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Abstract. Lots of words can be said about the importance of speaker
identification for people, but no word might be as meaningful as the
imagination of a life without having any speaker identification ability. For
example, if we can not identify people from their voices, without having any
additional information it is impossible for us to decide on whom we are talking
to on telephone. Of course, this ability seems so simple for us, but computer
based implementations are still far from human abilities. Furthermore, any
speaker identification system on computers can not be designed as an optimum
solution. It is known that there is no optimum feature set definition for speaker
identification systems. In this work, we study speaker identification
performance dependency on the choice of frequency bands.

1   Introduction

Speaker identification process can be subdivided into three phases: i) Transformation
of training set speaker records to feature vectors database, ii) Training of the system
using these data, and iii) Identification performance test. In the first phase, we can use
various methods to generate feature sets, such as LPC cepstrum [1] or mel−cepstrum
[2] representations. The process in the second phase depends on the choice of
identification method. In this phase we can use Vector Quantisation [3], Gaussian
Mixture Models (GMM) [4], Hidden Markov Models [5] or various types of Neural
Network architectures such as Radial Basis Function Networks [6,7]. The theoretical
details of GMM method are given in Section 2. In the last phase, speaker
identification performance of the system is tested using test feature vectors database.

Selection of feature vector parameters has been studied in previous works [1,8,9].
In Sambur’s paper [8] important characteristics of various acoustic features are
analyzed. These acoustic features are vowels, nasals, strident consonants, fundamental
frequency, and timing measurements. Moreover, to determine the overall feature
ranking he uses a “knock out” procedure that determines the least important feature
parameter at each step using error performance criteria. In Atal’s work [1], acoustic
parameters in speaker identification are classified in eight different groups. These
groups are: intensity, pitch, short−time spectrum, predictor coefficients, formant
frequencies and bandwidths, nasal coarticulation, spectral correlations, timing and
speaking rate. On the other hand, In O’Shaughnessy’s work [9] acoustic features are



subdivided into two groups, inherent features and learned ones. F−ratio is accepted as
a good measure of the amount of speaker identification information that is carried by
any analyzed feature.

Our approach to the feature selection problem differs in many ways from the
previous works those we mention. In order to analyze the speaker identification
performance dependency on a frequency band, we use training and test sets which are
composed of including only the filtered power spectrum values in the analysis
frequency range. Besides that, in this work we propose new performance measures
which are vector and speaker ranking. The experimental results on speaker
identification performance dependency on frequency bands and the methodology are
given in Section 3. The results of this work are discussed in Section 4.

2   GMM Based Speaker Identification System

The main idea behind this method is to model the statistical behavior of a speaker’s
acoustic characteristics by using a mixture of multidimensional Gaussian
distributions. Properties of these multidimensional Gaussians, such as mean vectors
and covariance matrices, are calculated using Expectation Maximization (EM)
algorithm. In this method each speaker is represented by K multidimensional
Gaussians. Parameter set of ith speaker is represented as follows.
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j
µ : Mean vector of jth Gaussian,

jΣ : Covariance matrix of jth Gaussian,

jp : Probability of jth Gaussian.

Conditional probability of observation of the test vector x in terms of ith speaker’s
parameter set is calculated as given below.
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EM algorithm can be formulated as follows.
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In these formulas, xi,j,T  represents ith speaker’s jth training future vector. This
optimization procedure is ended, if the calculated likelihood value does not increase
more than a predefined threshold between consecutive iterations.

Identification test of any speaker, who is in the set, includes two phases. In the
first phase, likelihood value of subject speaker’s test set is calculated for each
candidate speaker. The second phase includes assignment of speaker who has the
highest likelihood ratio, to the subject speaker’s identity. Suppose that H represents
the assigned speaker and XS represents the whole set of test vectors of the subject
speaker, we can formulate this decision process as;
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Using Bayes rule we can rewrite ( )Si XλPr  as in (2.9).
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Assuming the probability of each speaker is equal and p(XS) value is the same for
each speaker, we can simplify (2.9) in (2.10).
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3   Speaker Identification Performance Analysis

Speaker identification system requires both training and test vector sets for speaker
identification process. In order to test the speaker identification performance on a
discrete frequency band, the train and test sets are generated including only the
filtered power spectrum values in analysis frequency range. It is also observed that,
these frequency bands must not be shorter than 500 Hz. In the experiments, we use
TIMIT speech corpus [10] that has eight different dialect regions of American



English. TIMIT already includes voice active regions in utterances, so in this work we
do not need to use a voice activity detection mechanism. The speaker sets we use are
restricted only the records of speakers in the fifth dialect region; this approach cancels
the effect of dialect region difference in speaker identification performance.
Moreover, we work on three speaker sets. First set includes only male speakers,
second set includes only female speakers, and third set includes both male and female
speakers. The number of speakers in all these sets is equal to twenty-four.
Performance analysis in the same gender also eliminates the information carried by
gender difference that is valuable for speaker identification. We generate the training
set using the unique utterances from all speakers’ records, these files have “sa”
prefixes, and the files with “si” prefix are used in the test set. Furthermore, phonetic
dominance problem in training is cancelled by using these unique utterances.

In the experiments, speech records are segmented in 20 ms frames and the
duration between adjacent frames is kept at 10 ms. Each frame is weighted using
Hamming window and transformed to frequency domain using DFT, then the power
spectrum of a frame is calculated using these coefficients. The power spectrum
coefficients are passed through a filter bank that is composed of uniform triangular
filters. Train and test files for each frequency band are generated using the filtered
power spectrum. The training phase is the same as given in section two. On the other
hand, speaker identification performance is measured according to two criteria: vector
ranking and speaker ranking.

In vector ranking, we compare the statistical likelihood values of each test vector
in terms of candidate speakers, and then we assign a rational number between 0 and 1
to the identification performance of the correct speaker. The mean value of all
speakers’ performance values is calculated and assigned as a final measure of speaker
identification performance value for this frequency interval. On the other hand, in
speaker ranking, we compare the statistical likelihood values of each speaker’s test
set in terms of candidate speakers, then we do the same numerical assignment as in
the previous method that we explain. Also the final measure of speaker identification
performance value at this frequency interval according to the speaker ranking is
obtained by calculating the average of all speaker’s performance values. After we
calculate the performance on each frequency band, we can visualize how the speaker
identification performance varies along the whole frequency axis. These results are
also examined comparing with calculated F−ratio [1] values at each frequency band.
Also, F−ratio for this case is the ratio of inter speaker variance to intra speaker
variance at that frequency band, and it is interesting to note that there is a correlation
between calculated F−ratio values and vector ranking results.

4   Conclusion

Observations in this work give us a new perspective about the importance of
frequency bands in speaker identification systems. Although, mel−scale is used in
speaker identification systems generally, it is possible to define a new scale using the
results of this work. Besides that, we have already developed a new filter bank
according the results of this work, it is called as “speaker sensitive frequency scale
filter bank” (SSFSF). In the speaker identification test including 462 speakers of



TIMIT corpus, the system with SSFSF gives better identification results as compared
with the system including mel−scale filter bank. Furthermore, the following work that
we focus on is a subjective test to compare our observations and human auditory
system responses.
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