
} w��������
��
������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Timetabling with Annotations

by

Hana Rudová
Luděk Matyska

FI MU Report Series FIMU-RS-99-09

Copyright c© 1999, FI MU December 1999



Timetabling with Annotations

Hana Rudová, Luděk Matyska
Faculty of Informatics, Masaryk University

Botanická 68a
Brno 602 00, Czech Republic

{hanka,ludek}@fi.muni.cz

December 21, 1999

Abstract

One of the peculiarities of university timetabling problems lies in
their huge complexity and the easy transition between complex con-
strained system to an over-constrained one. The Faculty of Informat-
ics timetabling problem represents very complex scheduling and re-
source allocation problem as individual timetable for every student
has to be scheduled with respect to course pre-enrollment informa-
tions. Variables’ annotations were proposed to define preferences of
variables in constraints and they serve as a source for computing vari-
able ordering in optimization problems where the search space is too
large to be fully traversed and explored. Annotations suggest a route
through this space which leads quickly to at least sub-optimal solu-
tions. Annotations may even help to find preferred solutions first as
they instantiate preferred values in the domain of variables as soon as
possible.

1 Introduction

Variables’ annotations express preferences of variables in particular con-
straints. They are applied for solving constraint satisfaction problems with
too large search space to be fully traversed and explored. Annotations
could be suitable for application areas such as planning or scheduling. Let
us consider the timetabling problem stated in variables which represent
teachers (dean, professors, assistants, . . .), rooms (different size, different
equipment, . . .), and courses (more and less engaged by students). These

1



various degrees of importance define annotations which may be stated di-
rectly as a part of input data. If a problem has too large number of solutions
to explore them all then annotations are used to generate more interesting
solutions as soon as possible.

Another interesting example is the problem of the search for the opti-
mal sequence of aircraft departures from a runway. Because practically all
constraints are safety regulations, we can only change aircraft allocation to
different time slots. The only allowed action is the removal of an aircraft
from further consideration. We can assign preferences to individual vari-
ables (planes) and find solutions with more important aircrafts in preferred
time slots prior to other solutions.

Our paper consists from two main parts, the first one describes annota-
tions as an approach for solving constraint satisfaction problems with opti-
mizations and the second part is devoted to the real university timetabling
problem solved with help of annotations. Both parts include summary
of related work concerning systems with different kind of preferences ap-
plied for solving constraint satisfaction problems and methods for solving
timetabling problem as the constraint satisfaction problem.

2 Annotations

Our former work with annotations introduces them as an approach for
solving over-constrained problems. These annotations represented impor-
tance or meaning of variable’s occurence in constraint to define selection
of feasible solution in problems, where all constraints can not be satisfied.
We have defined mappings of variables’ annotations to different frame-
works [Rud98b, Rud98c, Rud98a] for solving over-constrained problems —
to constraint hierarchies [BFBW92, WB93] and possibilistic CSPs [Sch92].
Particular mappings give us several interpretations of annotations and they
may be used as examples of possible semantics of annotations in over-
constrained problems.

This work applies the same preferences as above for solving constraint
satisfaction problems with optimizations where the whole search space can
not be explored due to its complexity. Here annotations define a route
through the search space leading to at least sub-optimal solution. Pref-
erences of variables in particular constraints will define variable ordering,
which is combined with value ordering heuristics.

2



2.1 Related Work on Preferences

Various types of preferences, priorities, satisfaction degrees, weights, or
levels of importance were proposed to find solutions of problems with
uncertainties, ill-defined problems, over-constrained problems, and opti-
mization problems where some kind of softness have to be involved to get
feasible solutions. The most simple framework, the maximal constraint
satisfaction (MAX-CSP) [FW92] seeks a solution that satisfies as many con-
straints as possible. Weighted constraint satisfaction considers weights for
each constraint and minimizes weighted sum of unsatisfied constraints.
Both of these systems are used for solving over-constrained problems. Pos-
sibilistic CSP [Sch92] assigns to each constraint some preference degree,
which express necessity of its satisfaction. Fuzzy CSP [DFP96] considers
constraint as a relation assigning to each tuple of values its level of pref-
erences. Preference degrees in both approaches are combined with help of
fuzzy sets, possibility theory and possibilistic logic. These approaches are
suitable for solving ill-defined problems, problems with uncertainties, and
partially inconsistent problems. Constraint hierarchies [BFBW92, WB93]
define several levels of constraints. The violations of constraints are mini-
mized level by level subsequently with help of weighting the importance
of constraints. Partial CSP [FW92] is a general approach which finds a new
problem with minimal distance from original problem with help of some
metrics. Valued CSP [SFV95] and Semiring-based CSP [BMR97, GC98]
(compared in [BFM+96]) define monoid and lattice structures, which spec-
ify type of used preferences and manipulation with them. They are very
general frameworks for constraint satisfaction and optimization. Above
mentioned approaches may be described as a specification of these two
frameworks. An approach the closest to ours, the Variable Valued CSP was
only briefly described in [LV97, VLS96] and applied for the daily manage-
ment of an earth observation satellite. There, each variable is associated
with some weight expressing its importance. The objective is to produce
a partial assignment of the problem variables which satisfies all imperative
constraints and maximizes the sum of the weights of the assigned variables.

Preferences in all these systems specify how to compute one or more,
best or optimal solution. Unfortunately, the search space is often too large
to be fully traversed and explored. In such case some strategy is needed to
deal with this situation, however the above mentioned systems don’t offer
any. The annotations were introduced to help solve such a situation as they
suggest some route through the search space which could lead to at least
sub-optimal solution.

3



2.2 Constraint System with Annotations

A constraint satisfaction problem (CSP) is a triple (V,D,C), where

• V = {v1, . . . , vn} is the set of variables;

• D = {D1, . . . , Dn} is the set of domains. Each domain is a finite set
containing the possible values for the corresponding variable;

• C = {c1, . . . , cn} is the set of constraints. A constraint ci is a relation
defined on a subset {vi1, . . . , viki} of all the variables, that is {Di1 ×
. . .×Diki

} ⊇ ci.

Given instantiation θ of the variables, the constraint ci is satisfied if all the
vi1, . . . , viki variables got a value such that corresponding value tuple be-
longs to ci. A solution of a CSP is such a complete instantiation of the
variables that all the constraints are satisfied. If a CSP has not any solution,
the problem is called over-constrained or inconsistent and a CSP with more
than one solution is called under-constrained.

Over-constrained problems may be solved by putting the over-constra-
ined part of the problem into some objective function which express de-
gree of error in the problem. Often the problem becomes highly under-
constrained and large space has to be explored to find the best solution.
In many cases different heuristics are used to find some sub-optimal so-
lutions because the whole space can not be explored due to its complexity.
This kind of problems and classical optimization problems with partially or
even completely ordered variables may become application areas for anno-
tations. Annotations as a source for computing variable ordering may help
to find more interesting solutions as soon as possible, especially with help
of value ordering heuristics.

Annotations are defined by a triple (A,�,~)

• A as a set of annotations;

• � as an ordering on A;
if a, b ∈ A then a � b means a is more preferred annotation than b;

• ~
ai∈A

ai (finite A ⊂ A) as a function computing global annotation; it

is defined by applying either ~ : Ak → A or a commutative and
associative binary operation closed on A.

Annotations are local to a constraint, i.e., any variable may have differ-
ent annotations in different constraints. Function a : C×V → A determines
the annotation of every variable in every constraint.

4



Local variable’s annotation is used for computing several characteris-
tics of underlying constraint system, so called global annotations. Let us
define var(c) ⊆ V as a set of variables in the constraint c. Then we can de-
fine global variable annotation by combining variable’s annotations in all
constraints where variable occurs

av : V → A , av(v) = ~
{c∈C| v∈var(c)}

a(c, v) . (1)

Typical examples of (A,�,~) are intervals (for example 〈0, 1〉) over real
numbers, ordering ≥ over real numbers, and sum or arithmetic average,
resp.

Currently, variable ordering is computed via global variable annota-
tions av which are computed for each variable by combining variable an-
notations in all constraints where variable occurs (Eqn. 1). During compu-
tation variables are instantiated in order given by value of global variable
annotation av and ordering of annotations�. All variables are instantiated
during labeling in order given by importance of variables. This method
is combined with selection of values in the domain of variable which are
the most interesting — e.g., times between 9 a.m. and 5 p.m. are the most
interesting values in the domain of most variables for the lecture time.

3 Timetabling Problem

Timetabling problems may be solved by different methods inherited from
operational research such as graph coloring and mathematical program-
ming, from local search procedures such as tabu search and simulated an-
nealing, or from genetic algorithms (see [Sch95, CL98] for surveys). We
applied annotations for solving the timetabling problem by constraint pro-
gramming approach which allows the formulation of all the constraints
of the problem in a more declarative way than other approaches [Laj96,
GJBP96].

The complexity of timetabling problem often causes that the problem
becomes over-constrained. Within the traditional CSP approach, prefer-
ences for selection feasible solution are implemented with help of some
labelling heuristics [AB94, GKM98]. A formulation of an over-constrained
part of the problem may be included in an optimization constraint [FHS95,
HW96], other possibility consists in applying weighted [AM98] or hierar-
chical [BKMQC97] soft constraints. An expensive search of overall solution
space may be also replaced by relaxation of difficult constraints either in
a semi-automatic [Laj96] or automatic way [GJBP96].

5



The Faculty of Informatics timetabling problem represents very com-
plex scheduling and resource allocation problem as individual timetable
for every student has to be scheduled with respect to course pre-enrollment
informations. The similar problem was presented in the paper [GJBP96]
which applies constraint logic programming approach together with con-
straint relaxation. However a number of students was almost ten times
smaller than in our case which is really crucial when a solution of NP
complete problem has to be find. To our knowledge, any constraint pro-
gramming system creating automated timetable for individual students or
defining similar objective function have not been still described or created
for such a large scale problem.

It can be argued that many universities solve similar complex timetabl-
ing problem once with just minor modifications for each subsequent year.
With this, students are able to plan their courses “years” in advance and
are able to visit all interesting or required courses on time. Unfortunately
this system is not flexible enough to respect expected degree of freedom
during course selection at schools where open credit system with just few
strict requirements plays substantial role. Students should be able to create
their own timetables wrt. their actual interests, available courses, or current
development of research. Our solution tries to respect these requirements
and to make timetables flexible enough for everybody.

3.1 Problem Description

Our real university timetabling problem is a bit more complex than usual,
because we would like to create individual timetable for every student —
as (s)he registers for a set of courses. Also the number of required courses is
small, majority of courses are optional and so the sets of registered courses
for each student can be very different. Still higher level of complexity
adds another problem: each course may consists from lecture or seminar
or lecture+seminar, where the number of lectures and/or seminars is de-
termined with respect to the number of students pre-enrolled on a course,
and with respect to teacher’s requirements. Each student should visit one
lecture and/or one seminar for each registered course. Computing an ideal
timetable should solve the problem of student’s splitting into groups such
that each student is able to visit lecture and/or seminar for each his/her
specified course. Let us define so called timetable item representing usual
course with its students. Such timetable item is given by a tuple 〈course,
lecture or seminar identifier/order, set of students〉. Basically our task con-
sists in instantiation of the set of tuples 〈timetable item, class room, time〉,

6



i.e., each lecture or seminar of course has assigned its set of students, class
room, and time1.

The solution of overall problem should consider the following subprob-
lems:

P1: splitting students into groups for each course, where an input of this
problem are tuples 〈number of lectures, students for lectures, num-
ber of seminars, students for seminars〉 given for each course, and an
output is a set of timetable items defined by tuple 〈course, lecture or
seminar identifier, set of students〉;

P2: satisfaction of consistency requirements

c1: each teacher gives only one course at a time;

c2: only one course can take place in a class room at a time;

c3: exception — one teacher can teach one course in two specific class
rooms with help of camera and video projection at the same
time;

plus required constraints given by teachers

c4: requested time of courses wrt. strict unavailability of teacher;

c5: time dependencies between some courses, lectures, or seminars;

. . .

P3: assigning class rooms of suitable size and type (lecture hall, computer
room, lecture hall with data projector, . . .) to timetable items;

P4: placing timetable items in time;

P5: minimization of total number O of timetable items which overlap for
any student;

P6: (partial) satisfaction of preferential constraints (given by teachers or
students)

c6: Friday afternoon is not preferred;

c7: early morning and late evening times generally are not preferred;

c8: free time for lunch;

. . .

1Teachers of particular courses are determined as a part of our problem definition, so we
do not need to solve this kind of resource allocation — assign teachers to courses.

7



3.2 Proposed Problem Solution

Generally the subproblems P1, P3, and P4 should cooperate to generate
particular sets of students, class rooms, and times such that constraints in
P2 are satisfied, the objective function O in problem P5 is minimized, and
constraints in P6 are satisfied to the largest possible extent. The complexity
of particular subproblems is very high — the standard timetabling problem
is NP complete, and so the solution which concurrently combine all these
subproblems can not be expected to give results in a reasonable time.

We separated the most complex problem P1 and we constructed the fea-
sible division of students as an input for other problems. This approach al-
lows us to compute for every two timetable items ti1, ti2 a number nti1ti2 of
students which need to visit both timetable items. With this we know how
desirable or undesirable is parallel teaching of any two timetable items.
The objective function O summarize nti1ti2 for any overlapping ti1, ti2.
This value of O computed for one pre-computed division of students gives
us the worst case estimate of generated timetable — some places in lec-
tures/seminars are still free with respect to existing overlapping for some
students and students are also allowed to swap lectures/seminars with
other students to improve their personal timetables.

The above proposed solution may include requirements in P2 as stan-
dard constraints in constraint satisfaction problem, but enlarged set of con-
straints including all the requirements in P6 would make the problem over-
constrained. This part of problem may be understood as the second objec-
tive which should evaluate “better” placement of particular timetable items
measured by “better” satisfaction of preferential constraints. How would
be possible to decrease the number of unsatisfiable requirements in such
a large-scale problem? This is the point where annotations help us to guide
the search through interesting solutions. In our problem, variables impor-
tant for labeling represent class rooms of timetable items, which may have
different size and different equipment (e.g., data projector), and time of
timetable items, which are taught by different teachers and pre-enrolled by
different number of students. These various degrees of importance are de-
fined through annotations. Value ordering plays important role especially
for instantiations of suitable times where each timetable item has specified
the more/less preferred times which are assigned first/last.

8



3.3 Realization

We started our implementation in SICStus Prolog [Int98]. This implemen-
tation solved problems P1, P4, and partially the problems P2, P3 and it
was based mainly on global constraints as cumulative , serialized ,
and all_distinct for sharing discrete and unary resources. This version
did not include any specialized search through solution space but was not
very efficient — the first solution was found approximately in 1 minute on
a PC Pentium 400 MHz. We tried to compare this version with implemen-
tation in ILOG [ILO99] software, an object oriented library for constraint
programming in C++. Because the first obtained solution was much faster
(1 second on the PC Pentium 400 MHz), for the second version which will
be described in the following part we used the ILOG environment only.

Splitting of Students (P1) The output of this problem should be some
feasible splitting of students into particular timetable items. Set of regis-
tered students is basically sorted in lexicographic order and then split wrt.
the required number of groups. The lexicographic order is advantageous
wrt. the splitting of the same student group to lectures and to seminars,
i.e., useless conflicts for seminars and lectures of the same course are not
imposed.

Basic Data Structures in CSP Teachers are represented by unary resources
(IlcUnaryResource in ILOG), timetable items by non-breakable activi-
ties2 (IlcIntervalActivity ). Each room of unique size plays a role of
unary resource (IlcUnaryResource ), rooms of the same size are grouped
together into one discrete resource (IlcDiscreteResource ) with capac-
ity equal to the number n of class rooms. This approach postpones some
parts of resource allocation after time assignment which may be crucial
for finding solution in acceptable time. This also allows us to decrease
a number of symmetries in CSP. Particular class rooms are assigned after
solving the CSP. Existence of solution is guaranteed even for non-breakable
timetable items 3 and this solution is found in O(n × time).

2Courses are not allowed to be interrupted by definition.
3Proof: ILOG object IlcDiscreteResource representing sets of class rooms of the

same size ensures that smaller or equal number of timetabling items than its capacity (the
number of class rooms in the set) is allocated in every time. Now let us sort class rooms in
any fixed order. Class rooms are assigned to timetable items subsequently. Each class room
is assigned to timetable items in increasing time without any gaps if possible. When some
timetable items have remained without assigned class rooms in the end, then some gap

9



Constraints in P2 Each timetable item requires suitable teacher (c1).
Timetable item should require (ILOG constraint requires ) suitable room
(c2) but this constraint is a bit more complex and exact required resource
for each activity/timetable item is described below as a part of resource
allocation (P3). Timetable items taught by one teacher at the same time (c3)
may be easily solved by removing the constraint c1 for one of the timetable
items and binding them to the same time. Specific class rooms are also
required by adding new constraints.

Similarly other required constraints are implemented with help of ILOG
predefined constraints. If some special constraints on variables are im-
posed, annotations to variables may be assigned to express that such vari-
able may be a source of propagation and its early instantiation may prune
the solution space at the beginning of the search. Typical examples may
be strong dependencies between times or class rooms of several timetable
items. Let us imagine a simple constraint which binds together times of two
timetable items (e.g., part of implementation of the constraint c3). Higher
annotations of these time assignment variables entail their early instanti-
ation when enough space (i.e., free class rooms) is still available for easy
time placement of these timetable items. If instantiations of these variables
would be postponed, conflicts with other timetable items will be discov-
ered much later and useless parts of the search tree have to be explored.

Resource Allocation (P3) Each timetable item has to have assigned class
room of suitable size and suitable type. Currently we have three different
types of class rooms — lecture halls, lecture halls with data projector, and
computer rooms — each of them with different sizes. We have created three
“hierarchies” of class rooms, the highest level always contains the largest
class rooms while the lowest level contains all class rooms. Each timetable
item requires class room from the sufficient level. Particular levels rep-
resent sets of alternative resources (IlcAltResSet ).

Some type of requirements in resource allocation problem may be vio-
lated. Timetable item may be assigned to a slightly smaller class room wrt.
the number of pre-enrolled students which means some degree of freedom
in the selection of “sufficient” level. Because lecture halls with data pro-
jectors are class rooms of the largest size, some timetable items may re-
quire lecture hall with data projector even if its number of students is rather

beginning at the starting time of timetable item has to exist wrt. existing discrete resource.
But all timetable items were assigned in order given by starting time and any such gap
should not exist — the contradiction compelling the proof.

10



small. Such kind of requirement may by also violated for some timetable
items. Set of alternative resources for such timetable items is a union of two
levels from different hierarchies representing sufficiently sized lecture halls
and all lecture halls with data projector.

Timetable items are assigned to particular class rooms to balance occu-
pation of particular class rooms because even very small degree of freedom
allows to find the solution later in the time assignment. Variable ordering
during instantiation is given by variables’ annotations. Annotations are
combined with help of global variable annotation av and sum as a combin-
ing function. More important annotations are usually assigned to timetable
items with greater number of students or with preferred data projector. Be-
cause all annotations of room assignment variables are combined, variable
ordering is also influenced by annotations of constraints in P2 and P6. Par-
ticular variables are instantiated to assign preferred values first and to bal-
ance class room occupation. Our variable ordering is given by importance
of variables and we are able to assign preferred values in order given by
this importance.

Currently results from resource allocation are used as an input for time
assignment.

Problems P4+P5+P6 Particular times of timetable items are assigned (P4)
with respect to minimal course overlapping for any students (P5) and pref-
erential constraints in P6. Variables are instantiated in order given by their
global variable annotation and sum as a combining function. Annotations
currently represent preferences of teachers given by the seniority of each
teacher and by numbers of students pre-enrolled on the course (expressing
interest on a given course).

Each time the variable is instantiated special value ordering is imposed.
This value ordering depends on the preferred values in the domain of par-
ticular variable vi and on the number ni of overlaps with other courses
already scheduled at given time. Preferred values are given by preferen-
tial constraints in P6. Usually these constraints prefer times from 9 a.m. to
5 p.m. or restrain Friday’s afternoon, but particular value ordering may
be specific wrt. teacher’s requirement in P6. The preferred values are se-
lected in increasing order and current value of overlaps ni is compared with
threshold either as an absolute value or as an ratio to number of students in
timetable item. If ni is not sufficient the next remaining value with the high-
est preferences is selected. The same order is applied during backtracking
and searching for better solutions. Annotations ensure that more impor-

11



tant variables are assigned first and the possibility of selection of preferred
value is increased.

Each solution may be evaluated by sum of overlaps for all timetable
items

∑k
i=1 ni, where k is the number of timetable items. This value gives

us exact measure of the solution quality but we do not focus only on the
optimality of solution from this point of view and we try to balance this
parameter with improved satisfaction of preferential constraints with help
of annotations.

Size of Problem With respect to growing size of our school we can use
input data of different scope. Each instance is timetabled for 5 days with
13 teaching units. The number of our courses increases from 220 to 270,
each of them is non-breakable and they have variable length from 1 to 4
time units. He have some 100 to 140 teachers, 12–18 class rooms, 1000–
1400 students, and from 10 000 to 13 000 student’s requirements in course
pre-enrollment.

Results Computing the first solution takes from 2 to 4 seconds with re-
spect to the size of problem. Different solutions were obtained for different
kinds of threshold (see paragraph Problems P4+P5+P6). The first method
applies threshold as a maximal number of students in one timetable items
for whom some overlapping with other timetable items may occur. The sec-
ond method considers threshold as a ratio between the number of students
with any overlap and the number of students pre-enrolled to the timetable
item. The second method which was slightly better was able to satisfy for
all instances 94–95 % of pre-enrollment requirements within the 10–13 %
threshold. The first method with 90 to 94 % satisfied requirements allowed
maximal number of conflicts between 6 to 11 per timetable item.

Currently achieved results with more than 94 % of satisfied course pre-
enrollment requirements in first computed solution promise interesting re-
sults even with additional constraints from the problems P2 and P6 es-
pecially with respect to further improvements in time assignment and re-
source allocation algorithms. These results seems to be very interesting es-
pecially when compared with initial requirements to satisfy 60–70 % course
pre-enrollments.

12



4 Conclusion

Faculty of Informatics timetabling problem allows us to better understand
possible semantics of annotations in constraint satisfaction, optimization,
or over-constrained problems. The natural basic question “What is the
meaning of annotation?” may be answered shortly “It depends (on the
point of view).”. When too many constraints are introduced and the prob-
lem becomes over-constrained, the annotations could help assign more pre-
ferred values to more important variables or the annotations could take
a role of constraints’ weights and subsume constraints ordering [Rud98c].
The annotations in optimization problems may guide the search to find at
least sub-optimal solutions through preferred variables and their preferred
values, too. Other meaning of variable annotations may be as a pointer of
valuable propagation which allows to prune the solution space quickly and
leads directly to a solution.

The advantage of our approach may also consists in different definition
of the timetabling problem. Usually timetabling problem solved by con-
straint programming techniques includes large sets of no-clash constraints
to teach some sets of courses in different times. Increasing the set of con-
straints often leads to over-constrained problem and its solution becomes
much harder. Our problem definition includes these requirements in the
objective function O, which may be manipulated easily than solving di-
rectly the over-constrained problem. We have shown that such objective
function may be included into a declarative definition of constraint pro-
gramming problem even for such large scale timetabling problems.

Our future work will study potential of the annotations for solving con-
straint satisfaction, optimization, and over-constrained problems wrt. their
proposed possible semantics. We would like also to introduce the annota-
tions as a uniform framework for solving problems with constraints.

We applied annotations for solving real university timetabling problem.
We plan to add more constraints, implement more sophisticated resource
allocation and time assignment algorithms, e.g., intelligent backtracking
or constraining maximal number of fails or maximal consumed time dur-
ing search of particular branches of the search tree. We would like also
to coordinate time assignment algorithm with previous resource allocation
process to repair some faulty instantiation by min-conflict repair heuristics.

We also intend to solve other problems from scheduling or planning
application areas to show that annotations may help solve wide range of
problems.

13



5 Acknowledgements

This work is supported by the Universities Development Fuund of the
Czech Republic under the contract # 0407/1999. We would like to thank
Libor Škarvada for the discussions about current creation of the timetable
at the Faculty of Informatics.

References

[AB94] Francisco Azevedo and Pedro Manuel Barahona. Timetabling
in constraint logic programming. In Proceedings of the 2nd
World Congress on Expert Systems, January 1994.

[AM98] Slim Abdennadher and Michael Marte. University
timetabling using constraint handling rules. In Actes des
Journées Francophones de Programmation en Logique et Program-
mation par Contraintes, 1998.

[BFBW92] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson.
Constraint hierarchies. Lisp and Symbolic Computation,
5(3):223–270, 1992.

[BFM+96] Stefano Bistarelli, Hélène Fargier, Ugo Montanari, Francesca
Rossi, Thomas Schiex, and Gérard Verfaillie. Semiring-based
CSPs and Valued CSPs: Basic properties and comparison.
In Michael Jampel, Eugene Freuder, and Michael Maher,
editors, Over-Constrained Systems, pages 111–150. Springer-
Verlag LNCS 1106, August 1996.

[BKMQC97] Michael Baumgart, Hans Peter Kunz, Sascha Meyer, and
Klaus Quibeldey-Cirkel. Priority-driven constraints used for
scheduling at univesities. In Mark Wallace, editor, Practical
Application of Constraint Technology, pages 65–73. The Practi-
cal Application Company Ltd, 1997.

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semi-
ring-based constraint solving and optimization. Journal of
ACM, 44(2):201–236, March 1997.

[CL98] Michael W. Carter and Gilbert Laporte. Resent develop-
ments in practical course timetabling. In Edmund Burke

14



and Michael Carter, editors, Practice and Theory of Automated
Timetabling, pages 3–19. Springer-Verlag LNCS 1408, 1998.

[DFP96] Didier Dubois, Hélène Fargier, and Henri Prade. Possibility
theory in constraint satisfaction problems: Handling prior-
ity, preference and uncertainty. Applied Intelligence, 6:287–309,
1996.

[FHS95] Harikleia Frangouli, Vassilis Harmandas, and Panagiotis
Stamatopoulos. UTSE: Construction of optimum timetables
for university courses — A CLP based approach. In Proceed-
ings of the Third International Conference on the Practical Appli-
cations of Prolog (PAP’95), pages 225–243, Paris, France, April
1995. Alinmead Software Ltd.

[FW92] Eugene C. Freuder and Richard J. Wallace. Partial constraint
satisfaction. Artificial Intelligence, 58:21–70, 1992.

[GC98] Yan Georget and Philippe Codognet. Compiling Semiring-
based constraints with clp(FD, S) . In Michael Maher and
Jean-Franccois Puget, editors, Principles and Practice of Con-
straint Programming — CP98, pages 205–219. Springer-Verlag
LNCS 1520, 1998.

[GJBP96] Christelle Guéret, Narendra Jussien, Patrice Boizumault, and
Christian Prins. Building university timetables using con-
straint logic programming. In Edmund Burke and Peter Ross,
editors, Practice and Theory of Automated Timetabling, pages
130–145. Springer-Verlag LNCS 1153, 1996.

[GKM98] Hans-Joachim Goltz, Georg Küchler, and Dirk Matzke.
Constraint-based timetabling for universities. In Proceedings
INAP’98, 11th International Conference on Applications of Prolog,
pages 75–80, 1998.

[HW96] Martin Henz and Jörg Würtz. Using Oz for college
timetabling. In Edmund Burke and Peter Ross, editors,
Practice and Theory of Automated Timetabling, pages 162–177.
Springer-Verlag LNCS 1153, 1996.

[ILO99] ILOG S.A. ILOG Scheduler 4.4 User’s Manual, 1999.

[Int98] Intelligent Systems Laboratory, Swedish Institute of Com-
puter Science. SICStus Prolog User’s Manual, 1998.

15



[Laj96] Gyiri Lajos. Complete university modular timetabling using
constraint logic programming. In Edmund Burke and Pe-
ter Ross, editors, Practice and Theory of Automated Timetabling,
pages 146–161. Springer-Verlag LNCS 1153, 1996.

[LV97] M. Lemaître and G. Verfaillie. Daily management of an earth
observation satellite : comparison of ILOG solver with dedi-
cated algorithms for Valued constraint satisfaction problems.
In Proceedings of Third ILOG International Users Meeting, Paris,
France, July 1997.

[Rud98a] Hana Rudová. Constraints with variables’ annotations and
constraint hierarchies. In Branislav Rovan, editor, SOF-
SEM’98: Theory and Practice of Informatics, pages 409–418.
Springer-Verlag LNCS 1521, 1998.

[Rud98b] Hana Rudová. Constraints with variables’ annotations. In
Henri Prade, editor, 13th European Conference on Artificial In-
telligence Proceedings, pages 261–262. John Wiley & Sons, Ltd.,
1998.

[Rud98c] Hana Rudová. Constraints with variables’ annotations.
Technical Report FIMU-RS-98-04, Faculty of Informatics
Masaryk University, 1998. In http://www.fi.muni.cz/infor-
matics/reports/.

[Sch92] Thomas Schiex. Possibilistic constraint satisfaction problems
or “How to handle soft constraints ?”. In 8th International Con-
ference on Uncertainty in Artificial Intelligence, pages 268–275,
Stanford, CA, July 1992.

[Sch95] Andrea Schaerf. A survey of automated timetabling. Techni-
cal Report CS-R9567, CWI, Amsterdam, NL, 1995.

[SFV95] Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. Valued
constraint satisfaction problems: Hard and easy problems. In
Chris S. Mellish, editor, Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, pages 631–639,
San Mateo, August 1995. Morgan Kaufmann.

[VLS96] G. Verfaillie, M. Lemaître, and T. Schiex. Russian doll search
for solving constraint optimization problems. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence

16



(AAAI-96) and Eighth Conference on Innovative Applications of
Artificial Intelligence (IAAI-96), pages 181–187, Portland, OR,
USA, 1996.

[WB93] Molly Wilson and Alan Borning. Hierarchical constraint logic
programming. Journal of Logic Programming, 16(3,4):227–318,
1993.

17



Copyright c© 1999, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic


