
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

A Fully Abstract Semantics for a Version of
Synchronous Concurrent Constraint

Programming

by

Jean-Marie Jacquet
Luboš Brim

David Gilbert
Mojmír Křetínský

FI MU Report Series FIMU-RS-99-08

Copyright c© 1999, FI MU December 1999

A Fully Abstract Semantics for a Version of
Synchronous Concurrent Constraint

Programming�

Jean-Marie Jacquet
Dept.of Comp.Sci., University of Namur, Belgium

jmj@info.fundp.ac.be

Luboš Brim
Faculty of Informatics, Masaryk University Brno, Czech Republic

brim@fi.muni.cz

David Gilbert
Dept.of Comp.Sci., City University, London, U.K.

drg@soi.city.ac.uk

Mojmír Křetínský
Faculty of Informatics, Masaryk University Brno, Czech Republic

mojmir@fi.muni.cz

Abstract

Concurrent constraint programming is classically based on asynchronous
communication via a shared store. In previous work ([1, 2]), we presented
a new version of the ask and tell primitives which features synchronicity,
our approach being based on the idea of telling new information just in the
case that a concurrently running process is asking for it. We turn in this
paper to a semantic study of this new framework, called Scc.

It is first shown to be different in nature from classical concurrent con-
straint programming and from CCS, a classical reference in traditional con-
currency theory. This suggests the interest of new semantics for Scc. To
that end, an operational semantics reporting the steps of the computations
is presented. A denotational semantics is then proposed. It uses mono-
tonic sequences of labelled pairs of input-output states, possibly contain-
ing gaps, and ending – according to the logic programming tradition – with
marks reporting success or failure. This denotational semantics is proved
to be correct with respect to the operational semantics as well as fully ab-
stract.

�L. Brim and M. Křetínský thank the Grant Agency of the Czech Republic, grant 201/97/0456,
for supporting their research.

1

1 Introduction

As a consequence of being a generalisation of previous proposals for concur-
rent logic programming languages (Concurrent Prolog, Parlog, GHC, etc.), con-
current constraint programming has naturally inherited one of their main fea-
tures: the asynchronous character of the communication. This is obtained by ask
primitives blocking when the information on the store is not complete enough
to entail the asked constraints. Following these lines, a natural way of obtain-
ing synchronous communication in concurrent constraint programming is to
force the reduction of ask and tell primitives to synchronise. Specifically, our
approach considers tell primitives as lazy producers of information and views
ask primitives as consumers of this information. From this point of view, a
tell operation is reduced when an ask operation requires the told information.
Moreover, the reduction of the two primitives is performed simultaneously.
However, there is no reason to block ask and tell primitives on information
which is already present. Consequently, stress is put on the novelty of the
information and hence any tell (c) and ask (c) operations whose constraint
argument c is entailed by the current store are reduced without partners.

This framework, called Scc , is presented in [1, 2] and its expressiveness
has been demonstrated through the coding of a variety of examples. It has been
argued that one advantage over related work such as [12, 8, 6], which introduce
synchronisation by special operators and not by altering the behaviour of tell
and ask primitives, is that Scc permits the specification of on what information
the synchronisation should be made, rather than with whom. Synchronisation
in Scc is thus data-oriented as opposed to process-oriented.

In order to motivate its interest and to substantiate the need for novel treat-
ments, it is worth stressing the behavioural difference of Scc with, on the one
hand, traditional concurrent constraint programming, as exemplified in the cc
family of languages ([12]), and, on the other hand, traditional concurrent pro-
gramming models, as exemplified by CCS ([9]).

It has been argued in [4] that the main difference between CCP and CCS is
that complementary actions do not synchronise in CCP. This property is due to
the fact that telling a constraint never suspends in cc. In contrast, the action of
telling a constraint may suspend until an ask can make use of it. A synchroni-
sation similar to that in CCS is thus produced. However, this synchronisation
does not hold in Scc in the case that the told or asked constraints are entailed
by the current contents of the store. A novel kind of synchronisation is thus
achieved.

Major differences appear between the three frameworks. It is to be expected
that these differences call for new treatments as well. In order to formalise
our reasoning somewhat, let us turn to the example given in [4]. There CCS
and CCP are compared by interpreting the action a as telling the constraint
x = a, and the co-action a as asking the constraint x = a. To keep our notations
consistent, we shall use “+” for the non-deterministic choice operator and “;”
for the sequential composition operator.

2

Example 1 (Differentiating CCP and CCS (from [4])) Let A1 = (a; b) + (a; c) +

(a; d) and A2 = (a; b) + (a; (c + d)): In any compositional semantics for CCS these
two processes must be distinguished. Indeed, they behave differently under the con-
text A = a; (b + c): The process A1 can deadlock, by choosing the third alternative
of the choice, while A2 cannot. However, in cc , both A1 and A2 have the same be-
haviour. The process A2 can deadlock by choosing the second alternative, because A
can independently decide to produce y = b (after x = a).

Example 2 (Differentiating CCP and Scc) Using the processes A, A1, A2 of the
above example, the processes A1 and A2 are also distinguished by A in Scc for the
same reason as in CCS.

This example illustrates the difference between Scc and cc. Stated in other
terms, in the CCP paradigm, since the tell operation is asynchronous, the choice
guarded by tell(a) is a local choice whereas, since the tell operation is synchronous
in Scc , this choice is global in Scc .

Nevertheless, synchronisation is only forced in Scc in the case that a pro-
cess tries to tell information which is not already entailed by the store. Other-
wise, it can proceed asynchronously. This fact is used subsequently to differ-
entiate CCS and Scc .

Example 3 (Differentiating CCS and Scc) Using again the above processes A, A1,
A2, let B1 = b; A1 and B2 = b; A2: In CCS, these two processes can be distinguished
by the process B = b; A for the reasons exposed in Example 1. However, in Scc , both
processes have the same behaviour. The process B2 can now deadlock by choosing the
second alternative because A can now independently proceed by the first alternative as
y = b is already entailed by the store.

The distinction between Scc and CCS thus appear to be more subtle than
the distinction between CCP and CCS. The choice guarded by tell is actually
a “mixture” of global and local choice. The choice depends upon actions per-
formed and upon the results of the past behaviour of the system, i.e. upon the
constraint contained in the store.

The major contribution of this paper consists in a new fully abstract deno-
tational for Scc . For the ease of presentation, we shall focus on a restricted
version, called Rscc , where, as opposed to the full version, synchronous com-
munication is performed only between one tell primitive and one ask primi-
tive. It is worth noting that the above examples rely on this restricted form of
communication. Moreover, finite goals are only treated here by noting that our
results can be extended to recursion using classical techniques such as the ones
discussed in [7] and [10].

The rest of the paper is organised as follows. Section 2 describes informally
this restricted version, called Rscc . Section 3 presents the basic operational
semantics O. Section 4 studies the denotational semantics, which is proved
correct in section 5 and fully abstract in section 9 thanks to properties discussed
in sections 6, 7, and 8.

3

2 The Language Scc

2.1 The constraint system

As in [14], the constraint system underlying Rscc consists of any system of
partial information that supports the entailment relation. Precisely, we assume
given a set C of assertions. Each assertion, called an elementary constraint,
provides partial information about the state of affairs. By adopting the nota-
tion Pf (C) to denote the set of finite subsets of S, we can thus formally define
constraint systems as follows.

Definition 1 A simple constraint system is a structure (C;`) where C is a non-
empty denumerable set of tokens, also called primitive constraints or more simply
constraints, and `� Pf (C)�C is a relation, called the entailment relation, satisfying
the following properties: for any �; � 2 Pf (C) and any c 2 C,

i) if c 2 � then � ` c
ii) if � ` d for any d 2 � and if � ` c then � ` c.

The relation ` is extended to Pf (C)�P f (C) by stating � ` � iff � ` c for any c 2 �.

Of course, in practice, the relation ` should be decidable and as efficient as
possible. Since the issues of how to actually resolve constraints are orthogonal
to our concerns, we shall hide the set C and the relation ` as parameters of our
theory and assume them to be given in the sequel.

Two properties worth observing are that the extended entailment relation
is reflexive and transitive.

Proposition 2 The relation `: Pf (C)� Pf (C) is reflexive and transitive.

Proof Immediate.

Another property, useful for further developments, consists of a particu-
lar application of the reflexivity and transitivity properties of the entailment
relation.

Proposition 3 For any �; � 2 Pf (C), for any c 2 C, if � � � and if � ` c then � ` c.

Proof By reflexivity of the entailment relation, � ` �. It follows from the tran-
sitivity of ` that � ` c.

Usually, stores are thought of as entailment closures and are defined as ele-
ments of constraint systems as follows.

Definition 4 The elements of a constraint systems (C;`) are those subsets � of C
such that c 2 � whenever � ` c for some finite subset � of �. Given � 2 Pf (C), the
element generated by �, noted �̃, is defined as the set fc 2 C : � ` cg.

4

Note that, by reflexivity and transitivity of the entailment relation, the set
�̃ is also fc : � ` c; � finite subset of �g. The next property establishes that
entailment closures can be constructed incrementally.

Proposition 5 For any c 2 C and any � 2 Pf (C),

g� [fcg = fd 2 C : � ` d; � finite subset of �̃ [fcgg:

Proof If e 2 g� [fcg then � [fcg ` e. As � � �̃ by reflexivity of `, the set
� [fcg is a finite subset of g� [fcg. It follows that � [fcg qualifies as one
of the subsets � of the proposition and consequently that e 2 fd 2 C : � `

d; � finite subset of �̃ [fcgg:
Conversly, assume � ` d for some finite subset � of �̃ [fcg. Let � \ �̃ =

fe1; � � � ; epg. For i = 1; � � � ; p, one has � ` ei by definition of �̃. Therefore,
� [fcg ` � by reflexivity of `. It follows, by transitivity, that � [fcg ` d, and,
consequently, that d 2 g� [fcg.

In the classical concurrent constraint setting, telling a constraint consists of
adding that constraint to the current store and of generating the entailment clo-
sure of this new set. Moreover, asking a constraint consists of checking whether
the constraint belongs to the current store.

As any computation starts with the empty store, any store of any computa-
tion is actually of the form �̃ with � the (finite) set of constraints already told.
Asking the constraint c then amounts to checking whether � ` c holds. Simi-
larly, the store obtained by updating � is, by proposition 5, g� [fcg.

In these conditions, we prefer to use finite sets of constraints and the entail-
ment relation instead of entailment closures and set operators. Consequently,
we define stores as follows.

Definition 6 Define the set of stores, Sstore, as the set Pf (C).

A property will be required in order to build a fully abstract semantics for
the Rscc language. It is not guided by the synchronous nature of the language
but rather is motivated by the need to find, at some point of a computation,
constraints which are not entailed by the current store and which do not affect
the rest of the computation. Technically speaking, this basically reduces to
requiring that the considered constraint system is not degenerated in the sense
that a finite subset of C entails all the constraints of C.

This leads to the following assumption. Note that it holds for most practical
constraint systems.

Assumption 7 (Separating assumption) For any finite set of constraints S, there
is a constraint c such that

1) S 6` c
2) for any s 2 S and any store �, if � [fcg ` s then � ` s.

5

This assumption will be applied subsequently in the following equivalent
form.

Assumption 8 For any finite set of constraints S and any store �, there is a constraint
c such that

1) � [S 6` c.
2) for any s 2 S and any store �, if � [fcg j= s then � j= s.

2.2 The parametric language

As already said, the language description is parametric with respect to (C;`);
and so are the semantic constructions presented.

Definition 9 Goals G 2 Sgoal are defined by the following grammar

G ::= 4 j NG
NG ::= ask(c) j tell(c) j NG; NG j NG + NG j NG k NG

where c denotes an elementary constraint.

The constant 4 denotes the empty goal which is only capable of terminat-
ing successfully.

The atomic constructs ask(c) and tell(c) act on a given store in the
following way: as usual, given a constraint c , the process ask(c) succeeds
if c is entailed by the store; otherwise it is suspended. However, the process
tell(c) , of a more lazy nature than the classical one, succeeds only if c is (al-
ready) entailed by the store; in this case it does not modify the store. Otherwise,
it suspends. It is resumed by a concurrently suspended ask(d) operation pro-
vided that the conjunction of c and of the store entails d. In that case, both the
tell and the ask are resumed synchronously and at the same time the store
is atomically augmented with the constraint c .

The sequential composition G1; G2 is executed by first performing G1 and,
if G1 terminates successfully, by performing G2.

The nondeterministic choice G1 + G2 selects between the execution of G1

or G2 respectively provided that the selected component can perform at least
one step of a computation (i.e. it is not immediately suspended). It is a global
nondeterministic choice since the selection of a component can be influenced by
the (global) store and by the environment of the process as well.

The parallel composition G1 k G2 represents both the interleaving (merge)
of the computation steps of the components involved (provided they can do
these steps independently of each other) and also synchronisation: this is the
case of the tell and ask described above.

6

Asynchronous tell

(Ta) <tell(c); �>
�
�! <4; �>

if f� ` cg

Asynchronous ask

(Aa) <ask(c); �>
�
�! <4; �>

if f� ` cg

Synchronous tell

(Ts) <tell(c); �> c
�! <4; � [fcg>

if f� 6` cg

Synchronous ask

(As) <ask(c); �>
c

�! <4; � [fcg>

if f� 6` cg

Figure 1: Rscc transition system: atomic operations

3 The operational semantics O

3.1 The transition system

The operational semantics of Rscc is defined in Plotkin’s style [11] by means of
a labelled transition system. The configurations to be considered are composed
here of the goal to be solved coupled to the current store, respectively repre-
senting here the statement under consideration and the computed values. The
labels are used to indicate communication with the environment. No commu-
nication or a silent communication is indicated by � . Following the notations
of section 1, a tell action gives rise to a c label where c is the told constraint
whereas a get action gives rise to a c label where c is the asked constrained.

Moreover, we define Seconst as the set of constraints c and of their comple-
ments c and take the convention that c actually denotes c. We also extend the
overline notation on sets by defining S = fs : s 2 Sg, for any set S � Seconst.

7

Definition 10 Let Slabel be the set composed of a fresh symbol � and the elements of
Secons. Define the transition relation ! as the smallest relation of (Sgoal� Sstore)�
Slabel � (Sgoal � Sstore) satisfying the rules of Figures 1 and 2. To simplify the
presentation, the following relaxation of the syntax is employed in rules (I), (P), and
(S): there, it is understood that when G00, G0

1, G0

2 are empty goals, target goals of the
form 4 jj G�, G� jj 4, 4; G� with G� 6= 4 actually denote G� and similarly that
4 jj 4 actually represent 4. Simplifications are of course operated accordingly.

Choice

(C)
<G; �>

l
�! <G00; �00>

<G + G0; �>
l

�! <G00; �00>

<G0 + G; �>
l

�! <G00; �00>

Independent parallelism

(I)
<G; �>

l
�! <G00; �00>

<G k G0; �>
l

�! <G00 k G0; �00>

<G0 k G; �>
l

�! <G0 k G00; �00>

Synchronous communication

(P)
<G1; �>

c
�! <G0

1; �
0> <G2; �>

d
�! <G0

2; �
00>

<G1 k G2; �>
�
�! <G0

1 k G0

2; �
0>

<G2 k G1; �>
�
�! <G0

2 k G0

1; �
0>

if
�
�
0 ` d

	

Sequential composition

(S)
<G; �>

l
�! <G00; �00>

<G; G0; �>
l

�! <G00; G0; �00>

Figure 2: Rscc transition system: composed goals

Notation 11 To ease the reading, we use the notation

<G; �>
l

6�!

8

to indicate the fact that there are no G0 and �0 such that <G; �>
l

�! <G0; �0>.
Moreover, we employ

<G; �>
l

�!

to indicate the fact that there are such G0 and �0.

The size of a goal, understood as the number of ask and tell primitives it
contains, decreases after each computation step. This fact will be heavily used
in subsequent proofs by induction.

Definition 12 Define the size of a goal G as the number of tell and ask primitives it
is composed of. This size is subsequently denoted as size(G).

Proposition 13 For any goals G, G0, any label l, and any stores �, �0, if <G; �>
l

�!

<G0; �0>, then size(G0) < size(G).

Proof By recursive reasoning on the structure of G.

The transition is image-finite, as stated by the following proposition.

Proposition 14 For any goal G and any store �, the set f(G0; l; �0) : <G; �>
l

�!

<G0; �0>g is finite.

Proof Simple verification.

It is possible to further characterize the transitions in terms of the pres-
ence of tell and ask primitives in goals. For instance, a transition <G; �>

c
�!

<G0; �> can only occur if G contains a tell(c) primitive in a place ready to
be executed. The notion of top-context, defined next, specifies those places.
Goals under reduction are obtained therefrom by replacing the place holders
of top-context by tell and ask primitives. This corresponds to a first notion
of application, called direct application, and denoted by single square brackets.
The goals resulting from the transition step are basically obtained by replacing
these primitives by the empty goal and by simplifying the goals as mentioned
in definition 10. Choice makes however an exception. In that case, only one
branch of the choice is to be considered. This leads to a second notion of appli-
cation, called reduced application, and denoted by double square brackets.

Definition 15 Top-contexts are functions inductively defined on goals by the follow-
ing rules.

i) A nullary top-context is associated with any goal. It is represented by the goal
and both applications are defined as the constant mapping from Sgoal0 to this
goal with the goal as value.

ii) 2 is a unary top-context that, for both applications, map any goal to itself. Thus,
for any goal G, 2[G] = 2[[G]] = G.

9

iii) If tc is an n-ary top-context and if G is a goal, then (tc;G), (tc+G), and (G+tc)
are n-ary top-contexts. Their applications are defined as follows : for any goals
G1, . . . , Gn,

(tc; G)[G1; � � � ;Gn] = tc[G1; � � � ;Gn]; G
(tc; G)[[G1; � � � ;Gn]] = tc[[G1; � � � ;Gn]]; G

(tc + G)[G1; � � � ;Gn] = tc[G1; � � � ;Gn]

(tc + G)[[G1; � � � ;Gn]] = tc[[G1; � � � ;Gn]]

(G + tc)[G1; � � � ;Gn] = tc[G1; � � � ;Gn]

(G + tc)[[G1; � � � ;Gn]] = tc[[G1; � � � ;Gn]]

iv) If tc1 and tc2 are m-ary and n-ary top-contexts then tc1 k tc2 is a (m+n)-ary
top-context. Its applications are defined as follows: for any goals G1, . . . , Gm+n,

(tc1 k tc2)[G1; � � � ;Gm+n] = (tc1[G1; � � � ;Gm]) k (tc2[Gm+1; � � � ;Gm+n])

(tc1 k tc2)[[G1; � � � ;Gm+n]] = (tc1[[G1; � � � ;Gm]]) k (tc2[[Gm+1; � � � ;Gm+n]])

Proposition 16 Let G and G0 be two goals, l be a label, and � and � be two stores

such that � � �. Then <G; �>
l

�! <G0; �> iff one of the following situations hold
for some top-context tc

1. l = � , � = �, � ` c, G = tc[tell(c)], G0 = tc[[4]]

2. l = � , � = �, � ` c, G = tc[ask(c)], G0 = tc[[4]]

3. l = � , � 6= �, � 6` c, � 6` d, � = � [fcg, � ` d, G = tc[tell(c); ask(d)],
G0 = tc[[4;4]]

4. l = � , � 6= �, � 6` c, � 6` d, � = � [fcg, � ` d, G = tc[ask(d); tell(c)],
G0 = tc[[4;4]]

5. l = c, � 6` c, � = � [fcg, � ` d, G = tc[tell(c)], G0 = tc[[4]]

6. l = c, � 6` c, � = � [fcg, � ` d, G = tc[ask(c)], G0 = tc[[4]]

Proof Assume first that <G; �>
l

�! <G0; �> holds. Let us establish that one
of the six cases hold by structural reasoning on G.

EMPTY GOAL. If G = 4 then <G; �> 6�! and thus the hypothesis is not
verified.

TELL. If G = tell(c) then either rule (Ta) or rule (Ts) has been applied. These
applications correspond to cases 1 and 5, respectively.

ASK. If G = ask(c) then either rule (Aa) or rule (As) has been applied. These
applications correspond to cases 2 and 6, respectively.

SEQUENTIAL COMPOSITION. If G = G1; G2, then rule (S) has been applied. It

follows that <G1; �>
l

�! <G0

1; �>, for some goal G0

1. Since size(G1) < size(G),

10

the induction hypothesis can be applied, which yields one of the cases 1 to 6
where G and G0 are respectively replaced by G1 and G0

1. The thesis then results
from the definition of top-context for sequential goals. For instance, if case 1
applies then G1 = tc[tell(c)] and G0

1 = tc[[4]]. Therefore

G = G1; G2

= tc[tell(c)]; G2

= (tc; G2)[tell(c)]

and

G0 = G0

1; G2

= tc[[4]]; G2

= (tc; G2)[[4]]

The other cases are treated similarly.

CHOICE. If G = G1 + G2 then rule (C) has been applied. It follows that either

<G1; �>
l

�! <G0

1; �> or <G2; �>
l

�! <G0

2; �>. Assume the first case hold, the
second case being treated similarly. Then G0 = G0

1. Since size(G1) < size(G), the
induction can be applied to G1 which yields one of the 6 cases of the thesis but
translated for G1. The thesis then follows from the definition of top-context for
choice-goals as above.

PARALLEL COMPOSITION. If G = G1 jj G2 then either rule (I) or rule (P) has
been applied. Let us examine each of these cases in turn.

Rule (I). If rule (I) has been applied then <Gi; �>
l

�! <G0

i; �>, for i = 1 or
i = 2. Assume i = 1, the case where i = 2 being treated similarly. Then G0 =

G0

1 k G2 and, as before, the induction hypothesis can be applied to <G1; �>
l

�!

<G0

1; �>. The thesis then follows as before by noting that for any n-ary top-
context tc, the structure tc k G2 is also an n-ary top-context such that

(tc jj G2)[G�

1; � � � ;G�

n] = (tc[G�

1; � � � ;G�

n]) jj G2:

(tc jj G2)[[G�

1; � � � ;G�

n]] = (tc[[G�

1; � � � ;G�

n]]) jj G2:

Rule (P). Consider now the application of rule (P). Then assuming the first
alternative of rule (P) — the other one being treated analogously — there are
two constraints c and d such that

<G1; �>
c

�! <G0

1; �>

<G2; �>
overlined
�! <G0

2; �
0>

� ` d:

Since the sizes of G1 and G2 are strictly less than that of G, the induction hy-
pothesis can be applied which yields

G1 = tc1[tell(c)] G0

1 = tc1[[4]] � 6` c � = � [fcg
G2 = tc2[ask(d)] G0

2 = tc2[[4]] � 6` d �0 = � [fdg

11

Define the binary top-context tc as the parallel composition of the unary con-
texts tc1 and tc2 ie

tc[G�

1;G�

2] = tc1[G�

1] k tc2[G�

2]

tc[[G�

1;G�

2]] = tc1[[G�

1]] k tc2[[G�

2]]

Then

G = G1 k G2

= tc[tell(c); ask(d)]

G0 = G0

1 k G0

2

= tc[[4;4]]

Moreover, as noted before, � 6` c, � 6` d, � = � [fcg, and � ` d. Summing up,
case 4 thus holds, which establishes the thesis.

Conversly, assume now that one of the cases 1 to 6 holds and let us struc-
turally on tc and on G.

tc IS UNARY. If tc is unary then cases 1, 2, 5, or 6 can only qualify. Assume case
1 holds; the other cases being treated similarly. Let us reason inductively on
the structure of G.

Tell primitive. If G = tell(c) then rule (Ta) can be applied which yields the
desired transition.

Ask primitive. If G = ask(c) then rule (Aa) can be applied hich yields the
desired transition.

Sequential composition. If G = G1; G2, then tc = tc1; G2 and G1 = tc1[tell(c)]
for some unary top-context tc1. Since the size of G1 is strictly less than the size
of G, the induction hypothesis can be applied to tc1 and G1, which yields the
transition

<G1; �>
l

�! <G0

1; �>

for some goal G0

1. Rule (S) then establishes the thesis.

Choice. If G = G1 + G2, then tc = tc0 + G2 or tc = G1 + tc0. For both equal-
ities, G1 and G2 are of size strictly less than that of G and thus the induction
hypothesis can be applied to G1 or G2, respectively, and to tc0. The thesis then
results from rule (C).

Parallel composition. If G = G1 k G2, then tc = tc1 k G2 or tc = G1 k tc2,
for some unary top-context tc1 or tc2. In both cases, the induction hypothesis
can be applied to G1 and tc1, if the first equality holds, or to G2 and tc2 if the
second equality holds. The thesis then results from rule (I).

tc IS BINARY. If tc is binary then case 3 or 4 is under consideration. Let us focus
on case 3, the other one being treated similarly. Let us reason inductively on
the size and structure of G.

12

In the base case, G must be of the form tell(c) jj ask(d) and the thesis then
results from rules (P), (Ts) and (As).

The cases of G being a sequentially composed goal or a goal composed by
choice is treated first as for tc unary by applying the induction hypothesis and
then by concluding thanks to rules (S) and (C) respectively.

The proof proceeds similarly if G = G1 jj G2 and tc = tc1 jj G2 or tc =
G1 jj tc2 for binary top-contexts but this time by invoking rule (I).

To conclude, let us assume that G = G1 jj G2, tc = tc1 jj tc2 for two unary
top-contexts such that G1 = tc1[tell(c)] and G2 = tc2[ask(d)]. Then, since the
thesis is established for unary top-context, and by considering cases 5 and 6
respectively, one gets

<G1; �>
c

�! <G0

1; �>

<G2; �>
d
�! <G0

2; � [fdg>

for G0

1 = tc1[[4]] and G0

2 = tc2[[4]]. In these conditions, rule (P) can be applied,
which yields

<G; �>
�
�! <G0

; �>

for G0 = G0

1 jj G0

2. The thesis then results from definition 15, in particular from
the equalities

tc[[4;4]] = tc1[[4]] jj tc2[[4]] = G0

1 jj G0

2:

A usual application of proposition 16 will be as follows.

Proposition 17 For any goals G1, G2, any store �, � and any constraint c,
1) if <G1; �>

c
�! <G2; �> then � 6` c and � = � [fcg

2) if <G1; �>
c

�! <G2; �> then � 6` c and � = � [fcg.

Proof Direct consequence of proposition 16.

3.2 The Operational Semantics

Following one of the traditions in concurrency theory, the operational seman-
tics specifies the successive non-hypothetical steps of the computation and
ends with success if the computation reaches the empty goal and with fail-
ure otherwise. Success and failure are respectively indicated by the �+ and ��

marks.

13

Definition 18 Define the operational semanticsOh : Sgoal ! P((Slabel�Sstore)<!�
f�+; �sg) as the following function: for any goal G

Oh(G) = f�1: � � � :�n:�
+ : <G0; �0>

�
�! <G1; �1>

�
�! � � �

�
�! <Gn; �n>;

G0 = G; �0 = �;Gn = 4; n � 0g
[

f�1: � � � :�n:�
� : <G0; �0>

�
�! <G1; �1>

�
�! � � �

�
�! <Gn; �n>

�

6�!;

G0 = G; �0 = �;Gn 6= 4; n � 0g

An alternative recursive definition of the semantics Oh is as follows.

Definition 19 Define the semantics Or
h : Sgoal ! Sstore ! P(Shist) as follows: for

any goal G 6= 4, for any store �,

Or
h(4)(�) = f�+g

O
r
h(G)(�) =

�
f�:h : <G; �>

�
�! <G0; �>; h 2 Or

h(G0)(�)g; if <G; �>
�
�! ;

f��g; otherwise

Proposition 20 For any goal G, Oh(G) = Or
h(G)(�).

Proof Simple verification.

It is here worth noting that the operational semantics O is not composi-
tional. For instance, taking two independent constraints c and d,

O(tell(c)) = O(tell(d)) = f�
�
g

whereas

O(tell(c) k ask(c)) = ffcg:�+g

O(tell(d) k ask(c)) = f�
�
g

The purpose of the next section is precisely to define a compositional se-
mantics for Rscc which is correct with respect to the operational semantics but
which also contains a “minimal” amount of information to be compositional.
In other words, we shall try to define a fully abstract semantics.

4 A denotational semantics

There are two main reasons why the operational semantics O is not compo-
sitional. First, after having made a computation step, a store non necessarily
empty is produced. A compositional semantics should therefore be defined in
order to account for initial stores of any contents. Second, as deduced from
the transition system, the computation of the goal A jj B amounts to interleave
execution steps of A and B. A compositional semantics should thus allow for
the transition steps made by the environment.

14

Following [7], we shall model transition steps in the form of pairs of in-
put and output stores and take as semantic domain, sets of sequences of such
pairs. These sequences possibly contain gaps, accounting for the action of the
environment. Moreover, they will start in any store, allowing previous steps
resulting in a possibly non-empty store. However, in contrast to [7], they are
required to be monotonic in the sense that information cannot be retracted.
Finally, following [3], the deadlock mark �� is generalized to failures for com-
positionality and full abstraction purposes.

4.1 Preliminaries

Before going further, a few notations and concepts are in order.
Telling a constraint not entailed by the current store can be viewed as telling

any weaker constraint not entailed by the current store since, on the one hand,
the update of the store includes the constraint and hence entails weaker con-
straints, and, on the other hand, tell primitives can synchronize with ask op-
erations for weaker constraints. Conversely, any ask operation can be viewed
as asking for stronger constraints. Constraints to be considered as weaker or
stronger are formalized as the following sets c#� and c"�, respectively.

Definition 21 For any goal G and any store �, define

c#� = fd 2 C : � [fcg j= d; � 6j= dg
c"� = fd 2 C : � [fdg j= cg

Proposition 22 For any constraint c, d, and any store �,

i) if d 2 c#� then d#� � c#�
ii) if d 2 c"� then d"� � c"�

Proof The proposition results from the transitivity of the entailment relation.

For technical reasons, failure sets will be required to be closed in the follow-
ing way.

Definition 23 The set S � Seconst is closed with respect to the store � if it enjoys
the following conditions: for any constraint c,

1. c"� � S when c 2 S

2. c#� � S when c 2 S.

Proposition 24 For any constraint c and any store � such that � 6` c, the set Seconstn
(c#�) is closed wrt �.

15

Proof On the one hand, e"� � Seconst n (c#�), for any e 2 Seconst n (c#�).
Indeed, let f 2 e"� for such an e. Then, by definition 21, � [ffg ` e. Suppose
that, by contradiction, that f 2 c#�. Then, by definition 21, � [fcg ` f . It
follows that � [fcg ` e and thus that e 2 c#�, which is impossible.

On the other hand, as Seconstn (c#�) � C, it holds that e#� � Seconstn (c#�),
for any e 2 Seconst n (c#�).

Proposition 25 For any constraint c and any store � such that � 6` c, the set Seconstn
(c"�) is closed wrt �.

Proof On the one hand, as Seconst n (c"�) � C, it holds that e"� � Seconst n
(c"�), for any e 2 Seconst n (c"�).

On the other hand, consider e 2 (Seconst n c"�) and f 2 e#�. If f 2 c"� then
� [ffg ` c. Moreover � [feg ` f since f 2 e#�. It follows that � [feg ` c which
contradicts the fact that e 62 c"�.

Proposition 26 Let (Si)i2I be a family of subsets of Seconst closed wrt the store �.
Then

T
i2I Si is closed wrt �.

Proof Simple verification.

The closure of a set X is defined in a constructive way as follows.

Definition 27 For any set X � Seconst and any store �, the closure of X with respect
to �, noted bX�, is defined as follows:

bX� =
[
fx"� : x 2 Xg [

[
fx#� : x 2 Xg

Proposition 28 For any subset X � Seconst and any store �,

i) X n fx 2 X : � ` xg � bX�:

ii) if X is closed wrt �, then bX� � X:

Proof Point ii) results directly from definitions 23 and 27.
Point i) is established in two steps as follows. On the one hand, since, for

any constraint x, fxg ` x and thus � [fxg ` x one has x 2 x"�. It follows that

fx 2 Xg �
[
fx"� : x 2 Xg � bX� (1)

On the other hand, by similar reasonings x 2 X#� whenever � 6` x. Hence,

fx 2 X : � 6` xg �
[
fx#� : x 2 Xg � bX� (2)

Point i) then results from the inclusions 1 and 2.

16

Proposition 29 Let X be a subset of Seconst, � be a store and c be a constraint.
1) if c 2 X then c 2 bX�

2) if c 2 X and if � 6` c then c 2 bX�.

Proof This is a direct consequence of proposition 28.

Proposition 30 For any store �, and any subsets X, Y of Seconst, if X � Y thenbX� � bY�.

Proof Indeed, by definition 27 and the inclusion X � Y,

bX� =
[
fx"� : x 2 Xg [

[
fx#� : x 2 Xg

�

[
fy"� : y 2 Yg [

[
fy#� : y 2 Yg

= bY�

Proposition 31 For any subsets X;Y � Seconst such that X � Y, for any store �, if
Y is closed wrt � then bX� � Y.

Proof Indeed, in the conditions of the proposition, by proposition 30, bX� �bY�. By proposition 28, bY� � Y and consequently, bX� � Y.

Proposition 32 For any X � Seconst and any store �, the set bX� is closed wrt �.

Proof According to definition 23, the proposition is established by proving
the two following properties:

i) if c 2 bX� then c"� � bX�

ii) if c 2 bX� then c#� � bX�

For property i), if c 2 bX� then there is x 2 X such that c 2 x"� and thus
such that � [fcg ` x. Moreover, for any y 2 c"�, one has � [fyg ` c and
consequently � [fyg ` x. It follows that y 2 x"� and therefore that y 2 bX�.

For property ii), if c 2 bX� then there exist x 2 X such that c 2 x#� and thus
� [fxg ` c with � 6` c. Let y 2 c#�. One has � [fcg ` y and � 6` y. It follows
that �[fxg ` y and thus, in view of � 6` y that y 2 x#�. Hence y 2 x#� � bX�.

The notions of steps, ending marks, and sequences of histories are formal-
ized as follows. It is worth noting that, according to the intuition provided by
the operational semantics, steps are required to be monotonic in the sense that
the output state contains more information than the input state. Denotational
histories will be required to be monotonic as well. However, for simplicity
purposes, we do not require this property for histories, in general.

17

Definition 33
1) Define the set of computational steps Sstep as follows:

Sstep = f(�; l; �) : �; � 2 Sstore; l 2 Slabel; � � �g

2) Define the set of ending marks Smark as follows:

Smark = f�
+
g [(f��g � P(Seconst))

As usual, for suggestivity purposes, elements of f��g�P(Seconst) are rewrit-
ten as ��(X) instead of (��;X).

3) Define the set of histories Shist as the set

Shist = (Sstep)<! � (Sstore� Smark)cl

where the cl subscript indicates that pairs (�; ��(X)) for X closed with respect
to � should only be considered as failing ending marks.

Notation 34 Let S be a set of histories of Shist and p be a sequence of (Sstep)<!. Then

S[p] = fh : p:h 2 Sg

Sa = fh : h = (�; �; �):h0 2 Sg
Sh = fh : h = (�; l; �):h0 2 S; l 6= �g

S+ = fh : h = (�; �+) 2 Sg
S� = fh : h = (�; ��(X)) 2 Sg

Notation 35
1) Let h be an history of Shist. Then

init(h) =

8<:
� if h = (�; l; �):h0

� if h = (�; �+)
� if h = (�; ��(X))

Moreover, for any set S of histories and any store �, we denote by S*� the set
fh 2 S : � � init(h)g.

2) Let, for n � 0 and � 2 Smark, the history

h = (�1; l1; �1): � � � :(�n; ln; �n):(�n+1; �)

be in Shist. Then

dif f (h) = [
n
i=1

(�i n �i)

const(h) = �1 [� � � [�n [�n+1 [�1 [� � � [�n

Abusing notations, we shall lift diff and const to sets of histories in the expected
manner: for any set S of histories of Shist,

18

dif f (S) =
[
fdif f (h) : h 2 Sg

const(S) =
[
fconst(h) : h 2 Sg

Monotonic, continuous, and real histories are formalized as follows.

Definition 36 An history h 2 Shist is monotonic iff it has the form

(�0; l0; �0): � � � :(�n�1; ln�1; �n�1):(�n; �)

with � 2 Smark and, �i�1 � �i, for i = 1; � � � ; n.

Definition 37 An history h 2 Shist is continuous iff it has the form

(�0; l1; �1):(�1; l2; �2): � � � :(�n�1; ln; �n):(�n; �)

with � 2 Smark. In that case, eh denotes the following sequence of stores

eh = �1: � � � :�n:�
0

where

�0 =

�
�+ if � = �+

�� if � = ��(X) for some set X

Definition 38 An history h 2 Shist is real iff it has the form

(�1; �; �1): � � � :(�n; �; �n):(�n+1; �)

with � 2 Smark.

Definition 39 To any history h = (�1; l1; �1): � � � :(�n; ln; �n):(�n+1; �) (possibly non
real), we associate a goal, called the complementor, defined as 4 if all the li’s are � or
otherwise from g1; � � � ; gn by removing all the occurrences of the empty goal. There,

gi =

8<:
4 if li = �

ask(c) if li = c
tell(c) if li = c:

This goal is subsequently denoted by Co(h). Moreover, the associated real history

(�1; �; �1): � � � :(�n; �; �n):(�n+1; �)

is called the completed history of h whereas the history

(�1; l1; �1): � � � :(�n; ln; �n):(�n+1; �)

obtained by complementing the labels, is called the negative of h. These histories are
respectively denoted as hc and hn. Note that we extend, here and in the sequel of the
paper, the convention c = c for any constraint c by the convention that � actually
stands for � .

19

4.2 Semantic domain

Definition 40 The semantic domain is defined as the set Sdhist of monotonic histories.
Its elements are subsequently called denotational histories or, more often, histories,
when the context allows this abuse of language.

4.3 Denotational semantics

The semantic domain being specified, defining a compositional semantics con-
sists in, on the one hand, specifying the meaning of elementary statements and,
on the other hand, providing an operator at the semantic level for each syntatic
operator. We start by this last task in the following subsection. A composi-
tional semantics is defined next. It is called denotational in view of its compo-
sitionality property and the fact that it is defined on denotations only without
reference to a transition system. It is also proved correct with respect to the
history operational semantics Oh. Finally it is established to be fully abstract.

4.3.1 Semantic operators

There are three operators to combine elementary goals: sequential composi-
tion, parallel composition, and choice. Let us examine each of them in turn.

Sequential composition. Since the semantic histories may include gaps and
start on any input store, composing the meaning of two subgoals amounts to
concatenating their histories. This is achieved by the following operator, where
further care is taken, in the expected manner, for monotonicity and the termi-
nation marks.

Definition 41 Define e; : P(Sdhist) � P(Sdhist) ! P(Sdhist) as the following
function: for any subsets S1, S2 of Sdhist,

S1 e; S2 = fh1:h2 : h1:(�1; �
+) 2 S1; h2 2 S2; �1 � init(h2)g

[fh1:(�; ��(X)) : h1:(�; ��(X)) 2 S1g

For subsequent results, it is worth providing an equivalent recursive defi-
nition of the operator e; .

Definition 42 Define e;r : Sdhist � Sdhist ! P(Sdhist) as the following function:
for any histories h1, h2 of Sdhist,

h1 e;r h2 =

8<:
(�1; l1; �1):(hr e;r h2) if h1 = (�1; l1; �1):hr
h2 if h1 = (�1; �

+) and �1 � init(h2)
h1 if h1 = (�1; �

�(X))

Proposition 43 For any subsets S1, S2 of Sdhist,

S1 e; S2 = fh1 e;r h2 : h1 2 S1; h2 2 S2g:

Proof Simple verification.

20

Parallel composition. Parallel composition is modelled in an interleaving
fashion. Consequently, composing in parallel two semantic histories amounts
to take their merge or to synchronize their steps. Again care has to be taken to
termination marks, as formalized below.

Definition 44 Define the parallel composition of two histories as the function ekh :
Sdhist� Sdhist ! P(Sdhist) according to their form by means of the following equal-
ities. There, � stands either for �+ or ��(X), for some set X.

(�1; l1; �1):h1
ekh (�2; l2; �2):h2 =

f(�1; l1; �1):h : h 2 h1
ekh (�2; l2; �2):h2; �1 � �2g

[f(�2; l2; �2):h : h 2 (�1; l1; �1):h1
ekh h2; �2 � �1g

[f(�; �; �):h : �1 = �2 = �; l1 = c1; l2 = c2;

� = �1 = � [fc1g; �2 = � [fc2g; � ` c2;

h 2 h1
ekh h2g

[f(�; �; �):h : �1 = �2 = �; l1 = c1; l2 = c2;

� = �2 = � [fc2g; �1 = � [fc1g; � ` c1;

h 2 h1
ekh h2g

(�1; l1; �1):h1
ekh (�2; �2) =

(�2; �2) ekh (�1; l1; �1):h1 = f(�1; l1; �1):h : h 2 h1
ekh (�2; �2)g

(�1; �1) ekh (�2; �2) =

8>>>>>>>><>>>>>>>>:

f(�1; �
+)g; if �1 = �2 and �1 = �2 = �+;

f(�1; �
�(X))g; if �1 = �2; �1 = �+; �2 = ��(X);

f(�1; �
�(X))g; if �1 = �2; �1 = ��(X); �2 = �+;

f(�1; �
�(X))g; if �1 = �2; �1 = ��(X1); �2 = ��(X2);

X � X1 \ X2;X closed wrt �1

(Seconst n X1) \ (Seconst n X2) = ;;

;; otherwise.

A word on this definition is in order. The first equality involves four sets.
The first two correspond to making, as first step, the first step of the histories
under consideration. The last two correspond to synchronizing the first steps
of these histories.

The second equality basically asserts that ending marks should be com-
bined only and to postpone this combination after all the steps of the two his-
tories have been treated. This is suggested by the operational semantics: when
one of the goals ends, the other concurrent goal has to continue.

The last equality deals with combining ending marks. As a general rule,
marks may be combined only if they agree on their input store. Note that this
is actually no problem since denotational histories may include gaps.

21

All the cases should be clear, except the fourth one. The intuition behind it
relies on the standard meaning of failures. A mark of the form ��(X) expresses
that the considered goal is suspended and that, whatever its environment is,
it is unable to perform the actions of X. Note that X is not required to contain
all the actions that the goal cannot do; it is simply a subset of the set of these
actions. Therefore, for two goals G1 and G2 suspended and unable to perform
the actions of X1 and X2, respectively, the parallel composition G1 jj G2 is
unable to perform the actions of X1 \ X2 and is suspended provided G1 and
G2 cannot synchronize. A sufficient condition for that is obtained by noting
that the actions that Gi (i = 1; 2) can do are in the complement of Xi, namely
in Seconst n Xi. Consequently, if telling a constraint is understood as telling all
the new constraints it subsumes, then G1 and G2 synchronize only if there is
an action of Seconst nX1 which is the complement of an action of Seconst nX2 ie
only if

(Seconst n X1) \ (Seconst n X2) 6= ;:

More generally, if X�

i (i = 1; 2) is exactly the set of all actions that Gi cannot
do (and not simply a subset), then, following the same reasoning, it is easy to
establish that G1 and G2 do not synchronize if and only if

(Seconst n X�

1) \ (Seconst n X�

2) 6= ;:

Moreover, the set of actions that G1 jj G2 cannot perform is included in X�

1\X�

2 .

Definition 45 Define the parallel composition of two sets of histories as the natural
lifting of function ekh , namely as the function ek : P(Sdhist) � P(Sdhist) !

P(Sdhist) defined as follows: for any subset S1, S2 of Sdhist,

S1
ek S2 =

[
fh1
ekh h2 : h1 2 S1; h2 2 S2g

As we shall see in section 5, the following notations provide a convenient
means to rewrite the parallel composition of histories.

Definition 46 Define the operators

k : P(Sdhist)� P(Sdhist) ! P(Sdhist)

 : P(Sdhist)�P(Sdhist) ! P(Sdhist)
� : P(Sdhist)�P(Sdhist) ! P(Sdhist)

as follows: for any subsets S1, S2 of Sdhist,

S1 k S2 = f(�1; l1; �1):h : (�1; l1; �1):h1 2 S1; h2 2 S2; h 2 h1
ekh h2;

�1 � init(h)g

S1
 S2 = f(�; �; �):h : (�; c; �):h1 2 S1; (�; d; �0):h2 2 S2; h 2 h1
ekh h2;

c; d 2 C; � = � [fcg; � ` d; �0 = � [fdgg
[f(�; �; �):h : (�; c; �):h2 2 S2; (�; d; �0):h1 2 S1; h 2 h1

ekh h2;

c; d 2 C; � = � [fcg; � ` d; �0 = � [fdgg

S1 � S2 =
[
f(�1; �1) ekh (�2; �2) : (�1; �1) 2 S1; (�2; �2) 2 S2g

22

Proposition 47 For any subsets S1, S2 of Sdhist,

S1
ek S2 = S1 k S2 [S2 k S1 [S1
 S2 [S1 � S2

Proof The proposition results from definitions 44, 45, 46 as well as from the
monotonic property of denotational histories: for any subsets S1; S2 � Sdhist,

S1
ek S2 =

[
fh1
ekh h2 : h1 2 S1; h2 2 S2g

=
[
f(�1; l1; �1):h1

ekh (�2; l2; �2):h2 : (�1; l1; �1):h1 2 S1;

(�2; l2; �2):h2 2 S2g

[

[
f(�1; l1; �1):h1

ek (�2; �2) : (�1; l1; �1):h1 2 S1; (�2; �2) 2 S2g

[

[
f(�1; �1) ekh (�2; l2; �2):h2 : (�1; �1) 2 S1; (�2; l2; �2):h2 2 S2g

[

[
f(�1; �1) ekh (�2; �2) : (�1; �1) 2 S1; (�2; �2) 2 S2g

= f(�1; l1; �1):h : h 2 h1
ekh (�2; l2; �2):h2;

�1 � �2; (�1; l1; �1):h1 2 S1; (�2; l2; �2):h2 2 S2g

[f(�2; l2; �2):h : h 2 (�1; l1; �1):h1
ekh h2;

�2 � �1;

(�1; l1; �1):h1 2 S1;

(�2; l2; �2):h2 2 S2g

[f(�; �; �):h : �1 = �2 = �; l1 = c1; l2 = c2;

� = �1 = � [fc1g; �2 = � [fc2g; � ` c2; h 2 h1
ekh h2;

(�1; l1; �1):h1 2 S1; (�2; l2; �2):h2 2 S2g

[f(�; �; �):h : �1 = �2 = �; l1 = c1; l2 = c2;

� = �2 = � [fc2g; �1 = � [fc1g; � ` c1; h 2 h1
ekh h2;

(�1; l1; �1):h1 2 S1; (�2; l2; �2):h2 2 S2g

[f(�1; l1; �1):h : h 2 h1
ekh (�2; �2); (�1; l1; �1):h1 2 S1; (�2; �2) 2 S2g

[f(�2; l2; �2):h : h 2 (�1; �1) ekh h2; (�1; �1) 2 S1; (�2; l2; �2):h2 2 S2g

[

[
f(�1; �1) ekh (�2; �2)(�1; �1) 2 S1; (�2; �2) 2 S2g

= f(�1; l1; �1):h : h 2 h1
ekh (�2; l2; �2):h2; �1 � �2; (�1; l1; �1):h1 2 S1;

(�2; l2; �2):h2 2 S2g

[f(�1; l1; �1):h : h 2 h1
ekh (�2; �2); (�1; l1; �1):h1 2 S1; (�2; �2) 2 S2;

�1 � �2g

[f(�2; l2; �2):h : h 2 (�1; l1; �1):h1
ekh h2; �2 � �1; (�1; l1; �1):h1 2 S1;

(�2; l2; �2):h2 2 S2g

[f(�2; l2; �2):h : h 2 (�1; �1) ekh h2; (�1; �1) 2 S1; (�2; l2; �2):h2 2 S2;

�2 � �1g

[f(�; �; �):h : �1 = �2 = �; l1 = c1; l2 = c2;

� = �1 = � [fc1g; �2 = � [fc2g; � ` c2; h 2 h1
ekh h2;

(�1; l1; �1):h1 2 S1; (�2; l2; �2):h2 2 S2g

23

[f(�; �; �):h : �1 = �2 = �; l1 = c1; l2 = c2;

� = �2 = � [fc2g; �1 = � [fc1g;

� ` c1; h 2 h1
ekh h2;

(�1; l1; �1):h1 2 S1; (�2; l2; �2):h2 2 S2g

[

[
f(�1; �1) ekh (�2; �2)(�1; �1) 2 S1; (�2; �2) 2 S2g

= f(�1; l1; �1):h : (�1; l1; �1):h1 2 S1; h2 2 S2; h 2 h1
ekh h2;

�1 � init(h)g

f(�2; l2; �2):h : (�2; l2; �2):h2 2 S2; h1 2 S1; h 2 h1
ekh h2;

�2 � init(h)g

[f(�; �; �):h : (�; c1; �):h1 2 S1; (�; c2; �
0):h2 2 S2; h 2 h1

ekh h2;

� = � [fc1g; �
0 = � [fc2g; � ` c2g

[f(�; �; �):h : (�; c1; �
0):h1 2 S1; (�; c2; �):h2 2 S2; h 2 h1

ekh h2;

� = � [fc2g; �
0 = � [fc1g; � ` c1; g

[

[
f(�1; �1) ekh (�2; �2)(�1; �1) 2 S1; (�2; �2) 2 S2g

= S1 k S2 [S2 k S1 [S1
 S2 [S1 � S2

Choice. Choice is modelled as a global choice, namely a goal formed from the
choice of two goals can proceed as any of its components. As before care has to
be taken to termination marks. The composed goal fails if the two components
do so; it succeeds if at least one of the two components does.

Definition 48 Define e+ : P(Sdhist) � P(Sdhist) ! P(Sdhist) as the following
function: for any subset S1, S2 of Sdhist,

S1 e+ S2 = Sa
1 [Sh

1 [Sa
2 [Sh

1 [S+
1 [S+

2 [(S�1 \ S�2)

4.3.2 Definition

Given the operators e; , ek , and e+ , defining the denotational semantics
amounts to specifying the semantics of the basic constructs tell and ask, and
of the empty goal. This is achieved according to the intuition given by their
operational behavior.

Consequently, a tell(c) operation makes a silent step (�; �; �) if the input
store � entails c. It makes an hypothetical step (�; c; �[fcg) in case � 6` c. More-
over, in that case, a failure mark ��(X) is registered for any subset X of actions
that tell(c) cannot perform i.e. any set disjoint from fd 2 C : � [fcg j= d; � 6j= dg.

An ask(c) operation has a dual behaviour. It makes a silent step (�; �; �) if
the input store � entails c. Otherwise, it makes an hypothetical step (�; c; � [
fcg) hoping for the presence of a concurrent tell(d) operation with � [fdg `

24

c. Moreover, as before, a mark ��(X) is enclosed for those actions that ask(c)
cannot perform i.e. for all the actions except c"�.

All these silent and hypothetical steps are followed by a successfully ending
mark (�; �+) however for all the stores � w � only in order to maintain the
monotonicity property of denotational histories.

Definition 49 Define the denotational semantics as the following function
Dh : Sgoal ! P(Sdhist): for any constraint c, for any goals G1, G2,

Dh(tell(c)) = f(�; �; �):(�; �+) : �; � 2 Sstore; � ` c; � � �g

[f(�; c; �[fcg):(�; �+) : �; � 2 Sstore; � 6` c; � [fcg � �g

[f(�; ��(X)) : � 2 Sstore; � 6` c;X � (Seconst n c#�);
X closed wrt �g

Dh(ask(c)) = f(�; �; �):(�; �+) : �; � 2 Sstore; � ` c; � � �g

[f(�; c; � [fcg):(�; �+) : �; � 2 Sstore; � 6` c; � [fcg � �g

[f(�; ��(X)) : � 2 Sstore; � 6` c;X � (Seconst n c"�);
X closed wrt �g

Dh(4) = f(�; �+) : � 2 Sstoreg
Dh(G1; G2) = Dh(G1)e; Dh(G2)

Dh(G1 jj G2) = Dh(G1) ek Dh(G2)

Dh(G1 + G2) = Dh(G1) e+ Dh(G2)

4.3.3 Semantics of concurrent tell and ask operations

As an example, the denotational semantics of tell(c) jj ask(c) is given in the
following proposition. It is composed of four kinds of histories

1. those which start in a store � entailing c, in which case the tell(c) and
ask(c) operations proceed asynchronously and hence are interleaved in
the histories;

2. those which start in a store � which does not entail c, in which case

(a) either the ask(c) operation synchronizes with another tell operation
and then the tell(c) operation proceeds asynchronously,

(b) or the tell(c) operation synchronizes with another ask operation, and
then the tell(c) operation proceeds asynchronously,

(c) or the tell(c) and ask(c) operations synchronize together.

Proposition 50 For any constraint c,

Dh(tell(c) jj ask(c))

25

= f(�; �; �):(�0; �; �0):(�; �+) : �; �0; � 2 Sstore; � ` c; � � �0; �0 � �g

[f(�; c; � [fcg):(�0; �; �0):(�; �+) : �; �0; � 2 Sstore; � 6` c;
� [fcg � �0; �0 � �g

[f(�; c; � [fcg):(�0; �; �0):(�; �+) : �; �0; � 2 Sstore; � 6` c;
� [fcg � �0; �0 � �g

[f(�; �; � [fcg):(�; �+) : �; � 2 Sstore; � 6` c; � [fcg � �g

Proof Indeed, by definition 49, Dh(tell(c) jj ask(c)) collects all the histories
obtained by composing the histories of Dh(tell(c)) and Dh(ask(c)) according to
the operator ek . Nine cases need to be considered for combining each of the
three forms of histories of the two denotational semantics.

1. For �; �0; �; �0 2 Sstore such that � ` c; �0 ` c; � � �; �0 � �0

(�; �; �):(�; �+) ekh (�0; �; �0):(�0; �+) =8>><>>:
f(�; �; �):(�0; �; �0):(�; �+)g; if � = �0; � � �0

f(�0; �; �0):(�; �; �):(�; �+)g; if � = �0; �0 � �

f(�; �; �):(�; �; �):(�; �+)g if � = �0; � = �0

;; otherwise

2. For �; �0; �; �0 2 Sstore such that � ` c; �0 6` c; � � �; �0 � �0

(�; �; �):(�; �+) ekh (�0; c; �0 [fcg):(�0; �+) =�
f(�0; c; �0 [fcg):(�; �; �):(�; �+)g; if �0 [fcg � �; � = �0

;; otherwise

Note that (�; �; �):(�0; c; �0[fdg):(�; �+) does not appear in the above com-
position since this would require that � � �0 and consequently that �0 ` c.

3. For �; �0; � 2 Sstore such that � ` c; �0 6` c; � � �

(�; �; �):(�; �+) ekh (�0; ��(X)) = ;

since the presence of (�; �; �):(�; ��(X)) would require that � = �0, conse-
quently, that � � �0, and thus that �0 ` c.

4. For �; �0; �; �0 2 Sstore such that � 6` c; �0 ` c; � � �; �0 � �0,

(�; c; � [fcg):(�; �+) ek (�0; �; �0):(�0; �+) =�
f(�; c; � [fcg):(�0; �; �0):(�; �+)g; if � [fcg � �0; � = �0

;; otherwise.

Note that (�0; �; �0):(�; c; � [fcg):(�; �+) does not appear above since this
would require that � ` c.

26

5. For �; �0; �; �0 2 Sstore such that � 6` c; �0 6` c; � � �; �0 � �0,

(�; c; � [fcg):(�; �+) ekh (�0; c; �0 [fcg):(�0; �+) =�
f(�; �; � [fcg):(�; �+)g if � = �0; � = �0;

;; otherwise

Note that, an interleaving of the form (�; c; �[fcg):(�0; c; �0 [fcg):(�0; �+)
is not possible since this would imply that �[fcg � �0 and therefore that
�0 ` c. Similarly, (�0; c; �0 [fcg):(�; c; �[fcg):(�; �+) cannot appear.

6. For �; �0; � 2 Sstore such that � 6` c; � [fcg � �; �0 6` c; � � �

(�; c; � [fcg):(�; �+) ekh (�0; ��(X0)) = ;

since getting a non-empty parallel composition requires �0 = � and there-
fore that �0 ` c.

7. For �; �0; �0 2 Sstore such that � 6` c; �0 ` c; �0 � �0

(�; ��(X)) ekh (�0; �; �0):(�0; ��(X)) = ;

since getting a non-empty set requires � = �0 and therefore that � ` c.

8. For �; �0; �0 2 Sstore such that � 6` c; �0 6` c; �0 [fcg � �0,

(�; ��(X)) ek (�0; c; �0 [fcg):(�0; �+) = ;

since getting a non-empty set requires � = �0 and therefore � ` c.

9. For �; �0 2 Sstore such that � 6` c, �0 6` c, X � (Seconstnc#�), X0 � (Seconstn
c"�),

(�; ��(X)) ek (�0; ��(X0)) = ;

since getting a non-empty set requires that (SeconstnX)\ (Seconst n X0) =
;. However,

(Seconst n X) \ (Seconst n X0) � c#� \ c"�
� fcg

by definitions 21, 49, and the fact that � 6` c.

Summing up, assuming for the ease of reading that all the occurences of �,
�0, and � are constrained to belong to Sstore,

27

Dh(tell(c)) ek Dh(ask(c))
= f(�; �; �):(�0; �; �0):(�; �+) : � ` c; � � �0; �0 � �g

[f(�0; �; �0):(�; �; �):(�; �+) : �0 ` c; �0 � �; �0 � �g;

[f(�; �; �):(�; �; �):(�; �+) : � ` c; � � �g

[f(�0; c; �0 [fcg):(�; �; �):(�; �+) : �0 6` c; �0 [fcg � �; � � �g

[;

[f(�; c; � [fcg):(�0; �; �0):(�; �+) : � 6` c; � [fcg � �0; �0 � �g

[f(�; �; � [fcg):(�; �+) : � 6` c; � [fcg � �g

[;

[;

[;

[;

= f(�; �; �):(�0; �; �0):(�; �+) : � ` c; � � �0; �0 � �g

[f(�0; c; �0 [fcg):(�; �; �):(�; �+) : �0 6` c; �0 [fcg � �; � � �g

[f(�; c; � [fcg):(�0; �; �0):(�; �+) : � 6` c; � [fcg � �0; �0 � �g

[f(�; �; � [fcg):(�; �+) : � 6` c; � [fcg � �g

5 Correctness

The semantics Dh is compositional by construction. It is also correct with re-
spect to the semantics Oh in the sense that this operational semantics can be
obtained from it. In fact, it is sufficient to take from Dh the real and continuous
histories starting in the empty store to get those produced by Oh.

To establish this result, an intermediate model is first introduced. It has
the flavour of Dh in that it manipulates denotational histories. It has also an
operational flavour in that its definition uses the transition system of section 3.
It is proved to be identical to the denotational semantics Dh. It is then proved
to yield Oh after application of a suitable operator. The expected connection
between Oh and Dh is derived from these two results.

5.1 The intermediate model eOh

A few auxiliary concepts are first required. The set Actions(G; �) is composed of
all the tell and ask operations that G can perform whereas the set Ref usal(G; �)
is composed of all the tell and ask operations that G cannot perform.

Definition 51 Let G be a goal and � be a store. Then define

Actions(G; �) =
S
fc#� : <G; �>

c
�! <G0; �>;G0 2 Sgoal; � 2 Sstore; c 2 Cg

[
S
fc"� : <G; �>

c
�! <G0; �>;G0 2 Sgoal; � 2 Sstore; c 2 Cg

Ref usal(G; �) = Seconst n Actions(G; �)

28

Proposition 52 For any goal G, for any store �, any constraints c1 and c2, if c1; c2 2

Actions(G; �) then � 6` c1 and � 6` c2.

Proof On the one hand, if c1 2 Actions(G; �) then there is a constraint c such
that c1 2 c#�. By definition, this requires that � 6` c1.

On the other hand, if c2 2 Actions(G; �) then there is a constraint c such that

c2 2 c"� and <G; �>
c

�! <G0; �>, for some goal G0 and some store �. It then
follows that � [fc2g ` c and, by proposition 17, that � 6` c. In these conditions,
� 6` c2. Otherwise, from � ` c2 one would derive � ` �[fc2g and consequently,
from the transitivity of the entailment relation and from �[fc2g ` c, one would
then derive � ` c.

Corollary 53 For any goal G, for any store �, any constraint c such that � ` c verifies
c 2 Ref usal(G; �) and c 2 Ref usal(G; �).

Proof This is an immediate consequence of proposition 52.

Proposition 54 For any goal G and any store �, the set Ref usal(G; �) is closed wrt �.

Proof Indeed, by definition 51,

Ref usal(G; �) =
T
fSeconst n c#� : <G; �>

c
�! <G0; �>;G0 2 Sgoal;

� 2 Sstore; c 2 Cg

\
T
fSeconst n c"� : <G; �>

c
�! <G0; �>;G0 2 Sgoal;

� 2 Sstore; c 2 Cg

Therefore, by propositions 24, 25, and 52, for each constraint c involved in
Ref usal(G; �), the sets Seconst n (c#�) and Seconst n (c"�) are closed wrt �. It
follows that Ref usal(G; �) is the intersection of a family of closed sets wrt � and
is thus, by proposition 26, closed wrt �.

Proposition 55 For any non-empty goals G1, G2,

Ref usal(G1; G2; �) = Ref usal(G1; �)

Ref usal(G1 + G2; �) = Ref usal(G1; �) \ Ref usal(G2; �)

Ref usal(G1 k G2; �) = Ref usal(G1; �) \ Ref usal(G2; �)

Proof Indeed, definition 51 and the transition system of figures 1 and 2 in-
duces the following equalities.

29

Actions(G1; G2; �) =
S
fc#� : <G1; G2; �>

c
�! <G; �>;G 2 Sgoal;

� 2 Sstore; c 2 Cg

[
S
fc"� : <G1; G2; �>

c
�! <G; �>;G 2 Sgoal;

� 2 Sstore; c 2 Cg

=
S
fc#� : <G1; �>

c
�! <G�; �>;G� 2 Sgoal;

� 2 Sstore; c 2 Cg

[
S
fc"� : <G1; �>

c
�! <G�; �>;G� 2 Sgoal;

� 2 Sstore; c 2 Cg

= Actions(G1; �):

Moreover, if # stands either for + or k, then

Actions(G1# G2; �) =
S
fc#� : <G1# G2; �>

c
�! <G; �>;G 2 Sgoal;

� 2 Sstore; c 2 Cg

[
S
fc"� : <G1# G2; �>

c
�! <G; �>;G 2 Sgoal;

� 2 Sstore; c 2 Cg

=
S
fc#� : <Gi; �>

c
�! <G�; �>;G� 2 Sgoal;

� 2 Sstore; c 2 C; i = 1; 2g

[
S
fc"� : <Gi; �>

c
�! <G�; �>;G� 2 Sgoal;

� 2 Sstore; c 2 C; i = 1; 2g

= Actions(G1; �) [Actions(G2; �):

Definition 56 Define the intermediate model eOh : Sgoal ! P(Sdhist) as the follow-
ing function: for any goal G 6= 4,

eOh(4) = f(�; �+) : � 2 SstoregeOh(G) = f(�; l; �):h : <G; �>
l

�! <G0; �>; h 2 eOh(G0); � � init(h)g

[f(�; ��(X)) : <G; �>
�

6�! ;X � Ref usal(G; �);X closed wrt �g

5.2 Relating eOh and DheOh and Dh are straightforward to relate for elementary goals. As regards com-
posed goals, a compositional characterization of eOh is required. These two
properties are the subject of the following propositions.

30

Proposition 57 For any constraint c,

eOh(4) = Dh(4)eOh(tell(c)) = Dh(tell(c))eOh(ask(c)) = Dh(ask(c))

Proof Simple verification.

Proposition 58 For any non-empty goals G1 and G2,

eOh(G1; G2) = eOh(G1)e; eOh(G2)eOh(G1 + G2) = eOh(G1) e+ eOh(G2)eOh(G1 k G2) = eOh(G1) ek eOh(G2)

Proof

SEQUENTIAL COMPOSITION. In this case, the proof proceeds by induction on
the size of G1 and by a slight generalization allowing G1 to be empty, in which
case G1; G2 is understood to be G2. For the base case where size(G1) = 0, we
observe that obviously eOh(G2) = eOh(4)e; eOh(G2). Let us now study the induc-
tion case. By definition, eOh(G1; G2) is composed of two sets, which we consider
successively.

On the one hand, the transition rules, the induction hypothesis, and propo-
sition 43 successively lead to the following equalities.

f(�; l; �):h : <G1; G2; �>
l

�! <G0
; �>; h 2 eOh(G0); � � init(h)g

= f(�; l; �):h : <G1; �>
l

�! <G0

1; �>; h 2 eOh(G0

1; G2); � � init(h)g

= f(�; l; �):h : <G1; �>
l

�! <G0

1; �>; h 2 eOh(G0

1)e; eOh(G2); � � init(h)g

= f(�; l; �):h : <G1; �>
l

�! <G0

1; �>; h 2 h1 e;r h2; h1 2 eOh(G0

1);

h2 2
eOh(G2); � � init(h)g

= f(�; l; �):h1 : <G1; �>
l

�! <G0

1; �>; h1 2 eOh(G0

1); � � init(h)ge; eOh(G2)

On the other hand, the transition rules and proposition 43 justify the following
equalities.

f(�; ��(X)) : <G1; G2; �>
�

6�! ;X � Ref usal(G1; G2; �)g

= f(�; ��(X)) : <G1; �>
�

6�! ;X � Ref usal(G1; �)g

= f(�; ��(X)) : <G1; �>
�

6�! ;X � Ref usal(G1; �)ge; eOh(G2)

31

Summing up,

eOh(G1; G2) = f(�; l; �):h1 : <G1; �>
l

�! <G0

1; �>; h1 2 eOh(G0

1);
� � init(h)g

e; eOh(G2)

[f(�; ��(X)) : <G1; �>
�

6�! ;X � Ref usal(G1; �)ge; eOh(G2)

= eOh(G1)e; eOh(G2)

CHOICE. The proof for the choice operator is conducted by inspecting again
the two sets composing eOh(G) for a non-empty goal G. On the one hand, the
transition rules induce the following equalities.

f(�; l; �):h : <G1 + G2; �>
l

�! <G0
; �>; h 2 eOh(G0); � � init(h)g

= [
2
i=1
f(�; l; �):h : <Gi; �>

l
�! <G0

; �>; h 2 eOh(G0); � � init(h)g

= (eOh(G1))a
[(eOh(G1))h

[(eOh(G2))a
[(eOh(G2))h

On the other hand,

f(�; ��(X)) : <G1 + G2; �>
�

6�! ;X � Ref usal(G1 + G2; �)g

= f(�; ��(X)) : <G1; �>
�

6�! ; <G2; �>
�

6�! ;

X � Ref usal(G1; �) \ Ref usal(G2; �)g

= f(�; ��(X)) : <G1; �>
�

6�! ;X � Ref usal(G1; �)g

\ f(�; ��(X)) : <G2; �>
�

6�! ;X � Ref usal(G2; �)g

= (eOh(G1))� \ (eOh(G2))�

To conclude, we observe that, since G1 and G2 are assumed to be non-empty,
then eOh(G1) and eOh(G2) contain no element of the form (�; �+) (see defini-
tion 56) and consequently,

(eOh(G1))+ = (eOh(G2))+ = ;:

The following equalities follow therefrom.

eOh(G1 + G2) = (eOh(G1))a
[(eOh(G1))h

[(eOh(G2))a
[(eOh(G2))h

[[(eOh(G1))� \ (eOh(G2))�]

= (eOh(G1))a
[(eOh(G1))h

[(eOh(G2))a
[(eOh(G2))h

[(eOh(G1))+
[(eOh(G2))+

[[(eOh(G1))� \ (eOh(G2))�]

= eOh(G1) e+ eOh(G2)

PARALLEL COMPOSITION. The proof proceeds by induction on the size of the
composed goal G1 k G2 and by a slight generalization allowing G1 and G2 to

32

be empty, in which case, 4 k 4 is understood to be 4 and, for G non-empty,
4 k G and G k 4 are understood to be G. . The base case where G1 or G2

are empty is proved by the following equalities, which are straightforward to
established: eOh(G) = eOh(4) ek eOh(G) = eOh(G) ek eOh(4).

The induction case is established as follows. On the one hand, applying
successively the transition rules, the induction hypothesis, and definitions 46
and 56 yield the following equalities.

f(�; l; �):h : <G1 k G2; �>
l

�! <G0
; �>; h 2 eOh(G0); � � init(h)g

= f(�; l; �):h : <G1; �>
l

�! <G0

1; �>; h 2 eOh(G0

1 k G2); � � init(h)g

[f(�; l; �):h : <G2; �>
l

�! <G0

2; �>; h 2 eOh(G1 k G0

2); � � init(h)g

[f(�; �; �):h : <G1; �>
c

�! <G0

1; �>;<G2; �>
d
�! <G0

2; �
0>;

h 2 eOh(G0

1 k G0

2); c; d 2 C; � ` d; � � init(h)g

[f(�; �; �):h : <G2; �>
c

�! <G0

2; �>;<G1; �>
d
�! <G0

1; �
0>;

h 2 eOh(G0

1 k G0

2); c; d 2 C; � ` d; � � init(h)g

= f(�; l; �):h : <G1; �>
l

�! <G0

1; �>; h 2 h1
ekh h2; h1 2

eOh(G0

1);

h2 2
eOh(G2); � � init(h)g

[f(�; l; �):h : <G2; �>
l

�! <G0

2; �>; h 2 h1
ekh h2; h1 2

eOh(G1);

h2 2
eOh(G0

2); � � init(h)g

[f(�; �; �):h : <G1; �>
c

�! <G0

1; �>;<G2; �>
d
�! <G0

2; �
0>;

h 2 h1
ekh h2; h1 2 eOh(G0

1); h2 2 eOh(G0

2);
c; d 2 C; � ` d; � � init(h)g

[f(�; �; �):h : <G2; �>
c

�! <G0

2; �>;<G1; �>
d
�! <G0

1; �
0>;

h 2 h1
ekh h2; h1 2 eOh(G0

1); h2 2 eOh(G0

2);
c; d 2 C; � ` d; � � init(h)g

= eOh(G1) k eOh(G2) [eOh(G2) k eOh(G1) [eOh(G1)
 eOh(G2) (3)

On the other hand, let us establish that

f(�; ��(X)) : <G1 jj G2; �>
�

6�! ;X � Ref usal(G1 jj G2; �)g

= eOh(G1)� eOh(G2) (4)

To that end, let us first observe that G1 and G2 being non-empty, by defini-
tion, eOh(G1) and eOh(G2) just contain elements of the form (�; ��(Y)) as ending
constructs (�; �). We thus have to prove that

f(�; ��(X)) : <G1 jj G2; �>
�

6�! ;X � Ref usal(G1 jj G2; �)g

=
[
f(�1; �

�(Y1)) ekh (�2; �
�(Y2)) : <G1; �1>

�

6�! ;Y1 � Ref usal(G1; �1);

<G2; �2>
�

6�! ;Y2 � Ref usal(G2; �2)g

33

In view of definition 44, this amounts to establishing that S1 = S2 where

S1 = f(�; ��(X)) : <G1 jj G2; �>
�

6�! ;X � Ref usal(G1 jj G2; �)g

S2 = f(�; ��(Y)) : Y � Y1 \ Y2;

<G1; �>
�

6�! ;Y1 � Ref usal(G1; �);

<G2; �>
�

6�! ;Y2 � Ref usal(G2; �);

(Seconst n Y1) \ (Seconst n Y2) = ;g

Indeed, let (�; ��(X)) be in S1. The following properties thus hold:

<G1 jj G2; �>
�

6�! and X � Ref usal(G1 jj G2; �)

The first property and the transition rules induce that

<G1; �>
�

6�! and <G2; �>
�

6�!

The second property and proposition 55 imply that

X � Ref usal(G1; �) \ Ref usal(G2; �)

To establish that (�; ��(X)) belongs to S2, it thus remains to be shown that

(Seconst n Ref usal(G1; �)) \ (Seconst n Ref usal(G2; �)) = ;

If this is not the case, then one of the two following cases hold:

1. there is e 2 Seconst n Ref usal(G1; �) such that e 2 Seconst n Ref usal(G2; �)

2. there is e 2 Seconst n Ref usal(G2; �) such that e 2 Seconst n Ref usal(G1; �).

Let us consider the first case, the other being treated similarly. Then, by defini-
tion 51, there are constraints c1, c2, goals G0

1, G0

2, and stores �, �0 such that

� � [fc1g ` e, � 6` e, and <G1; �>
c1
�! <G0

1; �>;

� � [feg ` c2 and <G2; �>
c2
�! <G0

2; �
0>.

Consequently, � [fc1g ` c2 and, by transition rule (P),

<G1 jj G2; �>
�
�! <G0

1 jj G0

2; �>;

which is not possible.
Let us now consider (�; ��(Y)) in S2. Then there are Y1 and Y2 such that

Y � Y1 \ Y2 and Yi � Ref usal(Gi; �) for i = 1; 2. It follows therefrom and from
proposition 55 that

Y � Y1 \ Y2

� Ref usal(G1; �) \ Ref usal(G2; �)

= Ref usal(G1 jj G2; �)

34

Let us now prove that <G1 jj G2; �>
�

6�! . Otherwise, as (�; ��(Y)) 2 S2 and

thus <Gi; �>
�

6�! for i = 1; 2, there should exist goals G01, G0

2, constraints c, d,
and stores �0, �00 such that one of the two following situations hold:

1. <G1; �>
c

�! <G0

1; �
0> and <G2; �>

d
�! <G0

2; �
00> and �0 ` d

2. <G2; �>
c

�! <G0

2; �
0> and <G1; �>

d
�! <G0

1; �
00> and �0 ` d.

Assume the first situation hold; the other one is treated similarly. Then, by
proposition 17, �0 = � [fcg. Moreover, d 2 Seconst n Ref usal(G1; �) and d 2

Seconst n Ref usal(G2; �). Hence, thanks to the inclusions Yi � Ref usal(Gi; �),
i = 1; 2, one has d 2 (Seconst n Y1) \ (Seconst n Y2). This is impossible since, by
hypothesis, this intersection is empty.

The thesis then follows from equalities 3, 4 and from proposition 47:

eOh(G1 jj G2) = f(�; l; �):h : <G1 k G2; �>
l

�! <G0; �>; h 2 eOh(G0);
� � init(h)g

[f(�; ��(X)) : <G1 jj G2; �>
�

6�! ;X � Ref usal(G1 jj G2; �)g

= eOh(G1) k eOh(G2) [eOh(G2) k eOh(G1) [eOh(G1)
 eOh(G2)

[eOh(G1)� eOh(G2)

= eOh(G1) ek eOh(G2)

We are now in a position to relate the semantics eOh and Dh.

Theorem 59 For any goal G, eOh(G) = Dh(G).

Proof The proof proceeds by induction on the size of G. The base cases for
G = 4, G = tell(c), and G = ask(c) are established in proposition 57. The in-
duction case follows from the following reasoning. Let # denote one of the
sequential, parallel, and choice operators. Then, applying successively propo-
sition 58, the induction hypothesis, and definition 49 yield

eOh(G1#G2) = eOh(G1)e#eOh(G2)

= Dh(G1)e#Dh(G2)

= Dh(G1#G2)

35

5.3 Relating eOh and Oh

As already announced, the abstraction function relating the operational and
denotational semantics basically consists of taking the real and continuous his-
tories starting in the empty store and of selecting some elements in the steps.
It turns out that this function allows also to relate the intermediate model eOh
with the operational semantics Oh. It is specified in the following definition. A
recursive characterization is then provided to ease further reasonings.

Definition 60 Define � : P(Shist) ! P(Shist) as follows: for any subset S � Shist,

�(S) = feh : h 2 S; h real and continuous; init(h) = �g:

Definition 61 Define �hist : Sstore ! Shist ! P(Shist) as follows: for any �; �; � 2

Sstore, any l 2 Slabel, any X � Seconst, any h 2 Shist,

�hist(�)((�; �+)) =

�
f�+g; if � = �

;; otherwise

�hist(�)((�; ��(X))) =

�
f��g; if � = �

;; otherwise

�hist(�)((�; l; �):h) =

�
f�:h0 : h0 2 �hist(�)(h)g; if � = � and l = �

;; otherwise

Definition 62 Define �r : Sstore ! P(Shist) ! P(Shist) as the natural lifting of
�hist to sets: for any � 2 Sstore, any S � Shist,

�r(�)(S) = [h2S �hist(�)(h)

Proposition 63 �r(�) = �

Proof Simple verification.

The relationship between the semantics eOh andOh by means of the operator
� is first established on the basis of their recursive characterizations.

Proposition 64 For any store � and any goal G, �r(�)(eOh(G)) = O
r
h(G)(�)

Proof The proof is conducted by induction on the size of G. If G = 4, then

eOh(G) = f(�; �+) : � 2 Sstoreg

and consequently for any store �,

�r(�)(eOh(G)) = f�
+
g:

The thesis then results in this case from the fact that, by definition 19,

Or
h(4)(�) = f�+g:

36

If G 6= ;, then let us first observe that, for a given � 2 Sstore, successively
applying definition 61 and the induction hypothesis and taking into account
the monotonicity of elements of Sstep yield

�r(�)(f(�; l; �):h : <G; �>
l

�! <G0; �>; h 2 eOh(G0); � � init(h)g)

= f�:h0 : <G; �>
�
�! <G0

; �>; h0 2 �r(�)(eOh(G0))g

= f�:h0 : <G; �>
�
�! <G0

; �>; h0 2 Or
h(G0)(�)g

=

�
Or

h(G)(�); if there are G0; �0 such that <G; �>
�
�! <G0; �>

;; otherwise

Moreover,

�r(�)(f(�; ��(X)) : <G; �>
�

6�! ;X � Ref usal(G; �)g) =

(
f��g; if <G; �>

�

6�!

;; otherwise:

Two cases need now to be considered. On the one hand, if <G; �>
�

6�! then

�r(�)(eOh(G)) = ; [f�
�
g = O

r
h(G)(�)

On the other hand, if there are G0, �0 such that <G; �>
�
�! <G0; �0> then

�r(�)(eOh(G)) = O
r
h(G)(�) [; = O

r
h(G)(�)

Summing up, in the two cases, �r(�)(eOh(G)) = Or
h(G)(�), which establishes the

thesis.

eOh and Oh can now be related directly by means of �.

Theorem 65 For any goal G, �(eOh(G)) = Oh(G)

Proof In fact, successively combining propositions 63, 64, and 20 yields

�(eOh(G)) = �r(�)(eOh(G))

= Or
h(G)(�)

= Oh(G)

5.4 Relating Dh and Oh

We are now in a position to relate the semantics Oh and Dh.

Theorem 66 For any goal G, Oh(G) = �(Dh(G)).

37

Proof This result follows from theorems 59 and 65.

Note that, as a corollary of this proposition an operational history �1: � � � :�n:�

corresponds to a continuous and real denotational history starting in the empty
store: (�; �; �1):(�1; �; �2): � � � :(�n; �

0). This correspondance is biunivoque if � =
�+. In that case, �0 = �+. It is essentially biunivoque if � = ��. In that case,
the prefix up to the last element (�n; �

0) is fixed and the only varying part is �0

which takes the form ��(X) for some set X.

6 First steps characterization

The denotational semantics can also be characterized in terms of the opera-
tional semantics as follows.

Proposition 67 Let A be a goal, l be a label, and �, � be stores such thatDh(A)[(�; l; �)] 6=
;. Moreover, let B1, . . . , Bm be all the goals such that

<A; �>
l

�! <B; �>

Then,
Dh(A)[(�; l; �)] = Dh(B1)*� [� � � [Dh(Bm)*�:

Proof Indeed, theorem 59 and definition 56 justify the following equalities:

Dh(A)[(�; l; �)] = eOh(A)[(�; l; �)]

= fh : <A; �>
l

�! <B; �>; h 2 eOh(B); � � init(h)g

= (eOh(B1) [� � � [eOh(Bm)) \ fh 2 Sdhist : � � init(h)g

= eOh(B1)*� [� � � [eOh(Bm)*�

= Dh(B1)*� [� � � [Dh(Bm)*�

Note that Dh(B1) [� � � [Dh(Bm) is almost Dh(B1 + � � �+ Bm). They actually
differ by the treatment of immediately failing computations: all of them are
registered in Dh(B1) [� � � [Dh(Bm) while only those common to B1, . . . , Bm

appear in the denotational semantics of B1 + � � �+ Bm.

It is possible to further characterize the first steps of denotational histories
in terms of the presence of tell and ask primitives in goals. For instance, an
history (�; c; �):h in Dh(G) can only occur if G contains a tell(c) primitive in a
place ready to be executed.

The notion of top-context, already introduced in definition 15, specifies
those places. The following proposition provides a few characterizations, to
be intuitively read as follows.

38

� (�; �; �) as a first step requires either the synchronization of a tell primi-
tive with an ask primitive or the asynchronous reduction of one of these
primitives. Furthermore, the two cases can be distinguished as follows.
Asynchronous reductions occur when the constraint under consideration
is entailed by the input store �. Otherwise synchronous reduction has to
occur.

� (�; c; �) as a first step requires a tell(c) primitive to be reduced first.

� (�; c; �) as a first step requires an ask(c) primitive to be reduced first.

Proposition 68 Let G be a goal and �, � be two different stores such that � � �. Let
h be an history.

i) If (�; �; �):h 2 Dh(G), then G = tc[tell(c)] or G = tc[ask(c)] for a constraint c
such that � ` c.

ii) If (�; c; �):h 2 Dh(G), then G = tc[tell(c)] for a constraint c such that � 6` c and
� = � [fcg.

iii) If (�; c; �):h 2 Dh(G), then G = tc[ask(c)] for a constraint c such that � 6` c and
� = � [fcg.

iv) If (�; �; �):h 2 Dh(G) with � 6= �, then G = tc[tell(c); ask(d)] for some con-
straints c and d such that � 6` c, � 6` d, � = � [fcg, � ` d.

Proof The proposition is a direct consequence of proposition 16 and of theo-
rem 59.

7 Completion

Pursuing further the operational characterization of the denotational steps leads
to the following property.

Proposition 69 Let G be a goal and let h be an history of Dh(G). Then, hc is a real
history of Dh(G jj Co(h)).

Proof Using theorem 59, the proof consists in a simple recursive reasoning on
the size of goals.

8 Coherence properties

We now turn to a few properties grouped under the name of coherence. They
are all satisfied by the denotational semantics and will be required later for sets
of denotational histories.

39

8.1 Finiteness

The impact of a goal on stores can be shown finite in the following sense.

Proposition 70 For any goal G, the set dif f (Dh(G)) is finite.

Proof Using theorem 59, the proof consists in a simple recursive reasoning on
the size of goals.

The image-finiteness property (see proposition 14) can be rephrased at the
denotational level as follows.

Definition 71 For any S � Sdhist, any store �, define Act(S; �) = fl : S[(�; l; �)] 6=
;g:

Proposition 72 For any goal G, any store �, the set Act(Dh(G); �) is finite.

Proof The proposition results from theorem 59 and proposition 14.

Definition 73 The set S � Sdhist is action-finite at level n if for any prefix p 2

(Sstore� Slabel� Sstore)n of length n, for any store �, the set Act(S[p]; �) is finite. It
is uniformly action-finite if it is action-finite at any level.

Proposition 74 For any goal G, the semantics Dh(G) is uniformly action-finite.

Proof The proposition results from theorem 59 and proposition 14.

Proposition 75 For any prefix p 2 (Sstore�Slabel�Sstore)n, for any set S � Sdhist,
if S is uniformly action-finite then so does S[p].

Proof Simple verification.

8.2 Extensibility

The denotational semantics Dh(G) of a goal G is extensible in the following
sense.

Proposition 76 For any goal G, any stores �, �1, . . . , �n, �1, . . . , �n, for any labels
l1, . . . , ln,

1) there is a continuous history in Dh(G) starting in �

2) if Dh(G)[(�1; l1; �1): � � � :(�n; ln; �n)] 6= ; and if �n � �, then there is a contin-
uous history in Dh(G)[(�1; l1; �1): � � � :(�n; ln; �n)] starting in �.

Proof Indeed, the proposition is easily verified for eOh(G). The thesis then
results from theorem 59.

40

Definition 77 A set S � Sdhist is extensible from a store � if for any stores �, �1,
. . . , �n, �1, . . . , �n � �, for any labels l1, . . . , ln,

1) there is a continuous history in S starting in �

2) if S[(�1; l1; �1): � � � :(�n; ln; �n)] 6= ; and if �n � � then there is a continuous
history in S[(�1; l1; �1): � � � :(�n; ln; �n)] starting in �.

Proposition 78 For any goal G, for any store �, the semantics Dh(G) is extensible
from �.

Proof This is a direct consequence of proposition 76.

Proposition 79 For any set S � Sdhist of histories extensible from a store �, for any
stores �1, . . . , �n, �1, . . . , �n, for any labels l1, . . . , ln, then, if it is not empty, the
set S[(�1; l1; �1): � � � :(�n; ln; �n)] is extensible from any store � such that � � � and
� � �n.

Proof Simple verification.

8.3 Consistency

This section aims at establishing that one may always add or substract auxil-
iary constraints in histories in the case these constraints do not influence the
entailment of constraints told or asked by the considered goal.

Definition 80 Let S1 and S2 be two sets of constraints. S1 is independent from S2

if the two following conditions hold:

1. for any constraint c 2 S1 and any store �, if � [S2 ` c then � ` c;

2. for any store � � S1, for any constraint c, if �[S2 ` c then � ` c or exclusively
S2 ` c.

Alternatively, S2 is said not to influence S1.

Lemma 81 Let G be a goal and Sc and Su be two sets of constraints. Assume Su
contains all the tell and ask primitives of G and Sc does not influence Su. Then,

<G; �>
l

�! <G0
; �>

iff

<G; � [Sc>
l

�! <G0
; � [Sc>

Proof The lemma results directly from proposition 16 by noting that, for any
store �, and any constraint c of Su, one has � ` c iff � [Sc ` c by the indepen-
dence of Su wrt to Sc.

41

Lemma 82 Let Sc be a set of constraints which does not influence the set of constraints
Su. Let � � Su be a store and c 2 Su be a constraint. Then,

c"(� [Sc) = c"�

c#(� [Sc) = c#�

Proof The first equation is established by the following equalities:

c"(� [Sc) = fe : � [Sc [feg ` cg

= fe : � [feg ` cg
= c"�:

The first equality and the third one results immediately from definition 21. The
second one requires a few explanations. On the one hand, if � [feg ` c then
� [Sc [feg ` c. On the other hand, by definition 80, if � [Sc [feg ` c then
� [feg ` c.

The second equation is established by the following ones:

c#(� [Sc) = fe : � [Sc [fcg ` e; � [Sc 6` eg

= fe : � [fcg ` e; � 6` eg
= c#�

Again the first and third equalities results directly from definition 21. The sec-
ond equality is proved by demonstrating the two corresponding inclusions.
On the one hand, to prove

fe : � [Sc [fcg ` e; � [Sc 6` eg � fe : � [fcg ` e; � 6` eg

let us first note that � [Sc 6` e implies � 6` e. Moreover, since � [fcg � Su, then
by definition 80, for any constraint e such that �[Sc[fcg ` e, either �[fcg ` e
or (exclusively) Sc ` e. However, if additionnally e is such that � [Sc 6` e then
Sc 6` e.

On the other hand, to establish the converse inclusion

fe : � [fcg ` e; � 6` eg � fe : � [Sc [fcg ` e; � [Sc 6` eg

let us observe that if �[fcg ` e then �[fcg[Sc ` e. Moreover, by definition 80,
it follows that Sc 6` e. To conclude, it remains to be shown that � [Sc 6` e.
Indeed, otherwise, by definition 80, either � ` e or exclusively Sc ` e. However,
by hypothesis, � 6` e and, as just established, Sc 6` e.

Lemma 83 Let G be a goal and � be a store. Assume the set Su contains the con-
straints occurring in the tell and ask primitives of G and the set Sc does not influence
Su. Assume moreover that � � Su. Then

42

1) Actions(G; � [Sc) = Actions(G; �)
2) Ref usal(G; � [Sc) = Ref usal(G; �).

Proof The second part of the proposition follows directly from the first. This
part is in turn proved as follows by successively using definition 51 and lemma 82
– with for this lemma, the fact that the constraints c mentioned are in one of the
tell and ask primitives of G by proposition 16:

Actions(G; � [Sc) =
S
fc#(� [Sc) : <G; � [Sc>

c
�! <G0; �>;G0 2 Sgoal;

� 2 Sstore; c 2 Cg

[
S
fc"(� [Sc) : <G; � [Sc> c

�! <G0; �>;G0 2 Sgoal;
� 2 Sstore; c 2 Cg

=
S
fc#� : <G; �>

c
�! <G0; �>;G0 2 Sgoal;

� 2 Sstore; c 2 Cg

[
S
fc"� : <G; �>

c
�! <G0; �>;G0 2 Sgoal;

� 2 Sstore; c 2 Cg

= Actions(G; �):

Definition 84 A set of histories S � Shist is consistent wrt to the store
 if for any
superset Su of dif f (S), for any set of constraints Sc not influencing Su, the following
properties hold:

1. for any labels l1, . . . , ln and for any stores �1, . . . , �n+1, �1, . . . , �n included
in Su and such that �i � �i � �i+1 for i = 1; � � � ; n, and
 � �i,
 � �j, for
i = 1; � � � ; n + 1 and j = 1; � � � ; n,

(�1; l1; �1): � � � :(�n; ln; �n):(�n+1; �
+) 2 S iff

(�1 [Sc; l1; �1 [Sc): � � � :(�n [Sc; ln; �n [Sc):(�n+1 [Sc; �+) 2 S

2. for any labels l1, . . . , ln, for any stores �1, . . . , �n+1, �1, . . . , �n included in
Su, and such that �i � �i � �i+1 for i = 1; � � � ; n, and
 � �i,
 � �j, for
i = 1; � � � ; n + 1 and j = 1; � � � ; n, for any set X closed wrt �n+1,

(�1; l1; �1): � � � :(�n; ln; �n):(�n+1; �
�(X)) 2 S iff

(�1 [Sc; l1; �1 [Sc): � � � :(�n [Sc; ln; �n [Sc):

(�n+1 [Sc; ��(bX(�n+1[Sc))) 2 S

3. for any labels l1, . . . , ln, for any stores �1, . . . , �n+1, �1, . . . , �n included in
Su, and such that �i � �i � �i+1 for i = 1; � � � ; n, and
 � �i,
 � �j, for
i = 1; � � � ; n + 1 and j = 1; � � � ; n, for any set X closed wrt �n+1 [Sc,

(�1; l1; �1): � � � :(�n; ln; �n):(�n+1; �
�(bX�n+1)) 2 S iff

(�1 [Sc; l1; �1 [Sc): � � � :(�n [Sc; ln; �n [Sc):(�n+1 [Sc; ��(X)) 2 S

43

4. for any store �; �, any label l, any history h such that � [Sc � init(h),

(�; l; �):h 2 S iff (� [Sc; l; � [Sc):h 2 S:

It is uniformly consistent wrt
 if it is consistent wrt
 and if, for any stores �, �,

0 such that
 � �, � �
0, and for any label l if, it is not empty, the set S[(�; l; �)] is
uniformly consistent wrt
0.

Proposition 85 For any goal G, the set Dh(G) is consistent wrt to the empty store �.

Proof In view of theorem 59, the proposition is established for eOh(G) instead
of Dh(G) by an inductive reasoning of the size of G and by noting, for ask and
tell primitives, say ask(c) and tell(c) respectively, that what determines their
semantics is the verification of � ` c where � is the current store. However,
by hypothesis, this is independent from the set Sc. More precisely, the proof is
conducted as follows.

BASE CASE. If size(G) = 0, then G = 4 and thus, by definition 56,

eOh(G) = f(�; �+) : � 2 Sstoreg:

Therefore, points 2, 3, and 4 of definition 80 are straightfowardly verified in
this case. Moreover, the following equivalence trivially holds:

(�; �+) 2 eOh(G) iff (� [Sc; �+) 2 eOh(G):

INDUCTIVE CASE. If size(G) > 0 then G 6= 4 and by definition 56,

eOh(G) = f(�; l; �):h : <G; �>
l

�! <G0; �>; h 2 eOh(G0); � � init(h)g

[f(�; ��(X)) : <G; �>
�

6�! ;X � Ref usal(G; �);X closed wrt �g

Proof of point 1. The case where n = 0 does not occur by definition of eOh(G).
For n > 0, the thesis results from the following equivalences:

(�1; l1; �1): � � � :(�n; ln; �n):(�n+1; �
+) 2 eOh(G)

iff by definition 56, for some goal G0

<G; �1>
l1
�! <G0; �1>

and
(�2; l2; �2): � � � :(�n; ln; �n):(�n+1; �

+) 2 eOh(G0)

iff by lemma 81 and the induction hypothesis

<G; �1 [Sc>
l1
�! <G0; �1 [Sc>

and
(�2 [Sc; l2; �2 [Sc): � � � :(�n [Sc; ln; �n [Sc):(�n+1 [Sc; �+) 2 eOh(G0)

44

iff by definition 56

(�1 [Sc; l1; �1 [Sc): � � � :(�n [Sc; ln; �n [Sc):(�n+1 [Sc; �+) 2 eOh(G)

Proof of point 2. The case where n > 0 is treated as for point 1. For n = 0, if
(�; ��(X)) 2 eOh(G) then, the following properties hold:

1. <G; �>
�

6�! ,

2. X � Ref usal(G; �),

3. X closed wrt �.

In these conditions, by lemma 81, <G; � [Sc>
�

6�! and, by proposition 32,bX�[Sc is closed wrt � [Sc. To conclude, it remains to be established that

bX�[Sc
� Ref usal(G; � [Sc):

Indeed, by lemma 83, Ref usal(G; � [Sc) = Ref usal(G; �). Moreover, by propo-
sition 54, Ref usal(G; � [Sc) is closed wrt � [Sc. Applying proposition 31 then
leads to the desired inclusion.

Conversly, assume the following properties hold:

1. <G; � [Sc>
�

6�! ,

2. bX�[Sc � Ref usal(G; � [Sc),

3. X closed wrt �.

Then, by lemma 81, <G; �>
�

6�! . Moreover, as X is closed wrt �, it remains to
be established that X � Ref usal(G; �): Indeed, by lemma 83, Ref usal(G; � [Sc) =
Ref usal(G; �). The thesis then amounts to establishing that X � Ref usal(G; � [Sc).
By proposition 28,

X n fx 2 X : � [Sc ` xg � bX�[Sc

and thus
X n fx 2 X : � [Sc ` xg � Ref usal(G; � [Sc):

Moreover, by corollary 53,

fx 2 X : � [Sc ` xg � Ref usal(G; � [Sc):

Summing up, X � Ref usal(G; � [Sc), as required.

Proof of point 3. The proof for the case where n > 0 proceeds as for point 1.
For n = 0, if (� [Sc; ��(X)) 2 eOh(G) then the following properties hold:

45

1. <G; � [Sc>
�

6�! ,

2. X � Ref usal(G; � [Sc),

3. X closed wrt � [Sc.

In these conditions, by lemma 81, <G; �>
�

6�! and, by proposition 32, bX� is
closed wrt �. To conclude, we note that, by lemma 83, Ref usal(G; � [Sc) =
Ref usal(G; �) and that, by proposition 54, Ref usal(G; �) is closed wrt �. Conse-
quentely, by proposition 31, bX� � Ref usal(G; �). If follows from definition 56
that (�; ��(bX�)) 2 eOh(G).

The converse implication is established as for point 2.

Proof of point 4. Applying successively definition 56, lemma 81, and defini-
tion 56 again leads to the following equivalences, which establish the thesis:

(�; l; �):h 2 eOh(G)

iff
for some goal G0;

<G; �>
l

�! <G0; �> and h 2 eOh(G0)

iff
for some goal G0;

<G [Sc; �>
l

�! <G0 [Sc; �> and h 2 eOh(G0)

iff
(� [Sc; l; � [Sc):h 2 eOh(G)

Lemma 86 The union of (uniformly) consistent sets is (uniformly) consistent.

Proof Simple verification.

Lemma 87 For any store
1,
2,
3 such that
1 �
2 �
3, if S is (uniformly)
consistent wrt
1 then S*
2 is (uniformly) consistent wrt
3.

Proof Simple verification.

Proposition 88 For any goal G, Dh(G) is uniformly consistent.

46

Proof The proof is conducted by an inductive reasoning on the size of G.

I. BASE CASE. If G = 4, then Dh(G) = f(�; �+) : � 2 Sstoreg. Consequently, for
any stores �, �,
 such that
 � � and for any label l, the set Dh(G)[(�; l; �)] is
empty. Moreover, by proposition 85, Dh(G) is consistent wrt to �. The denota-
tion Dh(G) is thus uniformly consistent.

II. INDUCTIVE CASE. By proposition 85, Dh(G) is consistent wrt �. Moreover,
for any stores �, �,
 such that
 � � � � and for any label l, by proposition 67,

Dh(G)[(�; l; �)] = Dh(B1)*� [� � � [Dh(Bm)*�:

where B1, . . . , Bm are all the goals B such that

<G; �>
l

�! <B; �>

By proposition 13, the size of the Bi’s is strictly less than that of G. The induc-
tion hypothesis can thus be applied, which leads to the fact that the sets Dh(Bi)
are uniformly consistent wrt �. It follows from lemma 87 that the sets Dh(Bi)*�
are uniformly consistent wrt
. Hence so is Dh(G)[(�; l; �)] by lemma 86.

8.4 Deadlock disjointness

Failure sets of denotational semantics may be characterized as follows.

Proposition 89 For any goal G, for any store �, for any set X � Seconst closed wrt �,

one has (�; ��(X)) 2 Dh(G) if and only if <G; �>
�

6�! and X \ Actions(G; �) = ;.

Proof The proposition directly results from theorem 59 and definition 56.

This characterization of failure sets may be generalized to sets of histories
as follows.

Definition 90 The set S � Sdhist satisfies the disjointness deadlock condition at
level n iff for any prefix p 2 (Sstore � Slabel � Sstore)n of length n and for any store
� such that S[p] 6= ; and (�; ��(X)) 2 S[p] for some set X closed wrt �, there are
non-empty goals G1, . . . , Gm (m > 0) such that

1. <Gi; �>
�

6�!

2. for any Y � Seconst closed wrt �, one has
(�; ��(Y)) 2 S[p] iff Y \ Actions(Gi; �) = ; for some i = 1; � � � ;m.

The set S satisfies the uniform disjointness deadlock condition if it satisfies the
disjointness deadlock condition at any level.

Proposition 91 For any goal G, the denotational semantics Dh(G) satisfies the uni-
form disjointness deadlock condition.

47

Proof The case of the empty prefix is treated in proposition 89. Let p =
(�1; l1; �1): � � � :(�n; ln; �n) be a non-empty prefix of length n such thatDh(G)[p] 6=
;. Then by theorem 59 and definition 56, there are goals G�1, . . . , G�

n such that

<G; �1>
l1
�! <G�

1; �1>

� � �

<G�

n�1; �n>
ln
�! <G�

n; �n>

Moreover, by proposition 14, the set of sequences (G�1; � � � ;G�

n) of such goals is
finite. Take as goals G1, . . . , Gm all the possible non-empty target goals G�n such

that <G�

n; �>
�

6�! . They verify the disjointness deadlock condition. Indeed, on
the one hand, if (�; ��(X)) 2 Dh(G)[p] for some X � Seconst, then asDh(G)[p] =eOh(G)[p] by theorem 59, there are goals G01, . . . , G0

n such that

<G; �1>
l1
�! <G0

1; �1>

� � �

<G0

n�1; �n>
ln
�! <G0

n; �n>

(�; ��(X)) 2 eOh(G0

n)

By definition 56, this implies that G0n 6= 4, that <G0

n; �>
�

6�! , and that X \

Actions(G0

n; �) = ;. The goal G0

n is thus one of the goals Gi’s for which the dis-
jointness deadlock condition holds. Moreover, note that this reasoning proves
in addition that the set of Gi’s is non-empty ie m > 0.

On the other hand, suppose that X � Seconst is such that X\Actions(Gi; �) =

;, for some i = 1; � � � ;m. Then, by definition 56, (�; ��(X)) 2 eOh(Gi) and thus,
by construction, (�; ��(X)) 2 Dh(G)[p].

Proposition 92 For any prefix p 2 (Sstore�Slabel�Sstore)n, for any set S � Sdhist,
if S enjoys the uniform disjointness condition, then so does S[p].

Proof The proposition directly results from definition 90.

8.5 Coherence

The above properties are summarized in the following notion of coherence.

Definition 93 A set of denotational histories is called coherent if its set dif f (S) is
finite, if it is extensible, if it is uniformly action-finite, if it is uniformly consistent, and
if it enjoys the uniform disjointness deadlock condition.

48

9 Full abstraction

The next property to ask is whetherDh contains the least information necessary
to be compositional and correct. That corresponds to a full abstraction result.
This result is so involved that it deserves a complete section, which is done in
this section.

9.1 Definitions

Rephrased in other terms, full abstraction consists in requiring that the de-
notational semantics of two goals are identical iff, from the operational point
of view, the two goals behave identically even when they are composed with
other goals in all the possible manners. This form of composition is provided
by the classical notion of context, recalled in the following definition.

Definition 94 Let 2 be a fresh symbol. Define the set of contexts Scontext by the
following rules, where G is a goal.

C ::= 2 j G j C ; G j G ; C j C jj G j G jj C j C + G j G + C

The application of a context C to a goal G is defined as the new goal obtained by replac-
ing the place holder 2 in C, if any, by G. This is subsequently denoted as C[G].

Definition 95 The semantics Dh is fully abstract with respect to the semantics Oh

iff the following property holds: for any goals G1, G2, the following assertions are
equivalent

i) for any context C, Oh(C[G1]) = Oh(C[G2]);
ii) Dh(G1) = Dh(G2).

The semantics Oh and Dh being connected by the operator � we introduce
the following notation as the support of subsequent reasonings.

Notation 96 For any set S � Sdhist, define bSc as the largest set S0 such that �(S0) =
�(S).

Note that the difference between histories of S and bSc consists in failure
marks only according to the remark under theorem 66.

9.2 Intuition

The compositional property of Dh together with theorem 66 establish the im-
plication (ii)) (i) of definition 95. It thus remains to prove the converse
(i)) (ii). To that end, we shall proceed by contraposition. Given two goals
G1, G2 such that

Dh(G1) 6= Dh(G2) (5)

49

we shall construct a context C such that

Oh(C[G1]) 6= Oh(C[G2])

The two semantics reporting sets, the construction amounts to constructing
from a denotational history h of one goal, say G1, which is not in the denotation
of the other G2, a context C and an operational history of C[G1] not of C[G2]. In
view of the relation between Oh and Dh as shown by � in theorem 66, this
amounts to establishing the existence of a real and continuous denotational
history, starting in �, which is in Dh(C[G1]) and not in bDh(C[G2])c. To that end,
following [7], we shall construct from h a new history h0 and an goal T such
that h0 is in the denotational semantics of G1 jj T and not in bDh(G2 jj T)c.

The proof basically proceeds by induction on the length of h.
In the base case, h takes the form (�; �) with � being either �+ or ��(X).

The tester T then basically construct a real and continuous sequence yielding
� from the initial store � in a way that, on the one hand, prevents G1 and G2 to
do any intermediary step, and, on the other hand, forces G1 and G2 to do the
last step (�; �). By hypothesis, this is possible for G1 and not for G2 if � = �+

or if � = �� but Dh(G2) contains no ending steps (�; ��(Y)) whatever Y is. In
the case where (�; ��(Y)) 2 Dh(G2), then a test can be appended to T which
forbids G2 to do the last step but yet allow G1 to do it.

In the non basic case, h takes the form (�; l; �):h� for some history h�. Two
cases are possible: either there is no history starting by (�; l; �) in Dh(G2) or
those which start by (�; l; �) cannot end by h�. In the first case, the proof
proceeds as in the base case. In the second case, the proof uses induction.
However, the induction should be applied for h� in Dh(G1)[(�; l; �)] and not in
Dh(G2)[(�; l; �)]. As stated by proposition 67, these sets turned out to be basi-
cally but not exactly the denotations Dh(G0

1) and Dh(G0

2), of some goals G0

1 and
G0

2. We shall consequently generalize slightly the induction to sets of denota-
tional histories. This extension being discarded here for the sake of simplicity,
we thus apply the induction hypothesis for h�, G0

1 and G0

2. It points out a tester
T0 and an history h00 which is in Dh(G0

1 jj T0) and not in bDh(G0

2 jj T0)c. From
there we should construct a tester T and an history h000 inDh(G1 jj T) and not in
bDh(G2 jj T)c. Basically, the step (�; l; �) has to be done before h00 and since h000

needs to be continuous, h00 has to start in a possibly non empty store. Hence,
we have to generalize the theorem and construct in general from h an history h0

which start in any initial store. Given this generalization, the tester T basically
consists of first making the steps necessary to produce � from the given initial
store, then of making an auxiliary transition from � to some �0 chosen so as to
ensure that G1 and G2 have to do the step (�; l; �), and finally consists of T0.

A slight extension is needed when l 6= � . In that case, in order to guarantee
h0 to be real, the tester T is requested to perform the complementary step (�; l; �)
before making the transition from � to �0.

50

9.3 Auxiliary concepts

The above intuition points out an auxiliary task which consists of making by
an auxiliary goal the steps necessary to produce a given target store � from a
given initial store �. These steps are subsequently achieved by means of the
following goal GS;Sc

�!� .

Notation 97 Let c1, . . . , cm be contraints and let � and � be two stores such that
� � �. Then, we denote by � n � � fc1; � � � ; cmg the following properties

i) � = � [fc1; � � � ; cmg

ii) � [fc�1 ; � � � ; c�kg 6` ci, for any (possibly empty) subset fc�1 ; � � � ; c�kg of the cj’s
and for any ci 62 fc�1 ; � � � ; c�kg

Note that, as a consequence of point ii above, � 6` ci, for i = 1; � � � ;m

Definition 98 Let S be a finite set of constraints, and � and � be two stores, such that
� � �. Consider

� c1, . . . , cm constraints such that � n � � fc1; � � � ; cmg

� a1, . . . , am constraints such that

1. � [S [fa1; � � � ; aig 6` ai+1, for i = 1; � � � ;m

2. for any store � and any constraint c 2 S, if � [fa1; � � � ; amg ` c then
� ` c,

3. for any store
 � S, for any constraint c, if
[fa1; � � � ; amg ` c then
 ` c
or exclusively fa1; � � � ; amg ` c.

Then, abusing language by forgetting about the constraints ci’s in the notation, we

denote by GS;fa1;���;amg
�!� the following goal

(tell(c1) jj ask(c1)); (tell(a1) jj ask(a1));
� � �

(tell(cm) jj ask(cm)); (tell(am) jj ask(am));

Moreover, we note by Σ
S;fa1;���;amg
�!� the associated sequence of states

(�0; �;
1):(
1; �; �1):
� � �

(�i�1; �;
i):(
i; �i):
� � �

(�m�1; �;
m):(
m; �m)

where

�0 = �

i = �i�1 [fcig; i = 1; � � � ;m
�i =
i [faig; i = 1; � � � ;m

51

Note, in particular, that �m = � [fa1; � � � ; amg. Furthermore, in the case where

� = �, the goal GS;fa1;���;amg
�!� reduces to the empty goal and the sequence Σ

S;fa1;���;amg
�!�

is the empty sequence.
Finally, in the remainder of this paper, the use of the above notations implicitly

assume the above hypotheses on �, �, the ci’s, and the ai’s.

Obviously, GS;fa1;���;amg
�!� can perform the history Σ

S;fa1;���;amg
�!� :(�m; �

+). If S is
suitably chosen, it also has the property of being responsible for making the

steps of Σ
S;fa1;���;amg
�!� when placed in parallel with another goal.

Proposition 99 Let � and � be two stores such that � � �. Let A be a goal and let S
be the set of constraints present in the tell and ask primitives of A.

1) Any history h = Σ
S;fa1;���;amg
�!� :h0 of Dh(GS;fa1;���;amg

�!� jj A) is from the set

Σ
S;fa1;���;amg
�!� :(
; �+) ekh ha for some store
 and some history ha 2 Dh(A).

2) For any goal B, any history h = Σ
S;fa1;���;amg
�!� :h0 of Dh((GS;fa1;���;amg

�!� ; B) jj A)

is from the set Σ
S;fa1;���;amg
�!� :hb ekh ha for some histories ha 2 Dh(A) and hb 2

Dh(B).

Proof Let us establish the first part of the proposition, the proof of the other
part being similar.

By definition 49, if h is inDh(GS;fa1;���;amg
�!� jj A), there are h1 2 Dh(GS;fa1;���;amg

�!�)

and h2 2 Dh(A) such that h 2 h1
ekh h2. Let us first progressively establish that

h1 = Σ
S;fa1;���;amg
�!� :(
; �+) for some store
.

STEP 1: h1 = (�0; �;
1):h01; h = (�0; �;
1):hr; hr 2 h01 ekh h2:

To start, let us first observe that, employing the notations of definition 98, h
rewrites as h = (�0; �;
1):hr with hr = (
1; �; �1):h0r. Recalling definition 44 and
proposition 50, we now observe that only four situations are possible:

1. h1 = (�0; �;
1):h01 and hr 2 h01 ekh h2

2. h2 = (�0; �;
1):h02 and hr 2 h1
ekh h02

3. h1 = (�0; c1;
1):h01, h2 = (�0; d1;
1):h02, hr 2 h01 ekh h02, with � [fc1g ` d1

4. h1 = (�0; c1;
1):h01, h2 = (�0; d1;
1):h02, hr 2 h01 ekh h02, with � [fd1g ` c1

Let us prove that the last three cases cannot occur.

Case 2. In that case, the history h02 cannot be of the form h02 = (
1; �; �1):h002 or
h02 = (
1; a1; �1):h002 . Indeed, by propositions 67 and 68, the goal A should then
contain tell(a1), which is impossible in view of the choice of S and a1.

Moreover, h02 cannot be of the form h02 = (
1; d; �1):h002 . Indeed, in view of
hr, this would require that (
1; d; �1):h002 is combined with h1 in a synchronized

52

way by the operator ekh . In view of proposition 50, h1 would then be of the
form h1 = (
1; c1; �1):h01 and the equality �1 =
1 [fc1g would hold. It would
follow from the equality �1 =
1 [fa1g that � [S ` a1, which contradicts the
choice of a1.

Consequently, h1 must be of the form (
1; l; �1):h01. However, as
1 ` c1,
proposition 50 then implies that h1 = (
1; �;
1):h01 and thus that
1 = �1 which
is impossible since then � [S ` a1.

Summing up, case 2 cannot occur.

Case 3. In that case, by proposition 50, if h01 starts in
1, then h01 = (
1; �;
1):h001 .
Since
1 6= �1, to get h0r = (
1; �; �1) 2 h01 ekh h02, the history h02 should thus be
of the form h02 = (
1; �; �1):h002 . By proposition 68, this implies the presence
of a tell(c) operation in A such that
1 [fcg = �1 and consequently such that

1 [fcg ` a1. However, this contradicts the choice of a1.

Case 4. In that case, by proposition 50, if h01 starts in
1, then h01 = (
1; �;
1):h001 .
Since
1 6= �1, to get h0r = (
1; �; �1) 2 h01 ekh h02, the history h02 should thus be of
the form h02 = (
1; �; �1):h002 . However, this is impossible as just established.

Summing up, case 1 holds, namely h1 = (�0; �;
1):h01 and hr 2 h01 ekh h2.
Moreover, it is worth observing that thanks to proposition 50,

h01 2 Dh((tell(a1) jj ask(a1)); ; � � � ; (tell(cm) jj ask(cm)); (tell(am) jj ask(am))):

STEP 2: h01 = (
1; �; �1):h001 ; hr = (
1; �; �1):h0r; h0r 2 h001 ekh h2:

Let us establish that h2 cannot be of one of the three forms h2 = (
1; �; �1):h02,
h2 = (
1; c; �1):h02, or h2 = (
1; d; �01):h02. If so, then, by definition of ekh , h01, hr,
and h0r must then be of the required form.

By proposition 68, h2 = (
1; �; �1):h02 or h2 = (
1; c; �1):h02 implies that A
contains a tell(c) operation such that
1 [fcg = �1 and consequently such that

1 [fcg ` a1. However, this contradicts the choice of a1.

Moreover, h02 of the form h02 = (
1; d; �01):h002 requires, in view of hr, that
(
1; d; �01):h002 is combined with h01 in a synchronized way by the operator ekh .
In view of proposition 50, h01 must then be of the form h1 = (
1; a1; �1):h”1.
Moreover, for the triple (
1; d; �01) to appear,
1 6` d and �1 ` d. Taking
1 for
� and d for c, this contradicts the property of the ai’s that, for any constraint
c 2 S, � [fa1; � � � ; amg ` c) � ` c.

FOLLOWING STEPS. By similar reasonings, h1 can be proved of the form h1 =

Σ
S;fa1;���;amg
�!� :h0001 . The goal GS;fa1;���;amg

�!� has thus made the first 2� m steps. Con-
sequently, it has reached completion successfully and h0001 = (
; �+). for some
store
.

Proposition 99 can be extended to more general sets of denotational histo-
ries.

53

Proposition 100 Let � and � be two stores such that � � �. Let Sh be a subset of
Shhist such that dif f (S) is finite. Let S be a finite set containing dif f (Sh).

1) Any history h = Σ
S;fa1;���;amg
�!� :h0 of Dh(GS;fa1;���;amg

�!�) ek Sh is from the set

Σ
S;fa1;���;amg
�!� :(
; �+) ekh hs for some store
 and some history hs 2 Sh.

2) For any goal B, any history h = Σ
S;fa1;���;amg
�!� :h0 of Dh(GS;fa1;���;amg

�!� ; B) ek Sh is

from the set Σ
S;fa1;���;amg
�!� :hb

ekh hs for some histories hs 2 Sh and hb 2 Dh(B).

Proof Similar to that of proposition 99.

A point to observe with the sequence Σ
S;fa1;���;amg
�!� is that it starts with � but

does not end exactly in �. In fact, it ends in � [fa1; � � � ; amg. Fortunately, this
is not a problem since, as stated in proposition 85, the ai’s can be discarded if
they are suitably chosen.

9.4 Key proposition

Theorem 101 Let S1, S2 be two coherent subsets of Sdhist. Then, for any store �

such that (S1*�) n (S2*�) 6= ;, there is a goal T and a continuous and real history
h 2 (S1

ek Dh(T)) n b(S2
ek Dh(T))c which starts in �.

Proof The proof is conducted by induction on the minimum Lg of the length
of the histories which are in S1*� and not in S2*�.

CASE I: Lg = 1. Then there is an history h 2 S1 n S2 which is of the form (�; �+)
or of the form (�; ��(X)), for some set X.

Subcase i: h = (�; �+). Let us first examine the case where h = (�; �+). If
� = � then T = 4 satisfies the theorem. Otherwise, by hypothesis, (�; �+) 62

S2. Let V be the set dif f (S1) [dif f (S2). Consider T = GV;Sc
�!�, for some set of

constraints Sc satisfying definition 98. Obviously, h = ΣV;Sc
�!�:(� [Sc; �+) is a

real and continuous history. It belongs to S1
ek Dh(T) since S1 is consistent. To

conclude in this case, let us prove that it does not belong to bS2
ek Dh(T)c. To

that end, since h ends successfully, it is sufficient to establish that it does not
belong to S2

ek Dh(T). Indeed, if so, by proposition 100, h should come from the
following merge:

h 2 Σ
V;Sc
�!�:(
; �

+) ekh hs

for some store
 and some history hs 2 S2. Moreover, since h ends after ΣV;Sc
�!�

by (� [Sc; �+), one should have, by definition of the merge (see definition 44),

 = � [Sc and hs = (� [Sc; �+). Therefore, (� [Sc; �+) should belong to
S2 and so should (�; �+), since S2 is consistent. However, this contradicts the
hypothesis on S2.

Subcase ii: h = (�; ��(X)). The case where h = (�; ��(X)) can be treated
similarly if (�; ��(Y)) 62 S2 for every subset Y � Seconst. If this is not the case,

54

then, since S2 satisfies the uniform disjointness deadlock condition, there are a

finite number of non-empty goals G1, . . . , Gm (m > 0) such that <Gi; �>
�

6�!

for i = 1; � � � ;m, and such that, for any Z � Sdhist, (�; ��(Z)) 2 S2 if and
only if Z \ Actions(Gi; �) = ; for some i = 1; � � � ;m. In these conditions, the
fact that (�; ��(X)) 62 S2, implies that X \ Actions(Gi; �) 6= ;, for every i =
1; � � � ;m. Select then for each i, xi 2 X \ Actions(Gi; �) and rewrite fx1; � � � ; xmg

as fe1; � � � ; ep; f1; � � � ; fqg, with e1; � � � ; ep; f1; � � � ; fq 2 C, p � 0, q � 0, according
to the fact that xi is an overlined constraint or not. Note that, by construction
fe1; � � � ; ep; f1; � � � ; fqg is finite and non-empty.

Consider now

TS = ask(e1) + � � �+ ask(ep) + tell(f1) + � � �+ tell(fq)

T = GV;Sc
�!�; TS

for the set V = dif f (S1) [dif f (S2) [� [fe1; � � � ; epg [ff1; � � � ; fqg. The thesis is
established if the following properties hold:

1. Σ
V;Sc
�!�:(� [Sc; ��(U)) 2 S1

ek Dh(T), for some U � Sdhist;

2. ΣV;Sc
�!�:(� [Sc; ��(U)) 62 S2

ek Dh(T), for any U � Sdhist.

i.e. in view of proposition 100, if the following properties hold:

(P1) (� [Sc; ��(U)) 2 S1
ek Dh(TS), for some U � Sdhist;

(P2) (� [Sc; ��(U)) 62 S2
ek Dh(TS), for any U � Sdhist.

PROOF OF P1. To prove (P1), let us first observe that, by definition 49

(� [Sc; ��(Seconst n ([
p
i=1

ei"(� [Sc) [[q
j=1

fj#(� [Sc)))) 2 Dh(TS):

As (�; ��(X)) 2 S1 by hypothesis and since S1 is consistent, (�[Sc; ��(bX(�[Sc))) 2
S1. In view of definition 44, it thus remains to be shown that

(SeconstnbX(�[Sc))\(Seconst n (Seconst n ([
p
i=1

ei"(� [Sc) [[q
j=1

fj#(� [Sc)))) = ;

i.e. for any i = 1; � � � ; p, any j = 1; � � � ; q,

(Seconst n bX(�[Sc)) \ ei"(� [Sc) = ;

and
(Seconst n bX(�[Sc)) \ fj#(� [Sc) = ;:

Since bX(�[Sc) is closed wrt � [Sc, proving these equalities amounts to estab-
lishing that, on the one hand, ei 2 bX(�[Sc), for i = 1; � � � ; p, and fj 2 bX(�[Sc), for
j = 1; � � � ; q. The first set of memberships results directly from proposition 29

55

and the fact that, by construction, ei 2 X, for i = 1; � � � ; p. To prove the second
set of memberships, the same reasoning can be followed but the application of
proposition 29 requires in addition that � [Sc 6` fj, for any j = 1; � � � ; q. This is
indeed the case. Otherwise, since Sc does not influence
, � [Sc ` fj implies
that � ` fj. However, by proposition 52, � 6` fj.

PROOF OF (P2). Assume that

(� [Sc; ��(U)) 2 S2
ek Dh(TS)

for some set U. In that case, by definition 44, there are W2 and WT such that

(� [Sc; ��(W2)) 2 S2

WT � Seconst n ([
p
i=1

ei"(� [Sc) [[q
j=1

fj#(� [Sc)) (6)

(Seconst nW2) \ Seconst nWT = ; (7)

As S2 is consistent, it follows that (�; ��(cW2
�

)) 2 S2 and thus that there is
k 2 f1; � � � ;mg such that

cW2
�

\ Actions(Gk; �) = ;

i.e. such that
Seconst n cW2

�

� Actions(Gk; �):

Moreover, from (6), one derives that

Seconst nWT � ([
p
i=1

ei"(� [Sc) [[q
j=1

fj#(� [Sc))

and consequently that

Seconst nWT � ([
p
i=1

ei"(� [Sc) [[q
j=1

fj#(� [Sc)):

Summing up,

(SeconstncW2
�

)\Seconst nWT � Actions(Gk; �)\([
p
i=1

ei"(� [Sc)[[q
j=1

fj#(� [Sc))

To conclude, let us reason on xk. On the one hand, if xk = ei for some i 2
f1; � � � ; pg then ei 2 Actions(Gk; �) by definition of xk, and thus, as ei 2 ei"(� [Sc)
– see definition 21 –

ei 2 (Seconst n cW2
�

) \ Seconst nWT:

By contraposing proposition 29 applied to ei and W2, if ei 62 cW2
�

then ei 62 W2.
As a result,

(Seconst nW2) \ Seconst nWT 6= ;

56

which contradicts (7). On the other hand, if xk = fj, for some j 2 f1; � � � ; qg, then
fj 2 Actions(Gk; �), by definition of xk. Therefore, since, as established in the
proof of (P1), � [Sc 6` fj, then fj 2 fj#(� [Sc) and consequently

fj 2 (Seconst n cW2
�

) \ Seconst nWT:

Contraposing proposition 29 applied to fj and W2 then leads to fj 62 cW2
�

implies
fj 62 W2. Therefore

(Seconst nW2) \ Seconst nWT 6= ;;

which contradicts (7).

CASE II: Lg > 1. Let us now consider the case where the minimum of the
lengths of the histories of (S1*�) n (S2*�) is greater than 1. In that case, let h
be such an history of minimum length. It is thus of the form h = (�; l; �):h0 for
some stores �; � , some label l, and some history h0. There are two cases to be
considered: either S2[(�; l; �)] = ; or S2[(�; l; �)] 6= ; but h0 62 S2[(�; l; �)].

Subcase i: S2[(�; l; �)] = ;. In the case S2[(�; l; �)] = ;, the intuition behind
the proof is as follows. We first observe, by proposition 76, that, for any �0

there is a continuous history hr 2 S1[(�; l; �)] starting in �0. It can be made
real by being put in parallel with its complementor Co(hr). This determines the
tail of the distinguishing history. The start of this history is obtained by the
goal Ts = GV;Sc

�!�, with V and Sc as above, which is able to perform the steps of
ΣV;Sc
�!�. To conclude, it remains to leave and force S1 and S2 perform the step

(�; l; �). To that end, we need a trick which consists of adding after (�; l; �) a
step (�; �; �0) which can only be made by the tester.

More formally, take V as a finite superset of dif f (S1) [dif f (S2) which also
contains the constraint appearing in l, if any, and Sc as one of the possible sets
of constraints a1, . . . , am verifying the hypothesis of definition 98. Let c be a
constraint such that � [dif f (S1) [dif f (S2) [Sc 6` c and let �0 = � [fcg [Sc.
Define the goal Gl as follows:

Gl =

8<:
4 if l = �

ask(d) if l = d
tell(d) if l = d

Consider the continuous history hr mentioned above, and define T as the goal1

T = GV;Sc
�!�; Gl; (tell(c) jj ask(c)); Co(hr):

Then, the history

h� = Σ
V;Sc
�!�:(� [Sc; �; � [Sc):(� [Sc; �; �0):(hr)

c

enjoys the following properties:

1Strictly speaking, Gl and GV;Sc
�!� are dropped from T in the case they are empty.

57

� it is real, continuous, and starts in �,

� it belongs to S1
ek Dh(T),

� it is not of bS2
ek Dh(T)c.

The first property should be clear. The second is evidenced by noting the three
following facts:

1. hT defined as follows is in Dh(T),

hT =

(
ΣV;Sc
�!�:(� [Sc; �; �0):(hr)

n if l = �

Σ
V;Sc
�!�:(� [Sc; l; � [Sc):(� [Sc; �; �0):(hr)

n if l 6= �

2. since S1 is consistent,

h1 = (� [Sc; l; � [Sc):hr 2 S1

3. h� 2 h1
ekh hT:

Finally the third property is established by contradiction as follows. If it does
not hold then, following proposition 100, a variant of h� obtained by possibly
modifying its ending mark should come from the merge of two histories of
the form ΣV;Sc

�!�:hg and hs, with hg 2 Dh(Gl; (tell(c) jj ask(c)); Co(hr)) and hs 2 S2.
However, hg cannot be of the form (�[Sc; �; �[Sc):h0g. Indeed, on the one hand,
if l = � , then, Gl = 4 and hg 2 Dh((tell(c) jj ask(c)); Co(hr)). By proposition 50,
�[Sc ` c, which contradicts the choice of c. On the other hand, if l = d or l = d,
then, by proposition 67 and definition of Sc, � [Sc 6` d. Hence, if it starts in
� [Sc, then hg is necessarily of the form hg = (� [Sc; l; � [Sc):h0g with l 6= � .

It follows that hs must participate to the step (� [Sc; �; � [Sc) either alone
if l = � or in synchronization with hg if l 6= � . In other terms, hs = (� [Sc; l; � [
Sc):h0s. Therefore, S2[(� [Sc; l; � [Sc)] is not empty and, so is S2[(�; l; �)] since
S2 is consistent. However, this contradicts the hypothesis on S2.

Subcase ii: S2[(�; l; �)] 6= ; but h0 62 S2[(�; l; �)]. In that case, by hypothesis
h0 2 S1[(�; l; �)] n S2[(�; l; �)] and the minimum of the length of those histories
which are in S1[(�; l; �)] and not in S2[(�; l; �)] is strictly less than Lg. We are
thus in the position of applying the induction hypothesis. For an arbitrarily
given store �0 such that

S1[(�; l; �)]*�0 n S2[(�; l; �)]*�0 6= ;

it delivers a tester T0 and a real and continuous history h�r starting in �0 and
which is in (S1[(�; l; �)] ek Dh(T0)) n bS2[(�; l; �)] ek Dh(T0)c. The proof then con-
sists of prefixing T0 by some actions, yielding T, and h�r by a suitable sequence,
yielding h�, such as h� starts, as required, in �, is real and continuous, and is

58

in S1
ek Dh(T) and not in bS2

ek Dh(T)c. Applying the technique of subcase i), T
should start by GV;Sc

�!� to bring the store � to � [Sc, then leave S1 and S2 do the
step (�; l; �) and then resume by doing T0. In order to force the Si’s to do so, we
shall use again an additional step that can only be made by T. Hence, let c be a
constraint not influencing � [dif f (S1) [dif f (S2) [Sc and let T be defined as

T = GV;Sc
�!�; Gl; (tell(c) jj ask(c)); T0:

Moreover, take �0 as �0 = � [fcg [Sc. Note that since S1 and S2 are uniformly
consistent,

S1[(�; l; �)]*�0 n S2[(�; l; �)]*�0 6= ;

can be deduced from

S1[(�; l; �)]*� n S2[(�; l; �)]*� 6= ;;

which holds by hypothesis of subcase ii).
In these conditions, the history

h� = Σ
V;Sc
�!�:(� [Sc; �; � [Sc):(� [Sc; �; �0):h�r

enjoys the following properties:

� it is real, continuous, and starts in �,

� it belongs to S1
ek Dh(T),

� it is not of bS2
ek Dh(T)c.

The first property should be clear. To establish the second property, let us first
note that, since h�r 2 S1[(�; l; �)] ek Dh(T0) there is h�1 2 S1[(�; l; �)] and h�t 2

Dh(T0) such that h�r 2 h�1 ekh h�t . Therefore,

hT =

(
ΣV;Sc
�!�:(� [Sc; �; �0):h�t if l = �

Σ
V;Sc
�!�:(� [Sc; l; � [Sc):(� [Sc; �; �0):h�t if l 6= �

is in Dh(T) and, since S1 is uniformly consistent,

h1 = (� [Sc; l; � [Sc):h�1 2 S1:

Hence, h� 2 hT
ekh h1 and thus h� 2 S1

ek Dh(T).
To conclude, let us prove the third property by contradiction. Otherwise,

in view of proposition 100, a variant of h� obtained by possibly modifying
its ending mark should be in the set Σ

V;Sc
�!�:ht

ekh hs for some histories ht 2

Dh(Gl; (tell(c) jj ask(c)); T0) and hs 2 S2.
Moreover, using the same argument as in the previous subcase i), T cannot

be responsible for the step (�[Sc; l; �[Sc) ie, restated in formal terms, ht cannot

59

be of the form ht = (� [Sc; �; � [Sc):h0t. Hence, hs = (� [Sc; l; � [Sc):h0s, for
some history h0s, and,

ht =

�
h0t if l = �

(� [Sc; l; � [Sc):h0t if l 6= �;

for some history h0t 2 Dh((tell(c) jj ask(c)); T0). Note, in particular, that h0s 2
S2[(�; l; �)] since S2 is uniformly consistent and since init(hs) � � [Sc. Fur-
thermore, thanks to the choice of the constraint c, S2 cannot participate to the
step (� [Sc; �; �0) ie h0s cannot rewrite as h0s = (� [Sc; �; �0):h00s . Indeed, if this
was the case, then, by definition (see notation 35), c 2 dif f (S2). It follows that
dif f (S2) ` c, which contradicts the choice of c.

Therefore, h0t = (� [Sc; �; �0):h00t , for some history h00t 2 Dh(T0).
Summing up, h�r 2 h00t ekh h0s for some histories h00t 2 Dh(T0) and h0s 2

S2[(�; l; �)] and consequently, h�r 2 S2[(�; l; �)] ek Dh(T0), which contradicts the
fact that, by construction, h�r is in (S1[(�; l; �)] ek Dh(T0)) n bS2[(�; l; �)] ek Dh(T0)c.

9.5 Proof of the full abstraction property

We are now in a position to establish the full abstraction property.

Theorem 102 The semantics Dh is fully abstract with respect to the semantics Oh.

Proof Following definition 95, the two following properties should be estab-
lished equivalent:

i) for any context C, Oh(C[G1]) = Oh(C[G2]);
ii) Dh(G1) = Dh(G2).

The implication ii)) i) follows directly from theorem 66.
The other implication i)) ii) is proved by contraposition. Assume Dh(G1)

6= Dh(G2). Then, since both Dh(G1) and Dh(G2) are sets, there is an history h
which is in one set and not in the other one. Without lost of generality, we
may assume that h 2 Dh(G1) and h 62 Dh(G2). Then Dh(G1) n Dh(G2) 6= ; and,
consequently taking as coherent sets S1 = Dh(G1), S2 = Dh(G2), and � as initial
store �, theorem 101 establishes that there is a goal T and a real and continuous
history h 2 (Dh(G1) ek Dh(T)) n b(Dh(G2) ek Dh(T))c which starts in �. Note that,
by definition 49, h 2 Dh(G1 jj T) n bDh(G2 jj T)c. Therefore, by theorem 66, eh is
an operational history of Oh(G1 jj T) which is not in Oh(G2 jj T). There is thus
a context C = 2 jj T, such that Oh(C[G1]) 6= Oh(C[G2]), which concludes the
proof.

60

10 Acknowledgment

The authors thank K. Apt, M. Bonsangue, A. Brogi, J.W. de Bakker, F. de Boer,
E. de Vinck, M. Gabbrielli, E. Horita, J. Kok, B. Le Charlier, U. Montanari, C.
Palamidessi, J. Rutten, V. Saraswat, P.-Y. Schobbens, and P. Wegner for stimu-
lating discussions on the semantics of concurrent logic languages.

References

[1] L. Brim, D. Gilbert, J.-M. Jacquet, and M. Křetínský. Synchronisation in
Scc. In Proc. Int. Symp. on Logic Programming, 1995.

[2] L. Brim, D. Gilbert, J.-M. Jacquet, and M. Křetínský. A Process Algebra
for Synchronous Concurrent Constraint Programming. In M. Hanus and
M. Rodriguez-Artalejo, editors, Proceedings of the 5th Conference on Algebraic
and Logic Programming, volume 1139 of Lecture Notes in Computer Science,
pages 165–178. Springer-Verlag, September 1996.

[3] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A Theory of Communicating
Sequential Processes. Journal of the ACM, 31:499–560, 1984.

[4] F. S. de Boer and C. Palamidessi. A Fully Abstract Model for Concurrent
Constraint Programming. In S. Abramsky and T.S.E. Maibaum, editors,
Proc. of TAPSOFT/CAAP91, Lecture Notes in Computer Science, pages
296–319. Springer-Verlag, 1991.

[5] F.S. de Boer, J. W. Klop, and C. Palamidessi. Asynchronous Communi-
cation in Process Algebra. In Proceedings of the Seventh Annual IEEE Sym-
posium on Logic in Computer Science, pages 137–147. The IEEE Computer
Society Press, 1992.

[6] M. Falaschi, G. Levi, and C. Palamidessi. A Synchronization Logic: Ax-
iomatics and Formal Semantics of Generalized Horn Clauses. Information
and Control, 60:36–69, 1994.

[7] E. Horita, J.W. de Bakker, and J.J.M.M. Rutten. Fully Abstract Denota-
tional Models for Nonuiform Concurrent Languages. Information and com-
putation, 115(1):125–178, 1994.

[8] J.-M. Jacquet and L. Monteiro. Communicating Clauses: Towards
Synchronous Communication in Contextual Logic Programming. In
Krzysztof Apt, editor, Proceedings of the Joint International Conference and
Symposium on Logic Programming, pages 98–112, Washington, USA, 1992.
The MIT Press.

[9] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[10] Michael W. Mislove and Frank J. Oles. Full Abstraction and Recursion.
Theoretical Computer Science, 151:207–256, 1995.

61

[11] G. Plotkin. A Structured Approach to Operational Semantics. Technical
report, DAIMI FN-19, Computer Science Department, Aarhus University,
1981.

[12] V. Saraswat. Concurrent Constraint Programming. The MIT Press, 1993.

[13] V. Saraswat and M. Rinard. Concurrent Constraint Programming. In Proc.
of 17th POPL, pages 232–245, 1990.

[14] V. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundations of
Concurrent Constrant Programming. In Proc. of 18th POPL. ACM, 1991.

62

Copyright c© 1999, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

