expr>

(67)<unary_operator> := "-" | "+" | "~"

(68)<primary_expr> := <scoped_name>
 | <literal>
 | "(" <const_expr> ")"

(69)<literal> := <integer_literal>
 | <string_literal>
 | <character_literal>
 | <floating_point_literal>
 | <boolean_literal>

(70)<boolean_literal> := "TRUE" | "True" | "FALSE" | "False"

(71)<service_decl> := "service" <identifier> "{" <service_member>+ "}"

(72)<singleton_decl> := "singleton" <identifier> "{" "service" <declarator> ";" "}"

(73)<service_member> := <property_decl> ";"
 | <support_decl> ";"
 | <export_decl> ";"
 | <observe_decl> ";"
 | <needs_decl> ";"

(74)<property_decl> := <property_head> <type_spec> <declarator> { "," <declarator> }*

(75)<property_head> := "[" {<property_flags> ","}* "property" "]"
 | "[" "property" {"," <property_flags>}* "]"

(76)<property_flags> := "readonly"
 | "bound"
 | "constrained"
 | "maybeambigious"
 | "maybedefault"
 | "maybevoid"
 | "optional"
 | "removable"
 | "transient"

(77)<support_decl> := ["[" "optional" "]"] "interface" <declarator> { "," <declarator> }*

(78)<export_decl> := ["[" "optional" "]"] "service" <declarator> { "," <declarator> }*

(79)<observe_decl> := "observe" <declarator> { "," <declarator> }*

(80)<needs_decl> := "needs" <declarator> { "," <declarator> }*

(81)<constants_decl> := "constants" <identifier> "{" <constant_decl>+ "}"

Chapter 17 Accessibility 1019

Glossary

A
Abstraction
The term abstraction denotes the process or the result of a generalization. Generalization describes
objects by qualities common to all objects of a certain class of objects. The principle of the generali-
zation is to disregard individual properties of the objects, consequently it is impossible that an
abstract object exists anywhere but in theory.

Accessibility
Ability of an application to provide its functionality also in situations where the usage of input
and output devices is restricted for some reason. For instance, this can be due to restrictions of the
devices, the environment or a physical disability of the user. Often assistive technology is used to
provide accessibility, for instance screen readers or braille terminals. From version 1.1,
OpenOffice.org has an API for accessibility, which can be used with Java and Gnome accessibility.

Add-In
An add- in is a functional extension for the OpenOffice.org application on the basis of UNO
components , which interact with parts of the application that were especially laid out to be
extended. Examples of Add- Ins are Chart and Calc Add- Ins.

Any
All purpose data type for variables in UNOIDL. An any variable contains whichever data type is
specified for UNOIDL.

API
Application Programming Interface. The entirety of published methods, properties and other
means for software developers to access an application through software they write using this
application.

Assistive Technology
Devices which can be used to improve accessibility, see Accessibility.

AT
Assistive Technology, devices which can be used to improve accessibility. See Accessibility.

Automation

1021

Communication protocol between OLE automation objects. See OLE Automation.

AWT
Abstract Window Toolkit. The OpenOffice.org API contains a module com.sun.star.awt with
abstract specifications for a window toolkit that handles graphical devices, window environments
and user interfaces. In the current implementation of this specification, the specified features are
mapped to platform- specific window systems, such as Windows, X Windows or Java AWT. The
current C++ implementation is based on the Visual Component Library, a platform independent
C++ library for GUIs, which is part of OpenOffice.org.

B
Binary UNO Interface
When method calls are transported over a UNO bridge, a single generic C method is used to
dispatch all method calls across the bridge. This method and its parameters is also known as the
binary UNO interface.

Bridge
Code that connects different language environments, such as C++, Java and indirectly
OpenOffice.org Basic, with each other. The connection is exclusively used to transport method
calls with their parameters, and return values back and forth between the language environments.

C
Calendar
Calendaring information in an internationally used application pose the problem to translate
between the various calendar systems used in the world. In the context of OpenOffice.org, local
calendars are supported through the I18N API.

Calc
OpenOffice.org spreadsheet document or components of the OpenOffice.org application
containing the functionality necessary for spreadsheet documents in OpenOffice.org. Although
there might be an scalc executable on some platforms, it does not contain the Calc functionality, it
starts up a calc document using soffice.exe and its dependables.

Chart
Embedded diagram document or components of the OpenOffice.org application containing the
functionality necessary for embedded diagrams in OpenOffice.org. These diagrams visualize
numeric and textual data, such as lines, bars, and pies.

CJK
China-Japan-Korea. A group of Asian languages that require similar treatment in user interfaces
for common principles, such as the writing direction and other features of Asian document
editing.

Class

1022 OpenOffice.org 1.1 Developer's Guide • June 2003

Class is the description of the common qualities of individual objects in object-oriented languages.
This description can be expressed in an object-oriented programming language. A class descrip-
tion may be abstract where it does not contain sufficient implementation to create fully functional
instances of a class, or it can be fully implemented. Fully implemented classes are used to create
individual instances of objects that act according to the class description.

Client
An object using the services of a server. See server.

Clipboard
The clipboard is common storage place on a computer platform. Information is copied or cut from
one application context and transferred to this storage where users paste it into another applica-
tion context. A variety of file formats can be written to the clipboard making the information
useful in many different contexts.

Collation
In the context of OpenOffice.org, ordering of textual information according to ordering rules local
to a cultural community. The rules for alphabetical ordering in Latin writing differ from country
to country, and there are completely different ordering rules in other cultural communities.
OpenOffice.org supports localized collation through its I18N API.

Collection (UNO Collection)
UNO collections are gatherings of objects that are retrieved by enumeration, index or name
through collection interfaces. UNO collections are not necessarily UNO containers, because they
do not support the addition of new objects to the collection—though a collection can be a container
too.

COM
Component Object Model. An object communication framework created as a part of OLE by
Microsoft (R) . See OLE.

Command URL
A string containing a command in the OpenOffice.org dispatch framework. See URL.

Commit
Acknowledgment of an open transaction. See transaction.

Complex Text Layout
Complex Text Layout Languages: In CTL languages (such as Thai, Hebrew, Arabic and Indian)
multiple characters may combine to form a display cell

Component
The term component has two uses in the UNO context. There are UNO components and XCompo-
nents, that is, objects implementing the interface com.sun.star.lang.XComponent.

UNO components are shared libraries containing implementations of UNO objects that are regis-
tered with and instantiated by a UNO service manager or service factory. If the component only
uses a UNO environment, it is a well formed component.

An XComponent is a UNO object that allows its owner object to control its lifetime and a user
object to register as a listener to be informed when the owner disposes of the XComponent. Occa-
sionally, the term component is used as a shortform for XComponent. For example, since

Chapter 17 Accessibility 1023

OpenOffice.org documents loaded by the desktop must always support XComponent, it has
become customary to call them components or desktop components. Loaded documents are not
UNO components in the sense of a well formed component. They have no shared libraries and
cannot be registered and instantiated at a service manager. It should always be clear from the
context if the term component means well formed UNO component or XComponent.

Configuration
In the context of OpenOffice.org often used for XML based configuration files. OpenOffice.org has
an API to access this configuration, the package installer pkghck can insert configuration items, and
users can edit the files manually.

Constant
A named value in a computer program that does not change during runtime. Constants are used
to handle cryptic parameters in an understandable manner as in
com.sun.star.text.HoriOrientation:LEFT. Furthermore, if constants are used. it is possible to
alter the internal value of a constant without changing every occurrence of this value in written
code. But it is not possible to change the value of UNO IDL constants.

Constants Group
A named group of constant values, for example, the group
com.sun.star.text.HoriOrientation contains constant values that describe possible horizental
orientations, such as LEFT, CENTER, and RIGHT. See constant.

Container (UNO Container)
UNO collection of objects with the additional option to add new objects to the collection and to
remove objects. See collection.

Connection
An UNO Connection is an open communication channel between a UNO client and server. For
example., if a Java program uses OpenOffice.org over the Java language binding, the Java client
program connects to the OpenOffice.org application, which then acts as server for the Java client.

A Database Connection is an open communication channel between a database management
system and an authenticated user.

Controller
A controller in the frame-controller-model paradigm of OpenOffice.org is a service that controls a
visual representation of a OpenOffice.org document model. It may offer interfaces to access the
visual representation, but it is not used to change the model it presents. In the frame-controller-
model paradigm the view is a hidden implementation detail behind the controller. See frame-
controller-model paradigm.

CORBA
Common Object Request Broker Architecture. Platform independent architecture for object
communication. CORBA served as one of the examples for UNO.

CTL
see Complex Text Layout

1024 OpenOffice.org 1.1 Developer's Guide • June 2003

D
DB
Abbreviation for database.

DBMS
Database Management System

DCOM
Distributed Component Object Model. It adds to COM objects the ability to communicate with
COM objects on other machines.

DDE
A Windows protocol allowing applications to exchange data automatically. The OpenOffice.org
supports DDE through the Edit – Paste Special command. OpenOffice.org Basic also uses DDE.

DDL
Data Definition Language. Parts of SQL used to create and alter tables, and modify rules for rela-
tional integrity.

Deadlock
A state where two processes wait for another so that they can continue their work. They have to
wait until the deadlock is released from outside. For example this can happen if process A locks
resource X and process B locks resource Y, and then process B tries to lock resource X and process
A tries to lock resource Y.

Desktop
Central management instance for viewable components in the OpenOffice.org application.

Dialog (UNO Dialog)
A UNO dialog shows a window for user input. A dialog contains control elements, such as text
fields, buttons, list boxes, and combo boxes. Currently, UNO dialogs are always modal, which
means that they must be closed before the process displaying the dialog can continue with its
tasks. Furthermore, UNO dialogs do not support data aware controls, rather database connectivity
has to be implemented manually. If you want to offer a non-modal window or work with data,
consider using a UNO form.

Dispatch Framework
OpenOffice.org has a mechanism that sees documents as targets for uniform command tokens,
which are handled for example by documents with methods specific to the document. This allevi-
ates writing a user interface that does not need to know about the internal structure of a docu-
ment. The user interface asks the document the command tokens it supports, and displays
matching menus and toolbars. A toolbar icon like Background Color is used for many different
objects without knowing in advance about the target object.

The command tokens have to be written in URL notation, therefore they are called command URLs,
and are sent or dispatched to a target frame. The corresponding specification is called Dispatch API.

DML
Data Manipulation Language. Part of SQL.

Chapter 17 Accessibility 1025

Draw
OpenOffice.org drawing document or components of the OpenOffice.org application which
contain the functionality necessary for drawing in OpenOffice.org. Although there might be an
sdraw executable on some platforms, it does not contain the actual Draw functionality, it merely
starts up a Draw document, using soffice.exe and its dependables.

Draw Page
A layer for graphical objects in OpenOffice.org documents. Each of the document types Writer,
Calc, Draw, and Impress have one or multiple draw pages for shapes. Most graphical shapes on a
drawpage are geometrical objects, but embedded documents and forms are also located on the
draw page of a document.

Document Controller
A part of the frame-controller-model paradigm in OpenOffice.org. The controller of a document is
responsible for screen presentation, display control and the current view status of a document.

E
Enum
A named group of predefined values in the OpenOffice.org API comprising all plausible values
for a variable in a certain context. Only one enum value can apply at a time. An example for an
enum is com.sun.star.text.PageNumberType with the possible values NEXT, PREV and
CURRENT.

Enumeration
A collection of UNO objects supporting the interface com.sun.star.container.XEnumeration
accessed one by one using a loop construction. An XEnumeration has to be created at a
com.sun.star.container.XEnumerationAccess interface.

Event
In the OpenOffice.org API, an event is an incident between an observable and an observer. The
observable sends a message that something has happened that the observer wanted to know
about. See listener.

Exception
The exception is a concept for error handling that separates the normal program flow from error
conditions. Instead of returning error values as function return codes, an exception interrupts the
normal program flow at anytime, transports detailed information about the error and passes it
along the chain of callers until it is handled in code. This is helpful for the user to achieve a low-
level function, therefore react appropriately, while it is still able to find out exactly what went
wrong.

F
FCM
Frame-Controller-Model paradigm. See frame-controller-model.

1026 OpenOffice.org 1.1 Developer's Guide • June 2003

Filter
There are two kinds of filters in OpenOffice.org, data filters and import /export filters.

Data filters reduce the number of records in a list or database to those records that match the given
filter criteria. Examples of filters are those filters in a spreadsheet or database form.

The import and export filters read and write document data for specific file formats. They create
OpenOffice.org documents from the files they support in a running OpenOffice.org instance, and
create a target file in a supported format from a loaded document.

Form
A form is a OpenOffice.org document with a set of controls that allows users to enter data, and
submit the the data to a web server or store them in a database.

Data-aware forms support data-aware controls that display data from a database and write
changes to a database automatically. Furthermore, they have built-in filtering and sorting capabili-
ties. It is also possible to create subforms in forms.

Without a connection to a server, forms are only partially useful, because the integration with the
surrounding document is still incomplete. Forms cannot be printed well, because text boxes do not
shrink or grow, and list boxes and subforms are cut off in printing. It is not possible to have
control borders in the user interface and hide them in printing.

Frame
Part of the frame-controller-model paradigm in OpenOffice.org. See frame-controller-model para-
digm.

Frame-Controller-Model Paradigm (FCM)
The architectural separation of content, visual representation, and binding to the surrounding
window system in OpenOffice.org. Loaded office documents consist of:

• a model object for document data with document manipulation methods

• one or more controllers for screen presentation, display control and current view status of a
document model

• one frame per controller that links the controller with the surrounding windowing system, and
dispatches command URLs it receives. It makes the document environment exchangeable. For
instance, aside from the standard document windows there can be frames for documents in
JavaBeans, Browser Plug- ins, MDI Windows, and embedded windows.

Programming with the FCM paradigm is simple: To change the document, use the model. To
access the visual representation, ask the controller. To work with the window, obtain the frame.

If you know the Smalltalk model-view-controller paradigm (MVC), it is probably best to see
frame-controller-model as a different concept with a few similarities to MVC. The main differences
are:

• The controller in FCM incorporates the visual presentation layer: Controller and visual repre-
sentation are no different objects on API level. It controls the visual representation such as the
current page or the visual cursor position, but it is generally not used to control the document
content.

• FCM has a frame, which is unknown in MVC.

Chapter 17 Accessibility 1027

G
GUI
Graphical User Interface, as opposed to a command line interface. A user interface is the point
where a user and a software application meet and interact. A graphical user interface uses
graphical representations of commands, status feedbacks and data of an application, and offers
methods to interact with it through graphical devices, such as a mouse or tablets.

H
Helpers
Classes or methods with ready- to-use implementations that are used to implement fully functional
UNO components. The goal is that implementers of UNO components can concentrate on the
functionality they want to deliver, without having to cope with the intricacies of UNO.

I
I18N
Internationalization, written I18N because of the 18 letters between the 'i' and 'n' in internationali-
zation. It provides the functionality to adapt a software to the needs of an international commu-
nity with their deviating standards. For example, documents should be fully interchangeable, that
is, a date should be the same date no matter where the document is edited, but the date needs to
be displayed and edited according to the conventions followed in the user's country. Also, the user
should be able to combine documents from other countries with his own documents without
having to convert date formats.

IDE
Integrated Development Environment is a tool used for software development that integrates
editing, debugging, graphical interface design and online help, and advanced features, such as
version control, object browsing and project management in a unified user interface.
OpenOffice.org contains a small IDE for OpenOffice.org Basic.

IDL
Interface Definition Language is used in environments where interfaces are used for object
communication. An interface definition language is frequently used to describe interfaces inde-
pendently of a particular target language. For instance, CORBA and OLE have their own interface
definition languages. UNO does not stand behind these component technologies and specifies its
own IDL called UNO IDL.

Implementation
The process of writing a fully functional software according to a specification. Implementation
also means the concrete, realized thing as opposed to an abstract concept. For instance, the current
version of OpenOffice.org is one possible implementation of the OpenOffice.org API.

Impress

1028 OpenOffice.org 1.1 Developer's Guide • June 2003

OpenOffice.org presentation document or components of the OpenOffice.org application that
contains the functionality necessary for presentation documents in OpenOffice.org. Although
there might be an simpress executable on some platforms, it does not contain the Impress func-
tionality, it starts up a presentation document using soffice.exe and its dependencies.

Initialization of UNO Services
UNO objects are initialized when they are instantiated by a service manager if they support the
interface com.sun.star.lang.XInitialization. The service manager automatically passes the
arguments given in createInstanceWithArguments() or createInstanceWithArgumentsAnd-
Context() to the method initialize() of the new UNO object. The service specification for the
object documents the arguments if XInitialize is supported.

Instance
An instance is a concrete, individual object specimen created on the basis of an implemented class.
In UNO, it is common to ask a service manager for an instance of a service. The service manager
chooses a suitable implementation and sets up an object in memory on the basis of this implemen-
tation.

Interface
In object-oriented programming environments, the term interface is used for sets of methods that
describe aspects of external object behavior in terms of method definitions. The term interface
implies that the described aspects abstract from the described functionality. Thus, an interface for
a functionality is completely independent of the inner workings of an object that is necessary to
support functionality. Interfaces lead to exchangeable implementations, that is, code that is based
on stable interfaces works across product versions, while it is relatively easy to extend or replace
existing interface implementations.

UNO interfaces have a common base interface com.sun.star.uno.XInterface that introduces
basic lifetime control by reference counting, and the ability to query an object for an interface it
supports.

I/O
Input /Output. The I/O is the physical transfer of byte stream between random access memory
and devices that provide data or process data.

J
Java Bean
Reusable software component that can be visually manipulated in builder tools.

Job
UNO component that is set off upon an event. A job component must support the services
com.sun.star.task.Job and /or com.sun.star.task.AsyncJob. Currently there are two ways
to activate a job: either by triggering an event at the job executor service or by dispatching a
specialized command URL of the protocol vnd.sun.star.jobs: at the dispatch framework.

Job Execution Environment
Environment in OpenOffice.org for generic jobs that are implemented as UNO components. A job
can be executed upon an event and use configuration data for arbitrary purposes. It is guarded by

Chapter 17 Accessibility 1029

the job execution environment which takes care of the job during its lifetime and writes back
configuration data after the job has finished its work.

K

L
L10N
Localization, written L10N because of the 10 letters between the 'l' and 'n' in localization. It is the
process of adapting a software to the requirements of users in a cultural community or country.
For example, this includes translation of user interfaces and the necessary adaptation to the
writing used in that community.

Language Binding
Programming language or programming environment that is used with UNO. It is possible to
access OpenOffice.org from component technologies, such as OLE, through programming
languages.

Listener
Listeners are objects that are set up to receive method calls when predefined events occur at other
objects. They follow the observer pattern, that is, an object wants to update itself whenever it
observes a change in another object registers with the object it wants to observe, and is called back
when the prearranged event occurs at the observed object. The observable maintains a list of
observers that want to be notified about certain events. This pattern avoids constant polling and
ensures that observers are always up- to-date. Listeners in OpenOffice.org are specialized for the
UNO environment. A listener implements a UNO listener interface with predefined call back
methods. This interface is passed to the corresponding event broadcaster in an addXXXListener()
method. The broadcaster calls methods on this interface on listener-specific events. The callback
methods of a listener take an object that is derived from the base event struct
com.sun.star.lang.EventObject. This object contains additional information about the event
that lead to the listener callback.

Locale
A locale is a string which uniquely identifies a specific cultural community, defined by the country
where a community lives, and by the language spoken. In the I18N API of OpenOffice.org, a locale
consists of two parts encoded as <language>_>COUNTRY>: a two-letter language code (ISO-639)
and a two-letter country code (ISO-3166). Examples are en_US for American English with
American date, time, measuring and currency conventions, en_UK for British English and British
conventions, de_DE for German as spoken in Germany with German conventions, es_ES for
Spanish as spoken in Spain, es_MX for Spanish as spoken in Mexico. Locales sometimes occur with
a third variant part which is used to denote further sub-divisions and variants, such as
es_ES_TRADICIONAL for Spanish with traditional collation rules, as opposed to modern collation.
The variant part is user-dependent.

1030 OpenOffice.org 1.1 Developer's Guide • June 2003

M
Math
Math is the embedded formula document or components of the OpenOffice.org application that
contains the functionality necessary for embedded formulas in OpenOffice.org. Formula docu-
ments create mathematical formulas based on a meta description.

Model
The Model is an object representing document data and document manipulation methods, and is
part of the frame-controller-model paradigm. See frame-controller-model paradigm.

Module
In UNO IDL, a module is a namespace for type definitions. The OpenOffice.org API is divided in
55 modules, such as awt, uno, lang, util, lang, text, sheet, drawing, presentation, chart, and sdb.
The modules text, sheet drawing and presentation do not map directly to Writer, Calc, Draw and
Impress documents, but the interfaces in these modules are used across all document types.

MVC
The Model-View-Controller paradigm that is the separation of document data, presentation and
user interaction into independent functional areas. The frame-controller-model paradigm in
OpenOffice.org has been designed with MVC in mind.

N

O
Object
As a general term, an object in the context of this manual is an implemented class that is instanti-
ated and has methods you can call. A UNO object is an object with the ability to be instantiated in
the UNO context and to communicate with other UNO objects. For this purpose, it supports the
UNO base interface com.sun.star.uno.XInterface in addition to the interfaces for the indi-
vidual functionality it offers.

Object Identity
In UNO, a comparison of object references must be true for all references to an identical object.
This rule is called object identity.

OLE
Object Linking and Embedding. It is a set of various technologies offering an infrastructure for
object communication across language environments, and is indigenous on the Windows plat-
form. In Inside OLE (Redmond 1995), Kraig Brockschmidt defines OLE "OLE is a unified environ-
ment of object-based services with the capability of both customizing those services and arbitrarily
extending the architecture through custom services, with the overall purpose of enabling rich inte-
gration between components."

Chapter 17 Accessibility 1031

Among others, OLE comprises compound documents, visual editing, OLE Automation, the
Component Object Model and OLE controls. Moreover, the term OLE as a collective term for a
number of technologies has been superseded by ActiveX, which comprises even more technolo-
gies.

Although there are implementations for certain aspects of OLE on other platforms, Windows is the
primary OLE platform. OpenOffice.org supports a certain aspect of OLE Automation,that is,
OpenOffice.org is an OLE Automation server that offers the complete OpenOffice.org API to
Automation clients.

The term OLE is sometimes used for document embedding techniques within OpenOffice.org.
OpenOffice.org documents are embedded into each other, and appear as "OLE Objects" on draw
pages. That means, they are edited in place, and act like embedded OLE documents, but the plat-
form infrastructure for OLE is not used. Therefore, this also works on platforms other than
Windows. Real OLE objects are handled differently, the embedded object is handed to the applica-
tion which is registered for the embedded document and opened in an independent application
window.

OLE Automation
Automation is the part of the OLE technology that allows developers to call methods in applica-
tions supporting OLE automation. An OLE application publishes methods to be used from other
OLE enabled applications. The called application acts as server, and the caller as client in this rela-
tionship. Under Windows, a OpenOffice.org application object is available that offers almost the
complete OpenOffice.org API to automation clients.

P
Package Installer
In order to facilitate the modular extension of OpenOffice.org by custom components,
OpenOffice.org offers a commandline tool named pkgchk which can be used to deploy component
files, insert Basic libraries and alter the configuration of an existingOpenOffice.org installation.

pkgchk
See package installer.

Prepared Statement
Precompiled SQL statement that are parameterized and sent to a DBMS.

Protocol Handler
UNO component that handles custom URL protocols. A URL protocol is the part of a URL that
stands before the colon, as in ftp: (file transfer protocol) or http: (hypertext transfer protocol). This
mechanism is used as of OpenOffice.org version 1.1 to integrate OpenOffice.org extensions into
the user interface. For example, a menu item can be configured to dispatch a command URL
vnd.company.oo.newcomponent:NewFunction. A protocol handler for the protocol
vnd.company.oo.newcomponent: could route this command to the corresponding routine newFunc-
tion(). This technique also forms the basis for the job execution environment, where
vnd.sun.star.jobs: URLs are routed to components that support suitable job interfaces.

1032 OpenOffice.org 1.1 Developer's Guide • June 2003

Q
Query
See database query, query interfaces, query adapter.

R
Redline
Text portion in a text document that reflects changes to a text document.

Reference Counting, Ref Counting
Controlling the lifetime of an object by counting the number of external references to the object. A
ref counted object is destroyed automatically when the number of external references drops to
zero.

Registry Database
Backend repository that contains information about UNO components registered with the service
manager.

Rollback
Is the rejection of an open transaction. The data are restored to the state before the transaction was
started. See transaction.

Ruby
Asian text layout feature, similar to superscript and subscript in western text. See
www.w3.org/TR/ruby/.

S
SAL
System Abstraction Layer. C++ wrappers to system- dependent functionality. UNO objects written
in C++ use the types and methods of SAL to create platform- independent code.

Sequence
Sequence is a set of UNO data types accessed directly without using any interface calls. The
sequence maps to arrays in most language bindings.

Server
A server is an object that offers services to clients. OpenOffice.org frequently acts as server when it
is accessed through UNO, but it can also be a client to UNO components, instantiating and using
UNO objects in another application. The simplest use for OpenOffice.org calling objects in other
processes are listener callbacks. See client.

Service (UNO Service)

Chapter 17 Accessibility 1033

A UNO service describes a UNO object by combining interfaces and properties into an abstract
object specification. This definition of the term service is specific to UNO, therefore do not confuse
it with the general meaning of the word service in "a server offers services to its clients".

Service Manager
Factory for UNO services. A service manager supports the service
com.sun.star.lang.ServiceManager, and its main task is to provide instances of UNO objects
by their service name. This is done by factory methods that take a service name and optional argu-
ments. The service manager looks in its registry database for UNO components that implement
the requested service, chooses an implementation and uses a component loader to instantiate the
implementation. It finally returns the interface com.sun.star.uno.XInterface of the new
instance.

Singleton
Singletons specify named objects. Only one instance exists during the lifetime of a UNO compo-
nent context. A singleton references one service and specifies that the only existing instance of this
service is reached over the component context using the name of the singleton. If no instance of
the service exists, the component context instantiates a new one.

Specification
Is an abstract description of qualities required for a certain task. The realization of a specification
is its implementation.

SQL
Structured Query Language, pronounce SEE-KWEL. A standard language for defining databases,
and for editing data in a database. SQL is used with relational database management systems.

Statement
An object in the sdbc module of the OpenOffice.org API that encapsulates a static SQL statements.
See prepared statement.

Stored Procedure
The server-side process on a SQL server that executes several SQL commands in a single step, and
is embedded in a server language for stored procedures with enhanced control capabilities.

Style
A predefined package of format settings applied to objects in OpenOffice.org documents.

Subform
Database form that depends on a main form. Usually a subform is used to display selected data,
matching to the current record of the subform, for example, a main form could show a company
address, and a subform could list the contact persons in that company. When a user browses
through the companies in the main form, the subform is constantly updated to show only the
contacts in the current company. This is achieved by a parameterized query in the subform, which
takes a unique key from the main form and selects multiple records that match this key.

SVG
Scalable Vector Format. A W3C specification for a language describing two-dimensional vector,
and mixed vector or raster graphics in XML. See www.w3.org/TR/SVG/ .

1034 OpenOffice.org 1.1 Developer's Guide • June 2003

T
Thread
Computer programs in single-task operating systems have a predefined course with a defined
starting and ending point. Between these points, it is clear which instruction the CPU is currently
executing, and that the next instruction in the program will be executed next by the CPU. On pre-
emptive multi- tasking systems, the ability of modern CPUs to switch their current execution
context is used to spawn sub-processes that run simultaneously with the original process. These
sub-processes are called threads. In this situation, the CPU always knows which instruction it
executes next, but the applications do not know if the CPU will execute their next instruction after
the current instruction. Other threads might alter commonly used data. This makes it necessary to
write thread- safe programs. A thread- safe program is aware that other threads might interfere
with the current thread, and take precautions to shield commonly used data from other threads.

Transaction
A batch of SQL commands that are considered a unity. All commands must be executed success-
fully, or the data must be restored to the state before the transaction was started. When using
transactions, you tell the DBMS that it should start a transaction, then issue all SQL commands
you need. After all the commands have been executed, commit the transaction. If an error
occurred during one of the commands, restore the previous state by telling the DBMS to roll back
the transaction. Transactions can become tricky, because your process or other processes can have
open transactions in which they are altering data and locking rows. Therefore, plan carefully if
you want to see changes before they are committed, or ensure that the data does not change when
you read them again (transaction isolation).

Transliteration
Conversion of characters according to conversion rules that are valid for a cultural community,
such as case conversions, conversions between Hiragana and Katagana, and Half-width and Full-
width.

Type Mapping
The UNO interface definition language uses meta types for its type definitionsare mapped to types
of a real programming language. How the UNO IDL types are mapped is defined by the language
binding for a target language.

U
UCP
Universal Content Provider. Subystem of the UCB for one particular storage system or data
source.

UCB
Universal Content Broker. Unification layer for access to storage systems or data sources, such as
file, ftp, and webDAV.

UI
User Interface. See GUI.

Chapter 17 Accessibility 1035

Unicode
Unicode is a standardization effort by the Unicode consortium to provide a unique number for
every character, regardless of platform, program and language. See www.unicode.org.

UNO IDL
UNO Interface Definition Language. See IDL.

UNO
Universal Network Objects. Platform- independent component technology used as a basis for
OpenOffice.org.

UNO Component
See component.

UNO Collection
See collection.

UNO Container
See container.

UNO Dialog
See dialog.

UNO Object
See object.

UNO package
Packaged zip archive containing files for the package installer.

UNO Proxy
A UNO proxy (proxy is used as a shortform) is created by a bridge and is a language object that
represents a UNO object in the target language. It provides the same functionality as the original
UNO object. There are two terms which further specialize a UNO proxy. The UNO interface proxy
is a UNO proxy that represents exactly one interface of a UNO object, whereas a UNO object
proxy represents an UNO object with all of its interfaces.

URL
Uniform Resource Locator. In addition to the public URL schemes defined in RFC 1738,
OpenOffice.org uses several URL schemes of its own, such as command URLs for the dispatch
API, UNO Connection URLs for the com.sun.star.bridge.UnoUrlResolver service,
private:factory URLs for the interface com.sun.star.frame.XComponentLoader and database
URLs to create database connections, com.sun.star.sdbc.XDriverManager.

V
VCL

1036 OpenOffice.org 1.1 Developer's Guide • June 2003

Visual Component Library. Platform- independent C++ library that handles GUI elements. Part of
OpenOffice.org.

View
A view is the presentation of document data in a GUI. In the OpenOffice.org frame-controller-
model paradigm, there are no view objects separate from controllers, but the controller contains
the view it controls.

W
Weak Reference
Reference to a UNO object which has to be converted to a hard reference before it can be used. A
weak reference automatically turns into a null reference when the referred object is destroyed, and
it does not keep the referred object alive.

Writer
The Writer is the OpenOffice.org word processor document or components of the OpenOffice.org
application containing the functionality necessary for word processing in OpenOffice.org.
Although there might be an swriter executable on some platforms, it does not contain the actual
Writer functionality, it starts up a Writer document using soffice.exe and its dependables.

X
X<Interface Identifier>
Prefix for UNO Interfaces.

XML
Extensible Markup Language. Multitude of standards developed by the W3C for the definition
and the processing of structured file formats. See www.w3.org/XML/

Y

Z

Chapter 17 Accessibility 1037

Index
__getServiceFactory() 202
__writeRegistryServiceInfo() 202, 206
_blank 341, 358
_default 358
_parent 341, 358
_self 341, 358
_top 341, 358
- 189
/ 189
/ / 190
/ / / 190
/* 190
/** 190
.dll 279
.idl 192
.pba 785
.rdb 279
.so 279
.uno 276
.urd 192
.xcu 280
.xlb 279, 787
.xlc 787
^ 189
~ 189
$(home) 443
$(inst) 443
$(instpath) 443
$(insturl) 443
$(lang) 443
$(langid) 443
$(path) 443
$(prog) 443
$(progpath) 443
$(progurl) 443
$(temp) 443
$(user) 443
$(userpath) 443

$(userurl) 443
$(vlang) 443
$(work) 443
* 189
& 189
% 189
+ 189
<< 189
>> 189
| 189

A
absolute() 837
Abstract Window Toolkit (AWT) 327
Acceptor 78
acceptsURL() 870
accessibility 957
accessibility objects 958
accessibility tree 958
acquire() 197, 224
actions 974
active document model 334
active frame model 334
ActiveX 146
4.7.3 Add- Ons 256

configuration 258
installation 269

AdministrationProvider 924, 926f.
afterLast() 837
aggregation 201
AnimationEffect 691
any 46, 110, 182
API reference 74
API Reference 30
appendFilterByColumn() 803
appendOrderByColumn() 803
applicat.rdb 206, 214

1039

application environment 325
archive files 193
array 191
assistive technology 957
asynchronous call 77
AT (assisitve technology) 957
attribute [instruction] 182
AutoCorrect 434
autodoc 178
Automation

accessing properties 150
bridge services 172
calling functions 150
client-side conversions 160
conversion mappings 159
DCOM 170
default mappings 157
errorcodes 164
exceptions 164
interfaces 154
mapping of any 161
mapping of sequence 162
mapping of string 162
registry entries 149
service manager component 148
Service Manager Component 148
Simple Types 156
structs 154
type mappings 156
usage of types 154
value objects 162
Windows Script Components 170
Windows Scripting Host 170
WSC 170
WSH 170

automation bridge 145
AutoPilot 435, 732
AutoText 434

B
backup copies 434
11.3 Basic 128, 296, 755

accessing the UNO API 758
accessing UNO services 129
adding event handlers 730
AutoPilot dialogs 732
11.2.2 Basic IDE window 741

Basic editor mode 741
dialog editor mode 741

calling a sub 727
case sensitivity 141
constant groups 141
creating a module 724
creating dialogs 728
creating dialogs at runtime 779
date functions 756
debugging a Basic UNO program 726
design tools window 729
enums 141
exception handling 142
file I/O 755
information about UNO objects 131
instantiating UNO services 130
11.4 library organization 762

accessing libraries 763
Creating a Link to an Existing Library 766
creating a new library 766
library 762
library container 762
library container API 765
library container properties 763
library elements 762
loading libraries 764
variable scopes 767

listeners 143
numeric functions 757
runtime library functions 755
screen I/O functions 755
sequences and arrays 137
simple types 135
source editor window 725
special behavior 760
special behaviour

rescheduling 760
threads 760

string functions 757
structs 140
time functions 756
writing a Basic UNO program 726

Basic dialogs 723
11.2 Basic IDE 733

dialog editor 746
macro dialog 734
macro organizer dialog 736

libraries tab page 738
managing Basic and dialog libraries 734
modules tab page 736

Basic libraries 279
Basic library container index file 785
Basic library index file 785

1040 OpenOffice.org 1.1 Developer's Guide • June 2003

Basic macros 723
beforeFirst() 837
bitmap 974
bookmarks 435
boolean 45, 182
Bootstrap 75
bootstrapping 286
bound [property flag] 186
Braille terminal 957
breakpoint 726
BridgeFactory 78
bridges 63, 958
broadcaster 959
byte 45, 182

C
C++ 145, 296
C++

establishing interprocess connections 121
exception handling 127
file access 119
mapping of any 122
mapping of sequence 124
mapping of type 126
Simple Types 122
system abstraction layer 119
thread synchronization 120
threads 120
threadsafe refcounting 119
type mappings 122
weak references 126

C++ Binding 117
Calc 791
cancelRowUpdates() 839
caret 968
case conversion 384
ccessibility API 957
cell

accessing 562
cell range

accessing 562
array formulas 568
data array 564
merging 563
multiple operations 567
operations 566
properties 562

chain of responsibility. 368

changesOccurred() 936
char 44, 182
Chart3DBarProperties 716
ChartData 707f.
ChartDataArray 707f.
ChartDocument 707
charts

3-dimensional 716
Add-Ins 718
apply an Add-In 720
axis 712
chart type 706
creating charts 703
data access 708
data point 714
data series 714
default type 706
Diagram 711
document controller 718
document model 707
legend 707
pie charts 717
statistical properties 715
stock charts 717
titles 707
working with charts 707

class files 192
clearParameters() 845
6.2.1 clipboard 378

becoming a clipboard viewer 382
copying data 380
data formats 382
pasting data 379

coding styles 321
colors (user-defined) 435
Column 805, 856
columns 805
ColumnSettings 808
Command 904
command execution 367
command tokens 367
command URL 331, 367
CommandType 845
comments 190
communication process 367
compatibly 277
compiler 180
component 70, 338
component context 84

Chapter 17 Accessibility 1041

component framework 327, 337
component operations 193
component window 328
component_getFactory() 226
component_writeInfo() 227
4 components 63, 177

add 278
architecture 193
debugging 215
deployment options 278
installing manually 285
registration 214
Registration 282
troubleshooting 217

configmgr.ini 927
configmgr.rc 927
configuration data files 280
configuration files 435
configuration layers 922
configuration management 921
configuration schema files 280
ConfigurationAccess 924f., 930
ConfigurationProvider 924, 926
ConfigurationUpdateAccess 924, 926, 933
Connection 801, 809, 870
connection pooling 818
ConnectionPool 818
connections 809
Connector 78
connectWithCompletion() 812
const [UNOIDL] 189
constant groups 141
constant groups) 45
constrained [property flag] 186
container

enumeration container 50
container window 328
containers 95
controller 330
controller object 338
Controllers 344
ControlShape 883
Corba 319
CORBA 106
CORBA IDL 63
core interfaces 194
cppumaker 178, 192, 284
createInstance() 199
createInstanceWithArguments() 200, 209, 228

createInstanceWithArgumentsAndContext() 200, 209,
228

createRegistryServiceFactory() 290
createStatement() 827
cursor 968
CustomPresentationAccess 688
cyclic references 104

D
15.3 data source 926

connecting to 926
using 928

Data Source Administration [dialog] 794
DataAwareControlModel 892
database 791
database design 846
Database Management System (DBMS) 827
DatabaseContext 794
DataDefinition 811
DataSource 796
DBMS features 866
DCOM 170
dcomcnfg.exe 170
DDL 848
debugging 215
defaultBootstrap_InitialComponentContext() 286
DefaultControl 884
defining

service 185
DefinitionContainer 798
DeleteRows 831
deployment options 278
descriptor pattern 863
design mode 879
design patterns 321
Desktop 333, 899
desktop environment 325
desktop frame 326
desktop object 326, 336
Diagram 706
11.5.2 dialog controls 771

check box 772
combo box 774
command button 771
currency field 778
date field 777
file control 779

1042 OpenOffice.org 1.1 Developer's Guide • June 2003

formatted field 778
group box 776
image control 771
label field 772
line 777
list box 774
numeric field 778
option button 772
pattern field 778
progress bar 776
scroll bar 775
text field 773
time field 777

11.5.1 dialog handling 768
dialog as control container 769
getting the dialog model 769
showing a dialog 768

dialog library container index file 785
dialog library index file 785
dialog properties 770
dialog-lb.xml 785
dialog-lc.xml 785
dictionaries 435
dictionaries (custom) 435
Dim3DDiagram 716
4.7.4 disable commands 270

at runtime 273
configuration 272

disabled 957
dispatch communication 374
6.1.6 dispatch framework 230, 330f., 367

dispatch process 369
processing chain 368
status information 369

dispatch framework 327
dispatch interception 373
dispatch process

dispatch results 373
dispatching a command 372
getting a dispatch object 370
listening for context changes 372

dispose() 200
DisposedException 33, 75, 107, 121
Documents

closing 360
loading 352

target frame 358
URL Parameter 357

loading [example] 359
printing 367

storing 365
double 45, 182
double-checked locking 321
Draw 651
9 drawing document 651

creating 655
exporting 657
loading 655
page handling 662
page partitioning 663
printing 659
shapes 663
storing 656

DrawingDocumentDrawView 700f.
DrawPage 662, 686, 690
driver

Adabas 814
ADO 814
dBase 814
Flat file format (csv) 814
JDBC 814
Mozilla addressbook 815
ODBC 3.5 814

Driver 814, 869
DriverManager 812
dynamic link libraries 193

E
enum 190
enumeration types 45
enums 116, 141
error 188
event 824
event listeners 97
event names 429
EventObject 824
events 97, 399

OnCloseApp 434
OnFocus 430
OnLoad 429
OnModifyChange 430
OnNew 429
OnPrepareUnload 430
OnPrint 430
OnSave 429
OnSaveAs 429
OnSaveAsDone 429
OnSaveDone 430

Chapter 17 Accessibility 1043

OnStartApp 434
OnUnfocus 430
OnUnload 430

exception 73, 430
Exception 98, 115, 127, 142, 164
exception [UNOIDL] 188
exception handling 98, 142
exceptions 115, 164
executeUpdate() 829, 850
exit 334
export filter 404, 418
extended type detection 408
external icons 435

F
FadeEffect 690
FillProperties 676
filter 409

configuring 412
deep detection 424
export 404
filter section 422
flat detection 424
import 404
loading 406
media descriptor 407
options 411
PocketWord 422
properties 415
storing to a URL 406
type section 422
XML filter detection 423

filter development 418
filters 435
first() 837
float 45, 182
form

data awareness 888
filtering and sorting 891
sub forms 889

Form 882, 888
Form Components 886
form document

focussing controls 880
locating controls 880

FormComponent 886
FormComponents 881
FormControlModel 883, 886

Forms 877
frame loader 328, 409

number formats 426
properties 418

frame object 326
Frame-Controller-Model (FCM) 327
Frames 339

actions 341
active frame 342
assigning windows 350
creating 350
creating [example] 351
current component 342
custom name 340
Frame Hierarchies 340, 351
Frame setup 340
frames supplier 351
status indicator 343
sub-frames 343
top-level frame 341

framework API 325

G
Gallery database 435
generic communication 367
GenericDrawPage 699
getCatalogs() 847
getCatalogTerm() 846
getColumns() 807, 847
getComposedQuery() 803
getConnection() 812
getConnectionWithInfo() 813
getDatabaseProductVersion() 846
getDate() 834
getDriverMajorVersion() 846
getDriverMinorVersion() 846
getFilter() 803
getIdentifierQuoteString() 848, 850
getImplementationId() 225
getImplementationName() 198
getMaxCharLiteralLength() 847
getMaxColumnsInTable() 847
getMaxConnections() 847
getMaxRowSize() 847
getMaxStatementLength() 847
getMaxTablesInSelect() 847
getMetaData() 870
getNumericFunctions() 873

1044 OpenOffice.org 1.1 Developer's Guide • June 2003

getOrder() 803
getPrimaryKeys() 847
getProcedureColumns() 848
getProcedures() 848
getProcedureTerm() 846
getQuery() 803
getRow() 837
getSchemas() 847
getSchemaTerm() 846
getServiceFactory() 205
getSQLKeywords() 847
getString() 834
getStringFunctions() 873
getStructuredFilter() 803
getSupportedServiceNames() 199
getTables() 806, 847
getTypes() 198, 225
getUDTs() 848
getURL() 846
getUserName() 846
Gnome access bridge 958
Gnome Accessibility API 957f.
GNU make [command] 178
GraphicExportFilter 657
Gregorian calendar 384
Group 861
GroupDescriptor 866
GroupShape 674
GSS-API 451
GUI event 332

H
header files 192
help files 435
Hindi 386
Hiragana 385
home directory 441
HTMLForm 888
hyper 45, 182
hyperlink 975
hypertext document 975
hyphenator 397

I
idlc 178, 192, 284

idlcpp 178
image 974
implementation name 198
import filter 404, 418
Impress 651
incompatibly 277
index 865
index entries 386
index service 857
IndexColumn 856
indirectly compatibly 277
initialize() 210
intercepting context menus 375
interface 38, 112

core interfaces 194
defining 182
implementing own interfaces 204

interface [instruction] 185
interfaces 65
internationalization 383
interprocess connection 121
isAfterLast() 837
isBeforeFirst() 837
isFirst() 837
isLast() 837
ISO-3166 387
ISO-639 387

J
jar files 177
Java 296
Java

language binding 107
mapping of any 110
mapping of constants 116
mapping of enums 116
mapping of exceptions 115
mapping of interface 112
mapping of method parameters 112
mapping of module 112
mapping of sequence 112
mapping of structs 114
service manager 107
type mappings 109

Java Accessibility API, 957
Java archive files 279
javamaker 178, 192, 284
job execution environment 230

Chapter 17 Accessibility 1045

4.7.2 jobs 243
arguments 248
asynchronous 247
configuration data 251
environment 248
execution environment 245
implementation 246
initialization 248
installation 253
lifetime control 246
returning results 250
supported events 255
synchronous 247
wrapper object 246

JScript 145

K
Kerberos 451
Key 859
key strokes 975
keyboard 957
KeyColumn 856
KeyRule 859
KeyType 859

L
language bindings 106
last() 837
LDAP 791
libraries

application libraries 783
application library container 783
storage 782
with password protection 784
without password protection 784

library deployment 787
LineProperties 676
linguistic API 393
listener 143, 959
listener interfaces 97
listening mode 75
live mode 879
locale dependent data 383
locking (double-checked) 321
long 45, 182

M
make [command] 178
MAPI 791
maybeambiguous [property flag] 186
maybedefault [property flag] 186
maybevoid [property flag] 186
media descriptor 420
method parameters 112
MIDL 63
mode

design mode 879
live mode 879

model object 338
model-view paradigm 877
Model-View-Controller (MVC) 327, 768
Models 346

active controller 347
modified status 347
module 112
module: [instruction] 181
modules 72
monitor 957
mouse 957
moveToCurrentRow() 838
moveToInsertRow() 838
multi paths 434
multi- threaded 321
multimedia files 435
mutex 321

N
next() 833, 836
nullsAreSortedHigh() 846
nullsAreSortedLow() 846
number formats

applying 427
managing 426

O
object identity 106
office component 338
office component 330
office components 326
OLE 146
OLE Automation Bridge 297

1046 OpenOffice.org 1.1 Developer's Guide • June 2003

OLE2Shape 707
OleApplicationRegistration 174
OleBridgeSupplier2 172
OleBridgeSupplierVar1 174
OleObjectFactory 174
oneway call 77
onstants 116
optional [property flag] 186

P
password cache 454
path

list of paths 442
part of a path 442
single path 442

path settings service 434
path substitution service 441
path variables 441
patibly 277
patterns (user-defined) 435
pipe 420
pkchkg 243
pkgchk 178, 276, 278, 787
Plugins 435
PolyPolygonBezierDescriptor 669
predefined queries 800
prepareCommand() 845
prepareStatement() 844
preprocessing 180
presentation document

animations and interactions 691
custom slide show 688
graphics styles 695
loading 684
page formatting 699
presentation effects 690
presentation styles 697
printing 685
settings 687, 698
slide transition 690
zooming 701

previous() 836
printer 957
PrinterDescriptor 659
printing

page breaks 544
print areas 544
print settings 543

scaling 544
PrintOptions 659
property 38
property [instruction] 185
PropertySet 698
4.7.1 protocol handler 230, 232

C++ 236
configuration 241
installation 243
Java 235

Python components 279
PyUNO 297, 314

Q
query 798
Query 801
QueryComposer 801
QueryDefinition 798
queryInterface() 197

R
rdbmaker 178, 284
readonly [property flag] 186
refreshRow() 842
regcomp 178, 227, 237, 283
regcomp (tool) 316
regcompare 284
regfilter.bas 413
regfilter.ini 413
registration 214
registry 149
registry database 192, 206, 214, 217, 227
regmerge 178, 192, 283f.
regview 178
relative() 837
release() 197, 224
remote calls 77
removable [property flag] 186
request 368
ResultColumn 832
ResultSet 826, 830
ResultSet cursor 833
ResultSetMetaData 843
return values 152
rfc1510 451

Chapter 17 Accessibility 1047

rfc2743 451
RotationDescriptor 672
RowSet 792, 820, 889
run() 201
Runtime Environment 106
RuntimeException 98, 115, 127, 142, 164

S
SAX 420
scalar functions 873
screen magnifier 957
screen reader 957
script type 384
script- lb.xml 785
script- lc.xml 785
sdb module 801
SDBC 791
SDBC driver 868
SDBCX 851
selection 967, 972
sequence 48, 72, 112
sequence [UNOIDL] 187
service [instruction] 185
service implementations 70
4.5.6 service manager 84, 148, 209

bootstrapping 286
dynamically modifying 288
special configurations 288

Service Manager 34
service manager component 148
Servicemanager 33, 75, 121, 130
ServiceManager 84, 107, 148
services 38, 67
setFilter() 803
setOrder() 803
setQuery() 803
Shape 667, 691
ShapeCollection 674
shapes

Bezier shapes 669
binding 674
combining 674
connectors 682
drawing properties 676
glue points 682
grouping 674
inserting files 684

layer handling 683
moving 672
navigating 684
ordering 674
rectangle shape 665
rotating 672
scaling 672
shadow 682
shape types 666
shearing 672
transforming 673

shared libraries 177, 276, 279
short 45, 182
shutdown process 334
simple screen reader 961
Single Factory 205
single path 434
Single Sign-On API 450
singleton [instruction] 191
singletons 73
soffice 75, 107
Software Development Kit (SDK) 178
spellcheck 435
spellchecker 396
spreadsheet

add-ins 646
spreadsheet add- ins 434
8 spreadsheet document 535

cell
annotations 571
errors 569
formulas 569
properties 569
styles 633
text content 570

cell range 551, 562
cells 569
columns 559
copying cell ranges 561
creating 538
document model 535
drawpage 537
filter options 540
inserting cells 561
loading 538
moving cell ranges 561
naming 561
page breaks 561
printing 543
properties 560

1048 OpenOffice.org 1.1 Developer's Guide • June 2003

rows 559
saving 539
service manager 536
services 549
sheet cell 555
spreadsheets container 536
8.4.1 styles 632

page 634
SQL 791
SQL statement 827
SQLQueryComposer 803
SSO (Single Sign-On) 450
SSO password cache 454
SSR 961
Star Database (SDB) 792
Star Database Connectivity (SDBC) 791f.
Star Database Connectivity Extension (SDBCX) 792
StarOffice 5.x 326, 336
Statement 827
states 973
StockDiagram 717
storesMixedCaseQuotedIdentifiers() 850
string 45, 182
struct 71
structs 114, 140
supportsAlterTableWithDropColumn() 847
supportsANSI92EntryLevelSQL() 847
supportsBatchUpdates() 847
supportsCoreSQLGrammar() 847
supportsFullOuterJoins() 847
supportsMixedCaseQuotedIdentifiers() 847
supportsPositionedDelete() 847
supportsService() 199
supportsStoredProcedures() 847
supportsTableCorrelationNames() 847
synchronous call 77
system abstraction layer 119
system pointer 331

T
Table 805
tables 805
tables

database tables 535
spreadsheets 535
text tables 535

temp- files 435

templates 435
terminate listener 334
terminate office 334
7 text document 455

auto text 471
block user interaction 531
bookmarks 501
chained text frames 513
character properties 473
columns 529
control characters 468
controller 531
cursor properties 479
document model 455
embedded objects 514
endnotes 507
footnotes 507
graphic objects 514
hyperlink properties 478
index marks 505
indexes 502
inserting text files 471
line numbering 527
link targets 531
loading 461
model cursor 459
number format 527
outline numbering 524
paragraph numbering 524
paragraph properties 473
printing 463
redline 517
reference marks 506
ruby text 518
saving 462
search and replace 480
shape objects 509
sorting 471
7.4.1 styles 518

character styles 520
frame styles 521
numbering styles 521
page styles 521
paragraph styles 521

text field 495
text frame 512
text section 527
view cursor 459
visible cursor 459, 533
visible cursor position [code sample] 459

Text Indices 968

Chapter 17 Accessibility 1049

text tables 483
accessing existing tables 495
autoformatting 489
charting 489
inserting 490
naming 489
properties 489
sorting 489

text type 967
TextProperties 676
Thai 386
thesaurus 398, 403
thread 321
thread identity 77
thread synchronization 120
threads 120
toolbar 435
toolkit 331
TransactionIsolation 866
transient [property flag] 186
trivial component 330
trivial components 326
type detection 408

extended type detection 408
type library files 279
TypeClass 64
TypeDetection.xcu 419f.
TypeInfo 207

U
UAA 957
UCB 899
14.4 UCB API 902

accessing content 903
content commands 904
content properties 905
content provider proxies 918
copying contents 914
creating contents 911
deleting contents 913
documents 909
folders 907
instantiating the UCB 903
linking contents 914
moving contents 914
preconfigured UCBs 917
UCP registration information 915
unconfigured UCBs 915

UCP 899
unicode type 384
Uniform Resource Identifier 899
union 191
Universal Content Broker 899
Universal Content Provider 899
UniversalContentBroker 899, 903
uno 178, 290
3 UNO 63

Basic 128, 296
binary UNO 299
bootstrapping 300
Bridge 299
bridging language 298
C++ 117, 296
coding styles 321
collections 95
component context 84
component loader 300
components 177
containers 95
design patterns 321
event listeners 97
event model 97
events 97
3.3.7 exception handling 98

runtime exceptions 99
user-defined exceptions 98

interface bridge 299
interface proxy 299
interprocess connection

asynchronous call 77
closing a connection 81
connection aware client [example] 82
creating the bridge 80
importing an object 76
interprocess bridge 77
listening mode 75
oneway call 77
opening a connection 78
synchronous call 77
thread identity 77
UNO URL 76

interprocess connections 75
Java 296
Java language binding 107
language bindings 106, 298
language object 298
lifetime of UNO objects 100
listener interfaces 97
object bridge 299

1050 OpenOffice.org 1.1 Developer's Guide • June 2003

object identity 106
object proxy 299
propagation of component contexts 87
proxy 298
Reflection API 306
runtime environment 106
service manager 84
target environment 298
target language 298
using UNO interfaces 89
weak objects 104
weak references 104

UNO access bridge 958
UNO Accessibility API 957
UNO Executable 290
UNO IDL 63
UNO package structure 279
UNO Runtime Environment 106
UNO URL 76
UnoControl 878
UnoControlModel 878, 886
4.2 UNOIDL 179

array 191
attributes 182
comments 190
const 71, 189
constants 72, 189
enum 72, 190
error 188
exception 73, 188
generating source code 192
inheritance 188
interfaces 65
modules 72
operations 184
preprocessing 180
sequence 72, 187
service

defining 185
services 67

including properties 69
referencing interfaces 68
referencing other services 70

simple types 64
singleton [instruction] 191
singletons 73
struct 71, 187
type any 65
union 191

UNOIDL compiler 180

UnoUrlResolver 33, 75, 107, 121
unsigned hyper 45, 182
unsigned long 45, 182
unsigned short 45, 182
updateFloat() 839
updateRow() 839
URE (UNO runtime environment) 106
URI 899
User 863, 865
user settings 435
user-defined colors 435
user-defined patterns 435
UserDescriptor 865
usesLocalFilePerTable() 846
usesLocalFiles() 846

V
VB Script 145
View 861
Visual Basic 145
void 182

W
weak objects 104
weak references 104
window 339
Window

interfaces 349
window handle 375
window peer 339
Windows Script Components 170
Windows /Java access bridge 958
work folder 435
working directory 441

X
XAcceptor 78
XAccessibleAction 974
XAccessibleComponent 966
XAccessibleContext 964
XAccessibleEditableText 968
XAccessibleEventBroadcaster 970
XAccessibleEventListener 971
XAccessibleExtendedComponent 967

Chapter 17 Accessibility 1051

XAccessibleHyperlink 975
XAccessibleHypertext 975
XAccessibleImage 974
XAccessibleKeyBinding 975
XAccessibleRelationSet 972
XAccessibleSelection 972
XAccessibleStateSet 973
XAccessibleTable 969
XAccessibleText 967
XAccessibleValue 974
XAggregation 194, 201
XBookmarksSupplier 797, 804
XBoundComponent 894
XBreakIterator 385, 390
XBridgeFactory 78
XCalendar 384, 389
XCharacterClassification 384, 389
XChartData 708
XChartDataArray 708
XChild 901
XCollator 385, 391
XColumnsSupplier 804, 807, 831
XCommandPreparation 811, 845
XCommandProcessor 901
XCommandProcessor2 901
XCompletedConnection 796, 812
XComponent 100, 194, 200, 208
XComponentContext 33, 75, 84, 107, 121
XConnector 78
XContent 901
XContentCreator 901
XContentEnumerationAccess 85
XCustomPresentationSupplier 688
XDatabaseMetaData 846, 871
XDatabaseParameterBroadcaster 891
XDatabaseParameterListener 891
XDataDescriptorFactory 802
XDataSource 812
XDrawPageDuplicator 662
XDrawPages 662
XDrawPagesSupplier 704
XDriver 869
XDriverManager 813
XEnumerationAccess 95
XEventListener 97, 143, 167, 208
XExtendedCalendar 384
XExtendedIndexEntrySupplier 386
XFastPropertySet 91

XFlushable 797
XForm 888
XIndexAccess 95
XIndexContainer 95
XIndexEntrySupplier 386, 392
XInitialization 194, 200, 210
XInputSequenceChecker 386
XInterface 41, 89, 100, 194, 196, 203, 207, 220, 224
XLayerManager 683
XLoadListener 889
XLocaleData 384, 386
XMain 194, 201, 290
XML based filter 418
XML file format 418
XML filter adaptor 418
xml2cmp 178
XMultiComponentFactory 33, 75, 84, 107, 121
XMultiHierarchicalPropertySet 936
XMultiPropertySet 91
XMultiServiceFactory 84
XNameAccess 95
XNameContainer 95
XNamed 684
XNativeNumberSupplier 385, 392
XNumberFormatCode 384
XOutParameters 867
XPooledConnection 818
XPresentation 686f.
XPrintable 659
XPropertyContainer 901
XPropertySet 42, 91
XPropertySetInfo 91
XPropertyState 91, 886
XQueryDefinitionsSupplier 796, 798
XRefreshable 718
XRename 802
XResultSet 836
XResultSetAccess 826
XResultSetMetaData 843
XRow 834
XRowLocate 831
XRowSetApproveBroadcaster 824, 896
XRowSetApproveListener 824
XRowSetListener 824
XRowUpdate 838
XSelectionSupplier 700
XServiceInfo 194, 198f., 203, 221
XShapeCombiner 674

1052 OpenOffice.org 1.1 Developer's Guide • June 2003

XShapeGrouper 674
XSQLQueryComposer 803
XSSOAcceptorContext 452
XSSOInitiatorContext 451
XSSOManager 451
XSSOManagerFactory 451
XStorable 656
XStyle 695
XTabControllerModel 888
XTableChartsSupplier 703, 707

XTablesSupplier 804, 806
XTransliteration 385, 391
XTypeProvider 194, 197, 203, 208, 220, 225
XUnoTunnel 194, 201
XUnoUrlResolver 33, 75, 107, 121
XUser 863
XViewDataSupplier 701
XWeak 100, 126, 194, 199, 203, 220
XWindowPeer 946
XYDiagram 706

Chapter 17 Accessibility 1053

